1
|
Sokolova GD, Budynkov NI, Tselipanova EE, Glinushkin AP. Species Diversity in the Fusarium solani (Neocosmospora) Complex and Their Pathogenicity for Plants and Humans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:416-427. [PMID: 36781537 DOI: 10.1134/s0012496622060217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 02/15/2023]
Abstract
The Fusarium solani species complex is a large group of soil saprotrophs with a broad adaptive potential, which allows the fungi to exist under various conditions and to parasitize on different hosts. The review analyzes the modern data concerning the genetic peculiarities of species from this complex by the example of F. solani f. sp. pisi and generalizes the data on the most widespread species pathogenic for both plants and humans. The enhanced resistance of the F. solani species complex to the most of modern antifungal agents and the need for novel therapeutic agents against fusariosis has been considered.
Collapse
Affiliation(s)
- G D Sokolova
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia.
| | - N I Budynkov
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia
| | - E E Tselipanova
- Moscow Regional Vladimirsky Research Clinical Institute, Moscow, Russia.
| | - A P Glinushkin
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia
| |
Collapse
|
2
|
Kange AM, Xia A, Si J, Li B, Zhang X, Ai G, He F, Dou D. The Fungal-Specific Transcription Factor VpFSTF1 Is Required for Virulence in Valsa pyri. Front Microbiol 2020; 10:2945. [PMID: 31998257 PMCID: PMC6965324 DOI: 10.3389/fmicb.2019.02945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2023] Open
Abstract
Valsa pyri is the causal agent of pear canker disease, which leads to enormous losses of pear production in eastern Asian, especially China. In this study, we identified a fungal-specific transcription factor 1 (termed as VpFSTF1) from V. pyri, which is highly conserved in fungi. To characterize its functions, we generated mutant and complementation strains in V. pyri and found that ΔVpFSTF1 mutants lost the ability to form fruiting bodies along with the reduced virulence. The radial growth of ΔVpFSTF1 mutant was sensitive to increasing concentrations of hydrogen peroxide (H2O2) and salicylic acid (SA). Moreover, RNA-sequencing (RNA-Seq) analysis of wild-type (WT) and ΔVpFSTF1 mutant strains was performed, and the results revealed 1,993 upregulated, and 2006 downregulated differentially expressed genes (DEGs) in the mutant. The DEGs were corresponding to the genes that are involved in amino acid metabolism, starch, and sucrose metabolism, gluconeogenesis, citrate cycle, and carbon metabolism. Interestingly, pathogen host interaction (PHI) analysis showed that 69 downregulated genes were related to virulence, suggesting that they might function downstream of VpFSTF1. Nine DEGs were further validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the results were consistent with RNA-seq analysis. Furthermore, promoter regions were predicted, and VpFSTF1 binding activity was assessed. We demonstrated that five promoters are directly or indirectly targeted by VpFSTF1, including catalase-related peroxidase (VPIG_01209) and P450 family genes. Taken together, these findings indicate that VpFSTF1 is crucial for the virulence of V. pyri via direct or indirect regulation of downstream genes expression and lay an important foundation for understanding the molecular mechanism of V. pyri infection.
Collapse
Affiliation(s)
- Alex Machio Kange
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jierui Si
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bingxin Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiong Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gan Ai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Daolong Dou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
4
|
Coleman JJ. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. MOLECULAR PLANT PATHOLOGY 2016; 17:146-58. [PMID: 26531837 PMCID: PMC6638333 DOI: 10.1111/mpp.12289] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Members of the Fusarium solani species complex (FSSC) are capable of causing disease in many agriculturally important crops. The genomes of some of these fungi include supernumerary chromosomes that are dispensable and encode host-specific virulence factors. In addition to genomics, this review summarizes the known molecular mechanisms utilized by members of the FSSC in establishing disease. TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; Genus Fusarium. HOST RANGE Members of the FSSC collectively have a very broad host range, and have been subdivided previously into formae speciales. Recent phylogenetic analysis has revealed that formae speciales correspond to biologically and phylogenetically distinct species. DISEASE SYMPTOMS Typically, FSSC causes foot and/or root rot of the infected host plant, and the degree of necrosis correlates with the severity of the disease. Symptoms on above-ground portions of the plant can vary greatly depending on the specific FSSC pathogen and host plant, and the disease may manifest as wilting, stunting and chlorosis or lesions on the stem and/or leaves. CONTROL Implementation of agricultural management practices, such as crop rotation and timing of planting, can reduce the risk of crop loss caused by FSSC. If available, the use of resistant varieties is another means to control disease in the field. USEFUL WEBSITES http://genome.jgi-psf.org/Necha2/Necha2.home.html.
Collapse
Affiliation(s)
- Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
5
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
6
|
Milani NA, Lawrence DP, Arnold AE, VanEtten HD. Origin of pisatin demethylase (PDA) in the genus Fusarium. Fungal Genet Biol 2012; 49:933-42. [PMID: 22985693 DOI: 10.1016/j.fgb.2012.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/25/2022]
Abstract
Host specificity of plant pathogens can be dictated by genes that enable pathogens to circumvent host defenses. Upon recognition of a pathogen, plants initiate defense responses that can include the production of antimicrobial compounds such as phytoalexins. The pea pathogen Nectria haematococca mating population VI (MPVI) is a filamentous ascomycete that contains a cluster of genes known as the pea pathogenicity (PEP) cluster in which the pisatin demethylase (PDA) gene resides. The PDA gene product is responsible for the detoxification of the phytoalexin pisatin, which is produced by the pea plant (Pisum sativum L.). This detoxification activity allows the pathogen to evade the phytoalexin defense mechanism. It has been proposed that the evolution of PDA and the PEP cluster reflects horizontal gene transfer (HGT). Previous observations consistent with this hypothesis include the location of the PEP cluster and PDA gene on a dispensable portion of the genome (a supernumerary chromosome), a phylogenetically discontinuous distribution of the cluster among closely related species, and a bias in G+C content and codon usage compared to other regions of the genome. In this study we compared the phylogenetic history of PDA, beta-tubulin, and translation elongation factor 1-alpha in three closely related fungi (Nectria haematococca, Fusarium oxysporum, and Neocosmospora species) to formally evaluate hypotheses regarding the origin and evolution of PDA. Our results, coupled with previous work, robustly demonstrate discordance between the gene genealogy of PDA and the organismal phylogeny of these species, and illustrate how HGT of pathogenicity genes can contribute to the expansion of host specificity in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Nicholas A Milani
- School of Plant Sciences, College of Agriculture, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Several species of filamentous fungi contain so-called dispensable or supernumerary chromosomes. These chromosomes are dispensable for the fungus to survive, but may carry genes required for specialized functions, such as infection of a host plant. It has been shown that at least some dispensable chromosomes are able to transfer horizontally (i.e., in the absence of a sexual cycle) from one fungal strain to another. In this paper, we describe a method by which this can be shown. Horizontal chromosome transfer (HCT) occurs during co-incubation of two strains. To document the actual occurrence of HCT, it is necessary to select for HCT progeny. This is accomplished by transforming two different drug-resistance genes into the two parent strains before their co-incubation. In one of the strains (the "donor"), a drug-resistance gene should be integrated in a chromosome of which the propensity for HCT is under investigation. In the "tester" or "recipient" strain, another drug-resistance gene should be integrated somewhere in the core genome. In this way, after co-incubation, HCT progeny can be selected on plates containing both drugs. HCT can be initiated with equal amounts of asexual spores of both strains, plated on regular growth medium for the particular fungus, followed by incubation until new asexual spores are formed. The new asexual spores are then harvested and plated on plates containing both drugs. Double drug-resistant colonies that appear should carry at least one chromosome from each parental strain. Finally, double drug-resistant strains need to be analysed to assess whether HCT has actually occurred. This can be done by various genome mapping methods, like CHEF-gels, AFLP, RFLP, PCR markers, optical maps, or even complete genome sequencing.
Collapse
Affiliation(s)
- H Charlotte van der Does
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Coleman JJ, Wasmann CC, Usami T, White GJ, Temporini ED, McCluskey K, VanEtten HD. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1482-91. [PMID: 22066900 DOI: 10.1094/mpmi-05-11-0119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.
Collapse
|
9
|
Coleman JJ, White GJ, Rodriguez-Carres M, Vanetten HD. An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:368-76. [PMID: 21077772 DOI: 10.1094/mpmi-09-10-0198] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The fungal plant pathogen Nectria haematococca MPVI produces a cytochrome P450 that is responsible for detoxifying the phytoalexin pisatin, produced as a defense mechanism by its host, garden pea. In this study, we demonstrate that this fungus also produces a specific ATP-binding cassette (ABC) transporter, NhABC1, that enhances its tolerance to pisatin. In addition, although both mechanisms individually contribute to the tolerance of pisatin and act as host-specific virulence factors, mutations in both genes render the fungus even more sensitive to pisatin and essentially nonpathogenic on pea. NhABC1 is rapidly induced after treatment with pisatin in vitro and during infection of pea plants. Furthermore, NhABC1 was able to confer tolerance to the phytoalexin rishitin, produced by potato. NhABC1 appears to be orthologous to GpABC1 of the potato pathogen Gibberella pulicaris and, along with MoABC1 from Magnaporthe oryzae, resides in a phylogenetically related clade enriched with ABC transorters involved in virulence. We propose that NhABC1 and the cytochrome P450 may function in a sequential manner in which the energy expense from pisatin efflux by NhABC1 releases the repression of the cytochrome P450, ultimately allowing pisatin tolerance by two mechanisms. These results demonstrate that a successful pathogen has evolved multiple mechanisms to overcome these plant antimicrobial compounds.
Collapse
Affiliation(s)
- Jeffrey J Coleman
- Department of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
10
|
Crešnar B, Petrič S. Cytochrome P450 enzymes in the fungal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:29-35. [PMID: 20619366 DOI: 10.1016/j.bbapap.2010.06.020] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 monooxygenases of fungi are involved in many essential cellular processes and play diverse roles. The enzymes catalyze the conversion of hydrophobic intermediates of primary and secondary metabolic pathways, detoxify natural and environmental pollutants and allow fungi to grow under different conditions. Fungal genome sequencing projects have enabled the annotation of several thousand novel cytochromes P450, many of which constitute new families. This review presents the characteristics of fungal cytochrome P450 systems and updates information on the functions of characterized fungal P450 monooxygenases as well as outlines the currently used strategies for determining the function of the many putative P450 enzymes.
Collapse
Affiliation(s)
- B Crešnar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
11
|
El Oirdi M, Trapani A, Bouarab K. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. Environ Microbiol 2010; 12:239-53. [PMID: 19799622 DOI: 10.1111/j.1462-2920.2009.02063.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To protect themselves, plants have evolved an armoury of defences in response to pathogens and other stress situations. These include the production of pathogenesis-related (PR) proteins and the accumulation of antimicrobial molecules such as phytoalexins. Here we report that resistance of tobacco to Botrytis cinerea is cultivar specific. Nicotiana tabacum cv. Petit Havana but not N. tabacum cv. Xanthi or cv. samsun is resistant to B. cinerea. This resistance is correlated with the accumulation of the phytoalexin scopoletin and PR proteins. We also show that this resistance depends on the type of B. cinerea stage. Nicotiana tabacum cv. Petit Havana is more resistant to spores than to mycelium of B. cinerea. This reduced resistance of N. tabacum cv. Petit Havana to the mycelium compared with spores is correlated with the suppression of PR proteins accumulation and the capacity of the mycelium, not the spores, to metabolize scopoletin. These data present an important advance in understanding the strategies used by B. cinerea to establish its disease on tobacco plants.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Centre de Recherche en Amélioration Végétale, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K2R1, Canada
| | | | | |
Collapse
|
12
|
Etebu E, Osborn AM. Molecular assays reveal the presence and diversity of genes encoding pea footrot pathogenicity determinants in Nectria haematococca and in agricultural soils. J Appl Microbiol 2009; 106:1629-39. [PMID: 19226389 DOI: 10.1111/j.1365-2672.2008.04130.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM The aim of this study was to develop molecular assays for investigating the presence and diversity of pathogenicity genes from the pea footrot pathogen Nectria haematococca (anamorph Fusarium solani f.sp. pisi) in soils. METHODS AND RESULTS Polymerase chain reaction (PCR) assays were developed to amplify four N. haematococca pathogenicity genes (PDA, PEP1, PEP3 and PEP5) from isolates and soil-DNA from five agricultural fields with a prior footrot history. A collection of 15 fungi isolated on medium selective for Fusarium spp. exhibited variation in their virulence to peas as assessed via a disease index (DI: 0-5; no virulence to the highest virulence). PCR analyses showed that three isolates in which all four pathogenicity genes were detected resulted in the highest DI (>3.88). All four pathogenicity genes were detected in soil-DNA obtained from all five fields with a footrot disease history, but were not amplified from soils, which had no footrot history. Denaturing gradient gel electrophoresis and/or sequence analysis revealed diversity amongst the pathogenicity genes. CONCLUSION The PCR assays developed herein enable the specific detection of pathogenic N. haematococca in soils without recourse to culture. SIGNIFICANCE AND IMPACT OF THE STUDY Molecular assays that specifically target pathogenicity genes have the capacity to assess the presence of the footrot-causing pathogen in agricultural soils.
Collapse
Affiliation(s)
- E Etebu
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
13
|
Rodriguez-Carres M, White G, Tsuchiya D, Taga M, VanEtten HD. The supernumerary chromosome of Nectria haematococca that carries pea-pathogenicity-related genes also carries a trait for pea rhizosphere competitiveness. Appl Environ Microbiol 2008; 74:3849-56. [PMID: 18408061 PMCID: PMC2446569 DOI: 10.1128/aem.00351-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022] Open
Abstract
Fungi are found in a wide range of environments, and the ecological and host diversity of the fungus Nectria haematococca has been shown to be due in part to unique genes on different supernumerary chromosomes. These chromosomes have been called "conditionally dispensable" (CD) since they are not needed for axenic growth but are important for expanding the host range of individual isolates. From a biological perspective, the CD chromosomes can be compared to bacterial plasmids that carry unique genes that can define the habits of these microorganisms. The current study establishes that the N. haematococca PDA1-CD chromosome, which contains the genes for pea pathogenicity (PEP cluster) on pea roots, also carries a gene(s) for the utilization of homoserine, a compound found in large amounts in pea root exudates. Competition studies demonstrate that an isolate that lacks the PEP cluster but carries a portion of the CD chromosome which includes the homoserine utilization (HUT) gene(s) is more competitive in the pea rhizosphere than an isolate without the CD chromosome.
Collapse
Affiliation(s)
- M Rodriguez-Carres
- Division of Plant Pathology and Microbiology, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
14
|
van der Does HC, Rep M. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1175-82. [PMID: 17918619 DOI: 10.1094/mpmi-20-10-1175] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the fungal kingdom, the ability to cause disease in plants appears to have arisen multiple times during evolution. In many cases, the ability to infect particular plant species depends on specific genes that distinguish virulent fungi from their sometimes closely related nonvirulent relatives. These genes encode host-determining "virulence factors," including small, secreted proteins and enzymes involved in the synthesis of toxins. These virulence factors typically are involved in evolutionary arms races between plants and pathogens. We briefly summarize current knowledge of these virulence factors from several fungal species in terms of function, phylogenetic distribution, sequence variation, and genomic location. Second, we address some issues that are relevant to the evolution of virulence in fungi toward plants; in particular, horizontal gene transfer and the genomic organization of virulence genes.
Collapse
Affiliation(s)
- H Charlotte van der Does
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJC. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 2005; 53:1373-83. [PMID: 15387816 DOI: 10.1111/j.1365-2958.2004.04177.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 12 kDa cysteine-rich protein is secreted by Fusarium oxysporum f. sp. lycopersici during colonization of tomato xylem vessels. Peptide sequences obtained with mass spectrometry allowed identification of the coding sequence. The gene encodes a 32 kDa protein, designated Six1 for secreted in xylem 1. The central part of Six1 corresponds to the 12 kDa protein found in xylem sap of infected plants. A mutant that had gained virulence on a tomato line with the I-3 resistance gene was found to have lost the SIX1 gene along with neighbouring sequences. Transformation of this mutant with SIX1 restored avirulence on the I-3 line. Conversely, deletion of the SIX1 gene in a wild-type strain results in breaking of I-3-mediated resistance. These results suggest that I-3-mediated resistance is based on recognition of Six1 secreted in xylem vessels.
Collapse
Affiliation(s)
- Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94062, 1090 GB Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu X, Inlow M, VanEtten HD. Expression profiles of pea pathogenicity ( PEP) genes in vivo and in vitro, characterization of the flanking regions of the PEP cluster and evidence that the PEP cluster region resulted from horizontal gene transfer in the fungal pathogen Nectria haematococca. Curr Genet 2003; 44:95-103. [PMID: 12925899 DOI: 10.1007/s00294-003-0428-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Revised: 06/30/2003] [Accepted: 07/05/2003] [Indexed: 11/25/2022]
Abstract
A cluster of pathogenicity genes ( PEP1, PEP2, PDA1, PEP5), termed the pea pathogenicity ( PEP) cluster and located on a 1.6-Mb conditionally dispensable (CD) chromosome, was identified in the fungal pathogen Nectria haematococca. Studies determined that the expression of PDA1 is induced in both infected pea tissues and in vitro by the phytoalexin pisatin. The present study reports the use of real-time quantitative RT-PCR to monitor the expression of each PEP gene and PDA1. In mycelia actively growing in culture, the mRNA levels of PEP1, PEP5 and PDA1 were very low and the PEP2 transcript was undetectable. In planta, PDA1 and PEP2 were strongly induced, while PEP1 and PEP5 were moderately induced. Starvation slightly enhanced the expression of PEP1, PDA1 and PEP5, while the expression of PEP2 remained undetectable. Exposure to pisatin in culture stimulated the expression of PDA1 and each PEP gene to a similar level as occurred in planta. In addition, all four pathogenicity genes displayed similar temporal patterns of expression in planta and in vitro, consistent with a coordinated regulation of these genes by pisatin during pea pathogenesis. In the flanking regions of the PEP cluster, six open reading frames (ORFs) were identified and all were expressed during infection of pea. Comparison of the codon preferences of these ORFs and seven additional genes from CD chromosomes with the codon preferences of 21 genes from other chromosomes revealed there is a codon bias that correlates with the source of the genes. This difference in codon bias is consistent with the hypothesis that genes on the CD chromosome have a different origin from genes of normal chromosomes, suggesting that horizontal gene transfer may have played a role in the evolution of pathogenesis in N. haematococca.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Plant Pathology, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|