1
|
Elhjouji H, Qessaoui R, Houmairi H, Dari K, Bencharki B, Mayad EH, Aassila H. Biocontrol Potential of Bacillus velezensis RS65 Against Phytophthora infestans: A Sustainable Strategy for Managing Tomato Late Blight. Microorganisms 2025; 13:656. [PMID: 40142548 PMCID: PMC11945266 DOI: 10.3390/microorganisms13030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to investigate the biocontrol activity of rhizosphere isolates against late blight disease of tomatoes caused by the fungus Phytophthora infestans. A total of 30 rhizospheric bacterial isolates were evaluated for their antagonistic activity against P. infestans in vitro and in vivo. The results demonstrated that among the 30 isolates tested, six (RS65, RP6, RS47, RS46, RP2, and RS61) exhibited a highly significant inhibitory effect (p < 0.001) on the mycelial growth of P. infestans in vitro, with the inhibition rate exceeding 67%. Among the isolates, RS65 exhibited the highest inhibition rate at 78.48%. For antagonistic mechanisms, the results demonstrated that the six isolates exhibited significant enzymatic activity, including proteolytic, lipolytic, and chitinolytic activity, as well as the production of HCN, cellulase, and pectinase. Isolate RS65, which showed the highest inhibition rate, was further evaluated under greenhouse conditions. This investigation revealed significant differences in the severity of late blight between the control and the RS65 treatment. The control showed a severity level of 31.26%, whereas the RS65 treatment achieved the lowest severity of 16.54%. Molecular identification results indicated that the RS65 isolate (accession numbers PV208381) is a Bacillus genus with 99% proximity to Bacillus velezensis. This finding suggests that the Bacillus RS65 treatment could provide effective protection against P. infestans infection in tomato plants. These findings highlight the potential of Bacillus RS65 as a biocontrol agent in integrated disease management for tomato late blight.
Collapse
Affiliation(s)
- Hasna Elhjouji
- Agri-Food and Health Laboratory, Faculty of Science & Technology, Hassan First University of Settat, Settat 26000, Morocco (K.D.); (B.B.); (H.A.)
| | - Redouan Qessaoui
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principal, Rabat 10090, Morocco
| | - Hafsa Houmairi
- Agri-Food and Health Laboratory, Faculty of Science & Technology, Hassan First University of Settat, Settat 26000, Morocco (K.D.); (B.B.); (H.A.)
| | - Khadija Dari
- Agri-Food and Health Laboratory, Faculty of Science & Technology, Hassan First University of Settat, Settat 26000, Morocco (K.D.); (B.B.); (H.A.)
| | - Bouchaib Bencharki
- Agri-Food and Health Laboratory, Faculty of Science & Technology, Hassan First University of Settat, Settat 26000, Morocco (K.D.); (B.B.); (H.A.)
| | - El Hassan Mayad
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Science of Agadir, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hinde Aassila
- Agri-Food and Health Laboratory, Faculty of Science & Technology, Hassan First University of Settat, Settat 26000, Morocco (K.D.); (B.B.); (H.A.)
| |
Collapse
|
2
|
Yin W, Wang L, Shang QH, Li YX, Sa W, Dong QM, Liang J. Effects of drought stress and Morchella inoculation on the physicochemical properties, enzymatic activities, and bacterial community of Poa pratensis L. rhizosphere soil. PeerJ 2025; 13:e18793. [PMID: 39902321 PMCID: PMC11789664 DOI: 10.7717/peerj.18793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/10/2024] [Indexed: 02/05/2025] Open
Abstract
Background Soil microorganisms are crucial for plant growth, and both plants and their associated rhizosphere microbes are impacted by changes in soil moisture. Inoculation with beneficial fungi can improve bacterial community structure and soil parameters. Aim Under drought stress conditions, the effects of inoculation with Morchella on the physicochemical properties, enzyme activity, and bacterial community structure of the rhizosphere soil of Poa pratensis were studied. Methods High-throughput sequencing was employed to study rhizosphere soil bacterial communities in both Morchella-inoculated and uninoculated Poa pratensis rhizosphere soil subjected to moderate (50% soil moisture) and severe (30% soil moisture) drought stress, as well as under normal water conditions (70% soil moisture). Results Morchella inoculation significantly increased the alkaline nitrogen (AN) and available phosphorus (AP) contents, protease activity (PA), and alkaline phosphatase activity (APA) of Poa pratensis rhizosphere soil. Both Morchella inoculation and drought stress significantly altered the abundance and diversity of the P. pratensis rhizosphere community. The Chao1, Shannon, and Pielou diversity indices decreased with increasing drought stress. The effect of Morchella inoculation was improved under moderate drought stress and unstressed conditions. In addition, Morchella inoculation may help to stabilize the rhizosphere bacterial community under various levels of soil moisture.
Collapse
Affiliation(s)
- Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Qian Han Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Yi Xin Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Quan Min Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
Lurthy T, Gerin F, Rey M, Mercier PE, Comte G, Wisniewski-Dyé F, Prigent-Combaret C. Pseudomonas produce various metabolites displaying herbicide activity against broomrape. Microbiol Res 2025; 290:127933. [PMID: 39471583 DOI: 10.1016/j.micres.2024.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024]
Abstract
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation. Four Pseudomonas strains, two P. fluorescens JV391D17 and JV391D10, one P. chlororaphis JV395B and one P. ogarae F113 were cultivated using various carbon sources, including fructose, pyruvate, fumarate, and malate, to enhance the diversity of potential Orobanche growth inhibition (OGI)-specialized metabolites produced by Pseudomonas strains. Both global and targeted metabolomic approaches were utilized to identify specific OGI metabolites. Both carbon sources and Pseudomonas genetic diversity significantly influenced the production of OGI metabolites. P. chlororaphis JV395B and P. ogarae F113 produced unique OGI metabolites belonging to different chemical families, such as hydroxyphenazines and phloroglucinol compounds, respectively. Additionally, metabolomic analyses identified an unannotated potential OGI ion, M375T65. This ion was produced by all Pseudomonas strains but was found to be over-accumulated in JV395B, which likely explains its superior OGI activity. Then, greenhouse experiments were performed to evaluate the biocontrol efficacy of selected strains: they showed the efficacy of these strains, particularly JV395B, in reducing broomrape infestation in rapeseed. These findings suggest that certain Pseudomonas strains, through their metabolite production, can offer a sustainable biocontrol strategy against parasitic plants. This biocontrol activity can be optimized by environmental factors, such as carbon amendments. Ultimately, this approach presents a promising alternative to chemical herbicides.
Collapse
Affiliation(s)
- Tristan Lurthy
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Pierre-Edouard Mercier
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| |
Collapse
|
4
|
Takeuchi K, Ogiso M, Ota A, Nishimura K, Nishino C, Omori Y, Maeda M, Mizui R, Yamanaka H, Ogino T, Seo S. Pseudomonas rhodesiae HAI-0804 suppresses Pythium damping off and root rot in cucumber by its efficient root colonization promoted by amendment with glutamate. Front Microbiol 2024; 15:1485167. [PMID: 39564481 PMCID: PMC11573540 DOI: 10.3389/fmicb.2024.1485167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Plant diseases caused by soil-borne fungi and oomycetes significantly reduce yield and quality of many crops in the agricultural systems and are difficult to control. We herein examine Pseudomonas rhodesiae HAI-0804, a bacterial biological control agent that was originally developed for control of bacterial diseases on the surface of vegetables, and assessed its efficacy at controlling soil-borne diseases caused by oomycetes. Strain HAI-0804 did not exhibit detectable antibiotic activity toward Pythium ultimum, a causal agent of damping-off and root rot; however, it effectively protected against Pythium damping-off and root rot in cucumber. Exogenous glutamate enhanced the efficacy of biocontrol, the production of siderophore pyoverdine, root colonization in cucumber plants, and the ratio of biofilm formation to planktonic cells. The epiphytic fitness of strain HAI-0804 appears to contribute to plant protection efficacy against a broad spectrum of pathogens for both above-ground plant parts and the rhizosphere.
Collapse
Affiliation(s)
- Kasumi Takeuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masayo Ogiso
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Arisa Ota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kentaro Nishimura
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Chihiro Nishino
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Yasuhiro Omori
- Development Department, Agro Products Division, Nippon Soda Co., Ltd., Tokyo, Japan
| | | | - Ryousuke Mizui
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Homare Yamanaka
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Tomokazu Ogino
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Shigemi Seo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
5
|
Lazarus HPS, Easwaran N. Molecular insights into PGPR fluorescent Pseudomonads complex mediated intercellular and interkingdom signal transduction mechanisms in promoting plant's immunity. Res Microbiol 2024; 175:104218. [PMID: 38879059 DOI: 10.1016/j.resmic.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The growth-promoting and immune modulatory properties of different strains of plant growth promoting rhizobacteria (PGPR) fluorescent Pseudomonads complex (PFPC) can be explored to combat food security challenges. These PFPC prime plants through induced systemic resistance, fortify plants to overcome future pathogen-mediated vulnerability by eliciting robust systemic acquired resistance through regulation by nonexpressor of pathogenesis-related genes 1. Moreover, outer membrane vesicles released from Pseudomonas fluorescens also elicit a broad spectrum of immune responses, presenting a rapid viable alternative to whole cells. Thus, PFPC can help the host to maintain an equilibrium between growth and immunity, ultimately leads to increased crop yield.
Collapse
Affiliation(s)
| | - Nalini Easwaran
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Mian G, Belfiore N, Marcuzzo P, Spinelli F, Tomasi D, Colautti A. Counteracting Grey Mould ( Botrytis cinerea) in Grapevine 'Glera' Using Three Putative Biological Control Agent Strains ( Paraburkholderia sp., Pseudomonas sp., and Acinetobacter sp.): Impact on Symptoms, Yield, and Gene Expression. Microorganisms 2024; 12:1515. [PMID: 39203358 PMCID: PMC11356063 DOI: 10.3390/microorganisms12081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
This study examined the potential use of three bacterial strains-Paraburkholderia sp. strain CRV74, Pseudomonas sp. strain CRV21, and Acinetobacter sp. strain CRV19-as biocontrol agents of Botrytis cinerea in grapevine. These strains were selected for their ability to inhibit B. cinerea growth in vitro and used in field conditions for the control of grey mould symptoms in 'Glera' grapes. To this end, after inoculating these microorganisms onto plants sprayed with B. cinerea spores, the final yield, the physicochemical characteristics of the must, disease incidence, and the possible influence on the expression of plant-defence proteins were evaluated. Strain CRV21 resulted as being the most effective in combating grey mould (-20% of disease incidence). Although yield was not affected, significantly different values of total soluble solids content was observed. Additionally, a significant up-regulation of the genes PR-1, PR-5, β-1,3-glucanase, and class III chitinase was observed. These findings highlight the potential application of strains with anti-botrytis activity as sustainable alternatives to chemical defence for the control of this pathogen.
Collapse
Affiliation(s)
- Giovanni Mian
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, 40129 Bologna, Italy; (G.M.); (F.S.)
| | - Nicola Belfiore
- Council for Agricultural and Economics-Research-Centre for Viticulture and Oenology, Viale Aprile, 26, 31015 Conegliano, Italy; (N.B.); (P.M.)
| | - Patrick Marcuzzo
- Council for Agricultural and Economics-Research-Centre for Viticulture and Oenology, Viale Aprile, 26, 31015 Conegliano, Italy; (N.B.); (P.M.)
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, 40129 Bologna, Italy; (G.M.); (F.S.)
| | - Diego Tomasi
- Consorzio Tutela del Vino Conegliano Valdobbiadene Prosecco, Piazza Libertà, 7, 31053 Pieve di Soligo, Italy;
| | - Andrea Colautti
- Department of Agricultural, Food, Environmental and Animal Science (Di4A), University of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Poli N, Keel CJ, Garrido-Sanz D. Expanding the Pseudomonas diversity of the wheat rhizosphere: four novel species antagonizing fungal phytopathogens and with plant-beneficial properties. Front Microbiol 2024; 15:1440341. [PMID: 39077740 PMCID: PMC11284033 DOI: 10.3389/fmicb.2024.1440341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Plant-beneficial Pseudomonas bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel Pseudomonas species associated with the wheat rhizosphere. Comparative genomic analysis with all available Pseudomonas type strains revealed species-level differences, substantiated by both digital DNA-DNA hybridization and average nucleotide identity, underscoring their status as novel species. This was further validated by the phenotypic differences observed when compared to their closest relatives. Three of the novel species belong to the P. fluorescens species complex, with two representing a novel lineage in the Pseudomonas phylogeny. Functional genome annotation revealed the presence of specific features contributing to rhizosphere colonization, including flagella and components for biofilm formation. The novel species have the genetic potential to solubilize nutrients by acidifying the environment, releasing alkaline phosphatases and their metabolism of nitrogen species, indicating potential as biofertilizers. Additionally, the novel species possess traits that may facilitate direct promotion of plant growth through the modulation of the plant hormone balance, including the ACC deaminase enzyme and auxin metabolism. The presence of biosynthetic clusters for toxins such as hydrogen cyanide and non-ribosomal peptides suggests their ability to compete with other microorganisms, including plant pathogens. Direct inoculation of wheat roots significantly enhanced plant growth, with two strains doubling shoot biomass. Three of the strains effectively antagonized fungal phytopathogens (Thielaviopsis basicola, Fusarium oxysporum, and Botrytis cinerea), demonstrating their potential as biocontrol agents. Based on the observed genetic and phenotypic differences from closely related species, we propose the following names for the four novel species: Pseudomonas grandcourensis sp. nov., type strain DGS24T ( = DSM 117501T = CECT 31011T), Pseudomonas purpurea sp. nov., type strain DGS26T ( = DSM 117502T = CECT 31012T), Pseudomonas helvetica sp. nov., type strain DGS28T ( = DSM 117503T = CECT 31013T) and Pseudomonas aestiva sp. nov., type strain DGS32T ( = DSM 117504T = CECT 31014T).
Collapse
Affiliation(s)
| | - Christoph Joseph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Hossain Z, Hubbard M. Genomic characterization of three bacterial isolates antagonistic to the pea root rot pathogen Aphanomyces euteiches. Can J Microbiol 2024; 70:52-62. [PMID: 38061385 DOI: 10.1139/cjm-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Microorganisms living in soil and rhizosphere or inside plants can promote plant growth and health. Genomic characterization of beneficial microbes could shed light on their special features. Through extensive field survey across Saskatchewan, Canada, followed by in vitro and greenhouse characterization, we identified several bacterial isolates antagonistic to pea root rot pathogen Aphanomyces euteiches. In this study, the genomes of three isolates-Pseudomonas sp. rhizo 66 (PD-S66), Pseudomonas synxantha rhizo 25 (Ps-S25), and Serratia sp. root 2 (TS-R2)-were sequenced, assembled, and annotated. Genome size of PD-S66 was 6 279 416 bp with 65 contigs, 59.32% GC content, and 5653 predicted coding sequences (CDS). Genome size of Ps-S25 was 6 058 437 bp with 66 contigs, a GC content of 60.08%, and 5575 predicted CDS. The genome size of TS-R2 was 5 282 152 bp, containing 26 contigs, a GC content of 56.17%, and 4956 predicted CDS. For the identification of the isolates, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were determined, which confirmed PD-S66 and TS-R2 as potential new species, belonging to Pseudomonas and Serratia genera, respectively, while Ps-S25 belongs to species Pseudomonas synxantha. Biosynthetic gene clusters were predicted using antiSMASH. The genomic data provided insight into the genetics and biochemical pathways supporting the antagonistic activity against A. euteiches of these isolates.
Collapse
Affiliation(s)
- Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| | - Michelle Hubbard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| |
Collapse
|
9
|
Lurthy T, Perot S, Gerin‐Eveillard F, Rey M, Wisniewski‐Dyé F, Vacheron J, Prigent‐Combaret C. Inhibition of broomrape germination by 2,4-diacetylphloroglucinol produced by environmental Pseudomonas. Microb Biotechnol 2023; 16:2313-2325. [PMID: 37897154 PMCID: PMC10686154 DOI: 10.1111/1751-7915.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 10/29/2023] Open
Abstract
Parasitic weeds such as broomrapes (Phelipanche ramosa and Orobanche cumana) cause severe damage to crops and their development must be controlled. Given that phloroglucinol compounds (PGCs) produced by environmental Pseudomonas could be toxic towards certain plants, we assessed the potential herbicidal effect of the bacterial model Pseudomonas ogarae F113, a PGCs-producing bacterium, on parasitic weed. By combining the use of a mutagenesis approach and of pure PGCs, we evaluated the in vitro effect of PGC-produced by P. ogarae F113 on broomrape germination and assessed the protective activity of a PGC-producing bacteria on oilseed rape (Brassica napus) against P. ramosa in non-sterile soils. We showed that the inhibition of the germination depends on the PGCs molecular structure and their concentrations as well as the broomrape species and pathovars. This inhibition caused by the PGCs is irreversible, causing a brown coloration of the broomrape seeds. The inoculation of PGCs-producing bacteria limited the broomrape infection of P. ramosa, without affecting the host growth. Moreover, elemental profiling analysis of oilseed rape revealed that neither F113 nor applied PGCs affected the nutrition capacity of the oilseed rape host. Our study expands the knowledge on plant-beneficial Pseudomonas as weed biocontrol agents and opens new avenues for the development of natural bioherbicides to enhance crop yield.
Collapse
Affiliation(s)
- Tristan Lurthy
- Ecologie MicrobienneUniversité Claude Bernard Lyon1, Université de Lyon, CNRS UMR‐5557, INRAe UMR‐1418, VetAgro SupVilleurbanneFrance
| | - Ségolène Perot
- Ecologie MicrobienneUniversité Claude Bernard Lyon1, Université de Lyon, CNRS UMR‐5557, INRAe UMR‐1418, VetAgro SupVilleurbanneFrance
| | - Florence Gerin‐Eveillard
- Ecologie MicrobienneUniversité Claude Bernard Lyon1, Université de Lyon, CNRS UMR‐5557, INRAe UMR‐1418, VetAgro SupVilleurbanneFrance
| | - Marjolaine Rey
- Ecologie MicrobienneUniversité Claude Bernard Lyon1, Université de Lyon, CNRS UMR‐5557, INRAe UMR‐1418, VetAgro SupVilleurbanneFrance
| | - Florence Wisniewski‐Dyé
- Ecologie MicrobienneUniversité Claude Bernard Lyon1, Université de Lyon, CNRS UMR‐5557, INRAe UMR‐1418, VetAgro SupVilleurbanneFrance
| | - Jordan Vacheron
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Claire Prigent‐Combaret
- Ecologie MicrobienneUniversité Claude Bernard Lyon1, Université de Lyon, CNRS UMR‐5557, INRAe UMR‐1418, VetAgro SupVilleurbanneFrance
| |
Collapse
|
10
|
Rathore R, Forristal D, Spink J, Dowling D, Germaine KJ. Investigating the Impact of Tillage and Crop Rotation on the Prevalence of phlD-Carrying Pseudomonas Potentially Involved in Disease Suppression. Microorganisms 2023; 11:2459. [PMID: 37894117 PMCID: PMC10609274 DOI: 10.3390/microorganisms11102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Winter oilseed rape (OSR) is becoming an increasingly popular crop in rotations as it provides a cash crop and reduces the incidence of take-all fungal disease (caused by Gaeumannomyces graminis) in subsequent wheat production. The exact mechanism of this inhibition of fungal pathogens is not fully understood; however, the selective recruitment of bacterial groups with the ability to suppress pathogen growth and reproduction is thought to play a role. Here we examine the effect of tillage practice on the proliferation of microbes that possess the phlD gene involved in the production of the antifungal compound 2,4-diacetylphloroglucinol (2,4-DAPG), in the rhizospheres of both winter oilseed rape and winter wheat grown in rotation over a two-year period. The results showed that conservation strip tillage led to a significantly greater phlD gene copy number, both in the soil and in the roots, of oilseed rape and wheat crops, whereas crop rotation of oilseed rape and wheat did not increase the phlD gene copy number in winter wheat.
Collapse
Affiliation(s)
- Ridhdhi Rathore
- EnviroCore, Dargan Research Centre, South East Technological University (SETU), R93 V960 Carlow, Ireland; (R.R.); (D.D.)
- Teagasc Agriculture and Food Development Authority, Oak Park Research Centre, R93 XE12 Carlow, Ireland; (D.F.)
| | - Dermot Forristal
- Teagasc Agriculture and Food Development Authority, Oak Park Research Centre, R93 XE12 Carlow, Ireland; (D.F.)
| | - John Spink
- Teagasc Agriculture and Food Development Authority, Oak Park Research Centre, R93 XE12 Carlow, Ireland; (D.F.)
| | - David Dowling
- EnviroCore, Dargan Research Centre, South East Technological University (SETU), R93 V960 Carlow, Ireland; (R.R.); (D.D.)
| | - Kieran J. Germaine
- EnviroCore, Dargan Research Centre, South East Technological University (SETU), R93 V960 Carlow, Ireland; (R.R.); (D.D.)
| |
Collapse
|
11
|
Garrido-Sanz D, Vesga P, Heiman CM, Altenried A, Keel C, Vacheron J. Relation of pest insect-killing and soilborne pathogen-inhibition abilities to species diversification in environmental Pseudomonas protegens. THE ISME JOURNAL 2023; 17:1369-1381. [PMID: 37311938 PMCID: PMC10432460 DOI: 10.1038/s41396-023-01451-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Strains belonging to the Pseudomonas protegens phylogenomic subgroup have long been known for their beneficial association with plant roots, notably antagonising soilborne phytopathogens. Interestingly, they can also infect and kill pest insects, emphasising their interest as biocontrol agents. In the present study, we used all available Pseudomonas genomes to reassess the phylogeny of this subgroup. Clustering analysis revealed the presence of 12 distinct species, many of which were previously unknown. The differences between these species also extend to the phenotypic level. Most of the species were able to antagonise two soilborne phytopathogens, Fusarium graminearum and Pythium ultimum, and to kill the plant pest insect Pieris brassicae in feeding and systemic infection assays. However, four strains failed to do so, likely as a consequence of adaptation to particular niches. The absence of the insecticidal Fit toxin explained the non-pathogenic behaviour of the four strains towards Pieris brassicae. Further analyses of the Fit toxin genomic island evidence that the loss of this toxin is related to non-insecticidal niche specialisation. This work expands the knowledge on the growing Pseudomonas protegens subgroup and suggests that loss of phytopathogen inhibition and pest insect killing abilities in some of these bacteria may be linked to species diversification processes involving adaptation to particular niches. Our work sheds light on the important ecological consequences of gain and loss dynamics for functions involved in pathogenic host interactions of environmental bacteria.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Pilar Vesga
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | - Clara M Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Aline Altenried
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Kaneko H, Miyata F, Kurokawa M, Hashimoto K, Kuchitsu K, Furuya T. Diversity and characteristics of plant immunity-activating bacteria from Brassicaceae plants. BMC Microbiol 2023; 23:175. [PMID: 37407947 DOI: 10.1186/s12866-023-02920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Microorganisms that activate plant immune responses are useful for application as biocontrol agents in agriculture to minimize crop losses. The present study was conducted to identify and characterize plant immunity-activating microorganisms in Brassicaceae plants. RESULTS A total of 25 bacterial strains were isolated from the interior of a Brassicaceae plant, Raphanus sativus var. hortensis. Ten different genera of bacteria were identified: Pseudomonas, Leclercia, Enterobacter, Xanthomonas, Rhizobium, Agrobacterium, Pantoea, Rhodococcus, Microbacterium, and Plantibacter. The isolated strains were analyzed using a method to detect plant immunity-activating microorganisms that involves incubation of the microorganism with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses. In this method, cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells serves as a marker of immune activation. Among the 25 strains examined, 6 strains markedly enhanced cryptogein-induced ROS production in BY-2 cells. These 6 strains colonized the interior of Arabidopsis plants, and Pseudomonas sp. RS3R-1 and Rhodococcus sp. RS1R-6 selectively enhanced plant resistance to the bacterial pathogens Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovorum subsp. carotovorum NBRC 14082, respectively. In addition, Pseudomonas sp. RS1P-1 effectively enhanced resistance to both pathogens. We also comprehensively investigated the localization (i.e., cellular or extracellular) of the plant immunity-activating components produced by the bacteria derived from R. sativus var. hortensis and the components produced by previously isolated bacteria derived from another Brassicaceae plant species, Brassica rapa var. perviridis. Most gram-negative strains enhanced cryptogein-induced ROS production in BY-2 cells via the presence of cells themselves rather than via extracellular components, whereas many gram-positive strains enhanced ROS production via extracellular components. Comparative genomic analyses supported the hypothesis that the structure of lipopolysaccharides in the outer cell envelope plays an important role in the ROS-enhancing activity of gram-negative Pseudomonas strains. CONCLUSIONS The assay method described here based on elicitor-induced ROS production in cultured plant cells enabled the discovery of novel plant immunity-activating bacteria from R. sativus var. hortensis. The results in this study also suggest that components involved in the ROS-enhancing activity of the bacteria may differ depending largely on genus and species.
Collapse
Affiliation(s)
- Hiroki Kaneko
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, 2641, 278-8510, Chiba, Japan
| | - Fuma Miyata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, 2641, 278-8510, Chiba, Japan
| | - Mari Kurokawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, 2641, 278-8510, Chiba, Japan
| | - Kenji Hashimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, 2641, 278-8510, Chiba, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, 2641, 278-8510, Chiba, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, 2641, 278-8510, Chiba, Japan.
| |
Collapse
|
13
|
Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS, Faizan S. Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon 2023; 9:e16134. [PMID: 37255980 PMCID: PMC10225898 DOI: 10.1016/j.heliyon.2023.e16134] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
The world's population is increasing and is anticipated to spread 10 billion by 2050, and the issue of food security is becoming a global concern. To maintain global food security, it is essential to increase crop productivity under changing climatic conditions. Conventional agricultural practices frequently use artificial/chemical fertilizers to enhance crop productivity, but these have numerous negative effects on the environment and people's health. To address these issues, researchers have been concentrating on substitute crop fertilization methods for many years, and biofertilizers as a crucial part of agricultural practices are quickly gaining popularity all over the globe. Biofertilizers are living formulations made of indigenous plant growth-promoting rhizobacteria (PGPR) which are substantial, environment-friendly, and economical biofertilizers for amassing crop productivity by enhancing plant development either directly or indirectly, and are the renewable source of plant nutrients and sustainable agronomy. The review aims to provide a comprehensive overview of the current knowledge on microbial inoculants as biofertilizers, including their types, mechanisms of action, effects on crop productivity, challenges, and limitations associated with the use of microbial inoculants. In this review, we focused on the application of biofertilizers to agricultural fields in plant growth development by performing several activities like nitrogen fixation, siderophore production, phytohormone production, nutrient solubilization, and facilitating easy uptake by crop plants. Further, we discussed the indirect mechanism of PGPRs, in developing induced system resistance against pest and diseases, and as a biocontrol agent for phytopathogens. This review article presents a brief outline of the ideas and uses of microbial inoculants in improving crop productivity as well as a discussion of the challenges and limitations to use microbial inoculants.
Collapse
Affiliation(s)
- Durre Shahwar
- Genetics and Molecular Biology Section, Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
- Plant Genomics and Molecular Biology Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Zeenat Mushtaq
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Humira Mushtaq
- Research and Training Center on Pollinators and Pollination Management Section, Division of Entomology, SKAUST, Kashmir, 190025, India
| | - Abdulaziz A. Alqarawi
- Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Younghoon Park
- Plant Genomics and Molecular Biology Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Thobayet S. Alshahrani
- Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
14
|
Niem JM, Billones-Baaijens R, Stodart BJ, Reveglia P, Savocchia S. Biocontrol Potential of an Endophytic Pseudomonas poae Strain against the Grapevine Trunk Disease Pathogen Neofusicoccum luteum and Its Mechanism of Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112132. [PMID: 37299111 DOI: 10.3390/plants12112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Grapevine trunk diseases (GTDs) impact the sustainability of vineyards worldwide and management options are currently limited. Biological control agents (BCAs) may offer a viable alternative for disease control. With an aim to develop an effective biocontrol strategy against the GTD pathogen Neofusicoccum luteum, this study investigated the following: (1) the efficacy of the strains in suppressing the BD pathogen N. luteum in detached canes and potted vines; (2) the ability of a strain of Pseudomonas poae (BCA17) to colonize and persist within grapevine tissues; and (3) the mode of action of BCA17 to antagonize N. luteum. Co-inoculations of the antagonistic bacterial strains with N. luteum revealed that one strain of P. poae (BCA17) suppressed infection by 100% and 80% in detached canes and potted vines, respectively. Stem inoculations of a laboratory-generated rifampicin-resistant strain of BCA17 in potted vines (cv. Shiraz) indicated the bacterial strain could colonize and persist in the grapevine tissues, potentially providing some protection against GTDs for up to 6 months. The bioactive diffusible compounds secreted by BCA17 significantly reduced the spore germination and fungal biomass of N. luteum and the other representative GTD pathogens. Complementary analysis via MALDI-TOF revealed the presence of an unknown cyclic lipopeptide in the bioactive diffusible compounds, which was absent in a non-antagonistic strain of P. poae (JMN13), suggesting this novel lipopeptide may be responsible for the biocontrol activity of the BCA17. Our study provided evidence that P. poae BCA17 is a potential BCA to combat N. luteum, with a potential novel mode of action.
Collapse
Affiliation(s)
- Jennifer Millera Niem
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- UPLB Museum of Natural History, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
| | | | - Benjamin J Stodart
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Pierluigi Reveglia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
15
|
Mawarda PC, Le Roux X, Acosta MU, van Elsas JD, Salles JF. The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics. ISME COMMUNICATIONS 2022; 2:82. [PMID: 37938668 PMCID: PMC9723691 DOI: 10.1038/s43705-022-00166-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 10/06/2023]
Abstract
Protists' selective predation of bacterial cells is an important regulator of soil microbiomes, which might influence the success of bacterial releases in soils. For instance, the survival and activity of introduced bacteria can be affected by selective grazing on resident communities or the inoculant, but this remains poorly understood. Here, we investigated the impact of the introduction in the soil of two protozoa species, Rosculus terrestris ECOP02 and/or Cerocomonas lenta ECOP01, on the survival of the inoculants Bacillus mycoides M2E15 (BM) or B. pumilus ECOB02 (BP). We also evaluated the impact of bacterial inoculation with or without protozoan addition on the abundance and diversity of native soil bacterial and protist communities. While the addition of both protozoa decreased the survival of BM, their presence contrarily increased the BP abundance. Protists' selective predation governs the establishment of these bacterial inoculants via modifying the soil microbiome structure and the total bacterial abundance. In the BP experiment, the presence of the introduced protozoa altered the soil community structures and decreased soil bacterial abundance at the end of the experiment, favouring the invader survival. Meanwhile, the introduced protozoa did not modify the soil community structures in the BM experiment and reduced the BM + Protozoa inoculants' effect on total soil bacterial abundance. Our study reinforces the view that, provided added protozoa do not feed preferentially on bacterial inoculants, their predatory behaviour can be used to steer the soil microbiome to improve the success of bacterial inoculations by reducing resource competition with the resident soil microbial communities.
Collapse
Affiliation(s)
- Panji Cahya Mawarda
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Environment and Clean Technology, National Research and Innovation Agency Republic of Indonesia (BRIN), Komplek LIPI Bandung, Jalan Sangkuriang Gedung 50, Bandung, 40135, Indonesia.
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, INRAE, CNRS, Université de Lyon, Université Lyon 1, UMR INRAE 1418, UMR CNRS 5557, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Melissa Uribe Acosta
- Plant-Microbe Interactions Group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Pollution Diagnostics and Control Group (GDCON), Biology Institute, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Jan Dirk van Elsas
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
16
|
Balthazar C, St-Onge R, Léger G, Lamarre SG, Joly DL, Filion M. Pyoluteorin and 2,4-diacetylphloroglucinol are major contributors to Pseudomonas protegens Pf-5 biocontrol against Botrytis cinerea in cannabis. Front Microbiol 2022; 13:945498. [PMID: 36016777 PMCID: PMC9395707 DOI: 10.3389/fmicb.2022.945498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas protegens Pf-5 is an effective biocontrol agent that protects many crops against pathogens, including the fungal pathogen Botrytis cinerea causing gray mold disease in Cannabis sativa crops. Previous studies have demonstrated the important role of antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (DAPG) in Pf-5-mediated biocontrol. To assess the potential involvement of PLT and DAPG in the biocontrol exerted by Pf-5 against B. cinerea in the phyllosphere of C. sativa, two knockout Pf-5 mutants were generated by in-frame deletion of genes pltD or phlA, required for the synthesis of PLT or DAPG respectively, using a two-step allelic exchange method. Additionally, two complemented mutants were constructed by introducing a multicopy plasmid carrying the deleted gene into each deletion mutant. In vitro confrontation assays revealed that deletion mutant ∆pltD inhibited B. cinerea growth significantly less than wild-type Pf-5, supporting antifungal activity of PLT. However, deletion mutant ∆phlA inhibited mycelial growth significantly more than the wild-type, hypothetically due to a co-regulation of PLT and DAPG biosynthesis pathways. Both complemented mutants recovered in vitro inhibition levels similar to that of the wild-type. In subsequent growth chamber inoculation trials, characterization of gray mold disease symptoms on infected cannabis plants revealed that both ∆pltD and ∆phlA significantly lost a part of their biocontrol capabilities, achieving only 10 and 19% disease reduction respectively, compared to 40% achieved by inoculation with the wild-type. Finally, both complemented mutants recovered biocontrol capabilities in planta similar to that of the wild-type. These results indicate that intact biosynthesis pathways for production of PLT and DAPG are required for the optimal antagonistic activity of P. protegens Pf-5 against B. cinerea in the cannabis phyllosphere.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Renée St-Onge
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Geneviève Léger
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Simon G. Lamarre
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Center, Saint-Jean-sur-Richelieu, QC, Canada
- *Correspondence: Martin Filion,
| |
Collapse
|
17
|
Pronk LJU, Bakker PAHM, Keel C, Maurhofer M, Flury P. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol 2022; 24:3273-3289. [PMID: 35315557 PMCID: PMC9542179 DOI: 10.1111/1462-2920.15968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.
Collapse
Affiliation(s)
| | | | - Christoph Keel
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Pascale Flury
- Crop Protection – Phytopathology, Department of Crop SciencesResearch Institute of Organic Agriculture FiBLFrickSwitzerland
| |
Collapse
|
18
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
19
|
Santos IR, Ribeiro DG, Távora FTPK, Maximiano MR, Rabelo AC, Rios TB, Reis Junior FB, Megías M, Silva LP, Mehta A. Priming of defense-related genes in Brassica oleracea var. capitata using concentrated metabolites produced by Rhizobium tropici CIAT 899. Braz J Microbiol 2022; 53:595-604. [PMID: 35318614 PMCID: PMC9151945 DOI: 10.1007/s42770-022-00722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
To verify the potential of metabolites extracted from Rhizobium tropici to trigger the priming of defense responses in cruciferous plants, we analyzed the expression of defense-related genes by qRT-PCR. Brassica oleracea var. capitata, susceptible to Xanthomonas campestris pv. campestris, were grown in greenhouse conditions. At 18 days after sowing, plants were inoculated with 1 mL of 1% concentrated metabolites produced by R. tropici (CM-RT) in the root. In a second experiment, leaves were sprayed with 1 mL of a solution containing 1% CM-RT. Aerial and root tissue were collected separately at 0 (non-treated control condition), 24, and 48 h after application, submitted to RNA extraction and gene expression analysis by qRT-PCR. The results showed that, after root treatment with CM-RT, most evaluated genes were upregulated at 24 h after application and downregulated at 48 h after application in roots, while in leaves, genes were downregulated both at 24 and 48 h after application. On the other hand, leaf treatment with CM-RT showed that most evaluated genes in leaves and roots were upregulated at 24 and 48 h after application. These results indicate that the effect of CM-RT applied in roots seems restricted to the applied region and is not sustained, while the application in leaves results in a more systemic response and maintenance of the effect of CM-RT for a longer period. The results obtained in this study emphasize the biotechnological potential of using metabolites of R. tropici as an elicitor of active defense responses in plants.
Collapse
Affiliation(s)
- Ivonaldo Reis Santos
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
- Programa de Pós-Graduação Em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF CEP 70910-900 Brazil
| | - Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
- Programa de Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica de Brasília/Campus II, Brasília, CEP 70790160 Brazil
| | - Fabiano Touzdjian Pinheiro Kohlrausch Távora
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
- Programa de Pós-Graduação Em Ciências Biológicas (Imunologia e DIP/Genética E Biotecnologia, Universidade Federal de, Juiz de Fora, Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, Juiz de Fora, MG CEP 36036-900 Brazil
| | - Mariana Rocha Maximiano
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
- Programa de Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica de Brasília/Campus II, Brasília, CEP 70790160 Brazil
| | - Ana Carolina Rabelo
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
| | - Thuanny Borba Rios
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
| | | | - Manuel Megías
- Departamento de Microbiología Y Parasitología, Universidad de Sevilla, Apdo Postal 874, 41080 Sevilla, Spain
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
- Programa de Pós-Graduação Em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF CEP 70910-900 Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos E Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, DF CEP 70770-917 Brazil
| |
Collapse
|
20
|
Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100054. [PMID: 34841345 PMCID: PMC8610294 DOI: 10.1016/j.crmicr.2021.100054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.
Collapse
Key Words
- ABA, Abscisic acid
- BABA, β-Aminobutyric acid
- BTH, Benzothiadiazole
- CKRI, Cross kingdom RNA interference
- DAMPs, Damage-associated molecular patterns
- Defense mechanism
- ET, Ethylene
- ETI, Effector-triggered immunity
- Elicitors
- Fe, Iron
- GSH, Glutathione
- HAMP, Herbivore-associated molecular patterns
- HG, Heptaglucan
- HIR, Herbivore induced resistance
- HRs, Hormonal receptors
- ISR, Induced systemic resistance
- ISS, Induced systemic susceptibility
- Induced resistance
- JA, Jasmonic acid
- LAR, Local acquired resistance
- LPS, Lipopolysaccharides
- MAMPs, Microbe-associated molecular patterns
- MBCAs, Microbial biological control agents
- Microbiological bio-control agent
- N, Nitrogen
- NO, Nitric oxide
- P, Phosphorous
- PAMPs, Pathogen-associated molecular patterns
- PGP, Plant growth promotion
- PGPB, Plant growth promoting bacteria
- PGPF, Plant growth promoting fungi
- PGPR, Plant growth promoting rhizobacteria
- PRPs, Pathogenesis-related proteins
- PRRs, Pattern recognition receptors
- PTI, Pattern triggered immunity
- Plant defense
- Plant disease
- RLKs, Receptor-like-kinases
- RLPs, Receptor-like-proteins
- ROS, Reactive oxygen species
- SA, Salicylic acid
- SAR, Systemic acquired resistance
- TFs, Transcription factors
- TMV, Tobacco mosaic virus
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi – 221005, India
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur – 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi – 110007, India
| |
Collapse
|
21
|
Wang H, Liu R, You MP, Barbetti MJ, Chen Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021; 9:microorganisms9091988. [PMID: 34576883 PMCID: PMC8470069 DOI: 10.3390/microorganisms9091988] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
A vast microbial community inhabits in the rhizosphere, among which, specialized bacteria known as Plant Growth-Promoting Rhizobacteria (PGPR) confer benefits to host plants including growth promotion and disease suppression. PGPR taxa vary in the ways whereby they curtail the negative effects of invading plant pathogens. However, a cumulative or synergistic effect does not always ensue when a bacterial consortium is used. In this review, we reassess the disease-suppressive mechanisms of PGPR and present explanations and illustrations for functional diversity and/or stability among PGPR taxa regarding these mechanisms. We also provide evidence of benefits when PGPR mixtures, rather than individuals, are used for protecting crops from various diseases, and underscore the critical determinant factors for successful use of PGPR mixtures. Then, we evaluate the challenges of and limitations to achieving the desired outcomes from strain/species-rich bacterial assemblages, particularly in relation to their role for plant disease management. In addition, towards locating additive or synergistic outcomes, we highlight why and how the benefits conferred need to be categorized and quantified when different strains/species of PGPR are used in combinations. Finally, we highlight the critical approaches needed for developing PGPR mixtures with improved efficacy and stability as biocontrols for utilization in agricultural fields.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences, Xianyang 712100, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjin Liu
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ming Pei You
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Martin J. Barbetti
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
- Correspondence:
| |
Collapse
|
22
|
Noman M, Ahmed T, Ijaz U, Shahid M, Azizullah, Li D, Manzoor I, Song F. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int J Mol Sci 2021; 22:6852. [PMID: 34202205 PMCID: PMC8269294 DOI: 10.3390/ijms22136852] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Plants host diverse but taxonomically structured communities of microorganisms, called microbiome, which colonize various parts of host plants. Plant-associated microbial communities have been shown to confer multiple beneficial advantages to their host plants, such as nutrient acquisition, growth promotion, pathogen resistance, and environmental stress tolerance. Systematic studies have provided new insights into the economically and ecologically important microbial communities as hubs of core microbiota and revealed their beneficial impacts on the host plants. Microbiome engineering, which can improve the functional capabilities of native microbial species under challenging agricultural ambiance, is an emerging biotechnological strategy to improve crop yield and resilience against variety of environmental constraints of both biotic and abiotic nature. This review highlights the importance of indigenous microbial communities in improving plant health under pathogen-induced stress. Moreover, the potential solutions leading towards commercialization of proficient bioformulations for sustainable and improved crop production are also described.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Irfan Manzoor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; or
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| |
Collapse
|
23
|
Effects of Root-Colonizing Fluorescent Pseudomonas Strains on Arabidopsis Resistance to a Pathogen and an Herbivore. Appl Environ Microbiol 2021; 87:e0283120. [PMID: 33893115 DOI: 10.1128/aem.02831-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rhizobacteria in the genus Pseudomonas can enhance plant resistance to a range of pathogens and herbivores. However, resistance to these different classes of plant antagonists is mediated by different molecular mechanisms, and the extent to which induced systemic resistance by Pseudomonas can simultaneously protect plants against both pathogens and herbivores remains unclear. We screened 12 root-colonizing Pseudomonas strains to assess their ability to induce resistance in Arabidopsis thaliana against a foliar pathogen (Pseudomonas syringae DC3000) and a chewing herbivore (Spodoptera littoralis). None of our 12 strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these (Pseudomonas strain P97-38) also made plants more susceptible to herbivory. Phytohormone analyses revealed stronger salicylic acid induction in plants colonized by P97-38 (versus controls) following subsequent pathogen infection but weaker induction of jasmonic acid (JA)-mediated defenses following herbivory. We found no effects of P97-38 inoculation on herbivore-relevant nutrients such as sugars and protein, suggesting that the observed enhancement of susceptibility to S. littoralis is due to effects on plant defense chemistry rather than nutrition. These findings suggest that Pseudomonas strains that enhance plant resistance to pathogens may have neutral or negative effects on resistance to herbivores and provide insight into potential mechanisms associated with effects on different classes of plant antagonists. Improved understanding of these effects has potentially important implications for the use of rhizobacteria inoculation in agriculture. IMPORTANCE Plant-associated microbes have significant potential to enhance agricultural production, for example, by enhancing plant resistance to pathogens and pests. Efforts to identify beneficial microbial strains typically focus on a narrow range of desirable plant traits; however, microbial symbionts can have complex effects on plant phenotypes, including susceptibility and resistance to different classes of plant antagonists. We examined the effects of 12 strains of Pseudomonas rhizobacteria on plant (Arabidopsis) resistance to a lepidopteran herbivore and a foliar pathogen. None of our strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these made plants more susceptible to herbivory (likely via effects on plant defense chemistry). These findings indicate that microbial strains that enhance plant resistance to pathogens can have neutral or negative effects on resistance to herbivores, highlighting potential pitfalls in the application of beneficial rhizobacteria as biocontrol agents.
Collapse
|
24
|
Fu HZ, Marian M, Enomoto T, Hieno A, Ina H, Suga H, Shimizu M. Biocontrol of Tomato Bacterial Wilt by Foliar Spray Application of a Novel Strain of Endophytic Bacillus sp. Microbes Environ 2021; 35. [PMID: 33012743 PMCID: PMC7734409 DOI: 10.1264/jsme2.me20078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to identify a strain of endophytic Bacillus species that control tomato bacterial wilt by foliar spray application. Fifty heat-tolerant endophytic bacteria were isolated from the surface-sterilized foliar tissues of symptomless tomato plants that had been pre-inoculated with the pathogen Ralstonia pseudosolanacearum. In the primary screening, we assessed the suppressive effects of a shoot-dipping treatment with bacterial strains against bacterial wilt on tomato seedlings grown on peat pellets. Bacillus sp. strains G1S3 and G4L1 significantly suppressed the incidence of tomato bacterial wilt. In subsequent pot experiments, the biocontrol efficacy of foliar spray application was examined under glasshouse conditions. G4L1 displayed consistent and significant disease suppression, and, thus, was selected as a biocontrol candidate. Moreover, the pathogen population in the stem of G4L1-treated plants was markedly smaller than that in control plants. A quantitative real-time PCR analysis revealed that the foliar spraying of tomato plants with G4L1 up-regulated the expression of PR-1a and LoxD in stem and GluB in roots upon the pathogen inoculation, implying that the induction of salicylic acid-, jasmonic acid-, and ethylene-dependent defenses was involved in the protective effects of this strain. In the re-isolation experiment, G4L1 efficiently colonized foliar tissues for at least 4 weeks after spray application. Collectively, the present results indicate that G4L1 is a promising biocontrol agent for tomato bacterial wilt. Furthermore, to the best of our knowledge, this is the first study to report the biocontrol of bacterial wilt by the foliar spraying with an endophytic Bacillus species.
Collapse
Affiliation(s)
- Hui-Zhen Fu
- The United Graduate School of Agricultural Science, Gifu University
| | - Malek Marian
- Faculty of Applied Biological Sciences, Gifu University.,College of Agriculture, Ibaraki University
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University
| | - Ayaka Hieno
- Faculty of Applied Biological Sciences, Gifu University
| | - Hidemasa Ina
- Faculty of Applied Biological Sciences, Gifu University
| | | | - Masafumi Shimizu
- The United Graduate School of Agricultural Science, Gifu University
| |
Collapse
|
25
|
Biessy A, Filion M. Phloroglucinol Derivatives in Plant-Beneficial Pseudomonas spp.: Biosynthesis, Regulation, and Functions. Metabolites 2021; 11:metabo11030182. [PMID: 33804595 PMCID: PMC8003664 DOI: 10.3390/metabo11030182] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens.
Collapse
|
26
|
Ortiz A, Sansinenea E. Recent advancements for microorganisms and their natural compounds useful in agriculture. Appl Microbiol Biotechnol 2021; 105:891-897. [PMID: 33417042 DOI: 10.1007/s00253-020-11030-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
During the past years, microorganisms have been the cause of many problems for human's health. However, today with the development of many techniques of microbiology, the researchers have studied several roles of microorganisms which may help the society. Microbial-based products are expected to play important role in agriculture-enhancing plant production and therefore increasing crop's yieldeswani et al. . Microorganisms can act by several action mechanisms including antibiosis or mechanisms in plant-microbe interactions underlining the dual function of microbial strains toward plant nutrition and protection. The market has increased with the development of microbial-based products. Currently, it is normal to think that microorganisms help us in agriculture by applying them as biological control. In this mini review, we collect the last findings about this topic including very recent literature. KEY POINTS: • Microorganisms play a beneficial role in agriculture by different mechanisms. • One of these mechanisms is the secretion of chemical compounds with different activities.
Collapse
Affiliation(s)
- Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Pue, 72590, Puebla, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Pue, 72590, Puebla, Mexico.
| |
Collapse
|
27
|
McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep 2021; 34:108645. [PMID: 33472073 PMCID: PMC8158063 DOI: 10.1016/j.celrep.2020.108645] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions. The role that bacterial outer membrane vesicles (OMVs) play in plant-microbe interactions is poorly characterized. McMillan et al. show that OMVs elicit plant immune responses that protect against pathogens. This study also reveals a use for OMVs as tools to probe the plant immune system.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sophia G Zebell
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Meta J Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
29
|
Gu Y, Ma Y, Wang J, Xia Z, Wei H. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity. Microbiologyopen 2020; 9:e1092. [PMID: 32537904 PMCID: PMC7520995 DOI: 10.1002/mbo3.1092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Strain S150 was isolated from the tobacco rhizosphere as a plant growth-promoting rhizobacterium. It increased plant fresh weight significantly and lateral root development, and it antagonized plant pathogenic fungi but not phytobacteria. Further tests showed that strain S150 solubilized organic phosphate and produced ammonia, siderophore, protease, amylase, and cellulase, but it did not produce indole-3-acetic acid. Using morphology, physiological characteristics, and multi-locus sequence analysis, strain S150 was identified as Pseudomonas koreensis. The complete genome of strain S150 was sequenced, and it showed a single circular chromosome of 6,304,843 bp with a 61.09% G + C content. The bacterial genome contained 5,454 predicted genes that occupied 87.7% of the genome. Venn diagrams of the identified orthologous clusters of P. koreensis S150 with the other three sequenced P. koreensis strains revealed up to 4,167 homologous gene clusters that were shared among them, and 21 orthologous clusters were only present in the genome of strain S150. Genome mining of the bacterium P. koreensis S150 showed that the strain possessed 10 biosynthetic gene clusters for secondary metabolites, which included four clusters of non-ribosomal peptide synthetases (NRPSs) involved in the biosynthesis of cyclic lipopeptides (CLPs). One of the NRPSs possibly encoded lokisin, a cyclic lipopeptide produced by fluorescent Pseudomonas. Genomic mutation of the lokA gene, which is one of the three structural NRPS genes for lokisin in strain S150, led to a deficiency in fungal antagonism that could be restored fully by gene complementation. The results suggested that P. koreensis S150 is a novel plant growth-promoting agent with specific cyclic lipopeptides and contains a lokisin-encoding gene cluster that is dominant against plant fungal pathogens.
Collapse
Affiliation(s)
- Yilin Gu
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yi‐Nan Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jing Wang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural ScienceKunmingChina
| | - Hai‐Lei Wei
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
30
|
Kowalska J, Tyburski J, Matysiak K, Tylkowski B, Malusá E. Field Exploitation of Multiple Functions of Beneficial Microorganisms for Plant Nutrition and Protection: Real Possibility or Just a Hope? Front Microbiol 2020; 11:1904. [PMID: 32849475 PMCID: PMC7419637 DOI: 10.3389/fmicb.2020.01904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023] Open
Abstract
Bioproducts, i.e., microbial based pesticides or fertilizers (biopesticides and biofertilizers), should be expected to play an ever-increasing role and application in agricultural practices world-wide in the effort to implement policies concerned with sustainable agriculture. However, several microbial strains have proven the capacity to augment plant productivity by enhancing crop nutrition and functioning as biopesticides, or vice-versa. This multifunctionality is an issue that is still not included as a concept and possibility in any legal provision regarding the placing on the market of bioproducts, and indicates difficulties in clearly classifying the purpose of their suitability. In this review, we overview the current understanding of the mechanisms in plant-microbe interactions underlining the dual function of microbial strains toward plant nutrition and protection. The prospects of market development for multifunctional bioproducts are then considered in view of the current regulatory approach in the European Union, in an effort that wants to stimulate a wider adoption of the new knowledge on the role played by microorganisms in crop production.
Collapse
Affiliation(s)
| | - Józef Tyburski
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| |
Collapse
|
31
|
Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the current scenario of rapidly evolving climate change, crop plants are more frequently subjected to stresses of both abiotic and biotic origin, including exposure to unpredictable and extreme climatic events, changes in plant physiology, growing season and phytosanitary hazard, and increased losses up to 30% and 50% in global agricultural productions. Plants coevolved with microbial symbionts, which are involved in major functions both at the ecosystem and plant level. The use of microbial biostimulants, by exploiting this symbiotic interaction, represents a sustainable strategy to increase plant performances and productivity, even under stresses due to climate changes. Microbial biostimulants include beneficial fungi, yeasts and eubacteria sharing the ability to improve plant nutrition, growth, productivity and stress tolerance. This work reports the current knowledge on microbial biostimulants and provides a critical review on their possible use to mitigate the biotic and abiotic stresses caused by climate changes. Currently, available products often provide a general amelioration of cultural conditions, but their action mechanisms are largely undetermined and their effects often unreliable. Future research may lead to more specifically targeted products, based on the characterization of plant-microbe and microbial community interactions.
Collapse
|
32
|
Chae DH, Kim DR, Cheong MS, Lee YB, Kwak YS. Investigating the Induced Systemic Resistance Mechanism of 2,4-Diacetylphloroglucinol (DAPG) using DAPG Hydrolase-Transgenic Arabidopsis. THE PLANT PATHOLOGY JOURNAL 2020; 36:255-266. [PMID: 32547341 PMCID: PMC7272852 DOI: 10.5423/ppj.oa.02.2020.0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/09/2020] [Accepted: 03/06/2020] [Indexed: 05/29/2023]
Abstract
Plant immune responses can be triggered by chemicals, microbes, pathogens, insects, or abiotic stresses. In particular, induced systemic resistance (ISR) refers to the activation of the immune system due to a plant's interaction with beneficial microorganisms. The phenolic compound, 2,4-diacetylphloroglucinol (DAPG), which is produced by beneficial Pseudomonas spp., acts as an ISR elicitor, yet DAPG's mechanism in ISR remains unclear. In this study, transgenic Arabidopsis thaliana plants overexpressing the DAPG hydrolase gene (phlG) were generated to investigate the functioning of DAPG in ISR. DAPG was applied onto 3-week-old A. thaliana Col-0 and these primed plants showed resistance to the pathogens Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. However, in the phlG transgenic A. thaliana, the ISR was not triggered against these pathogens. The DAPG-mediated ISR phenotype was impaired in transgenic A. thaliana plants overexpressing phlG, thus showing similar disease severity when compared to untreated control plants. Furthermore, the DAPG-treated A. thaliana Col-0 showed an increase in their gene expression levels of PDF1.2 and WRKY70 but this failed to occur in the phlG transgenic lines. Collectively, these experimental results indicate that jasmonic acid/ethylene signal-based defense system is effectively disabled in phlG transgenic A. thaliana lines.
Collapse
Affiliation(s)
- Dae-Han Chae
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Department of Plant Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
33
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
34
|
Lee S, Kim S, Lee N, Ahn C, Ryu C. d-Lactic acid secreted by Chlorella fusca primes pattern-triggered immunity against Pseudomonas syringae in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:761-778. [PMID: 31869481 PMCID: PMC7318130 DOI: 10.1111/tpj.14661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 05/13/2023]
Abstract
Biological control agents including microbes and their products have been studied as sustainable crop protection strategies. Although aquatic microalgae have been recently introduced as a biological control agent, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate the molecular mechanisms underlying biological control by microalga Chlorella fusca. Foliar application of C. fusca elicits induced resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 that activates plant immunity rather than direct antagonism. To understand the basis of C. fusca-triggered induced resistance at the transcriptional level, we conducted RNA sequencing (RNA-seq) analysis. RNA-seq data showed that, upon pathogen inoculation, C. fusca treatment primed the expression of cysteine-rich receptor-like kinases, WRKY transcription factor genes, and salicylic acid and jasmonic acid signalling-related genes. Intriguingly, the application of C. fusca primed pathogen-associated molecular pattern -triggered immunity, characterized by reactive oxygen species burst and callose deposition, upon flagellin 22 treatment. The attempts to find C. fusca determinants allowed us to identify d-lactic acid secreted in the supernatant of C. fusca as a defence priming agent. This is the first report of the mechanism of innate immune activation by aquatic microalga Chlorella in higher plants.
Collapse
Affiliation(s)
- Sang‐Moo Lee
- Molecular Phytobacteriology LaboratoryKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141South Korea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| | - Seon‐Kyu Kim
- Personalized Genomic Medicine Research CenterKRIBBDaejeon34141South Korea
| | - Nakyeong Lee
- Cell Factory Research CenterKRIBBDaejeon34141South Korea
- Department of Environmental BiotechnologyKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| | - Chi‐Yong Ahn
- Cell Factory Research CenterKRIBBDaejeon34141South Korea
- Department of Environmental BiotechnologyKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141South Korea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| |
Collapse
|
35
|
Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens. J Med Microbiol 2020; 69:347-360. [DOI: 10.1099/jmm.0.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas brassicacearum
is one of over fifty species of bacteria classified into the
P. fluorescens
group. Generally considered a harmless commensal, these bacteria are studied for their plant-growth promotion (PGP) and biocontrol characteristics. Intriguingly,
P. brassicacearum
is closely related to
P. corrugata
, which is classified as an opportunistic phytopathogen. Twenty-one
P. brassicacearum
genomes have been sequenced to date. In the current review, genomes of
P. brassicacearum
and strains from the
P. corrugata
clade were mined for regions associated with PGP, biocontrol and pathogenicity. We discovered that ‘beneficial’ bacteria and those classified as plant pathogens have many genes in common; thus, only a fine line separates beneficial/harmless commensals from those capable of causing disease in plants. The genotype and physiological state of the plant, the presence of biotic/abiotic stressors, and the ability of bacteria to manipulate the plant immune system collectively contribute to how the bacterial-plant interaction plays out. Because production of extracellular metabolites is energetically costly, these compounds are expected to impart a fitness advantage to the producer.
P. brassicacearum
is able to reduce the threat of nematode predation through release of metabolites involved in biocontrol. Moreover this bacterium has the unique ability to form biofilms on the head of Caenorhabditis elegans, as a second mechanism of predator avoidance. Rhizobacteria, plants, fungi, and microfaunal predators have occupied a shared niche for millions of years and, in many ways, they function as a single organism. Accordingly, it is essential that we appreciate the dynamic interplay among these members of the community.
Collapse
|
36
|
Sazinas P, Hansen ML, Aune MI, Fischer MH, Jelsbak L. A Rare Thioquinolobactin Siderophore Present in a Bioactive Pseudomonas sp. DTU12.1. Genome Biol Evol 2020; 11:3529-3533. [PMID: 31800028 PMCID: PMC6934138 DOI: 10.1093/gbe/evz267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/21/2023] Open
Abstract
Many of the soil-dwelling Pseudomonas species are known to produce secondary metabolite compounds, which can have antagonistic activity against other microorganisms, including important plant pathogens. It is thus of importance to isolate new strains of Pseudomonas and discover novel or rare gene clusters encoding bioactive products. In an effort to accomplish this, we have isolated a bioactive Pseudomonas strain DTU12.1 from leaf-covered soil in Denmark. Following genome sequencing with Illumina and Oxford Nanopore technologies, we generated a complete genome sequence with the length of 5,943,629 base pairs. The DTU12.1 strain contained a complete gene cluster for a rare thioquinolobactin siderophore, which was previously described as possessing bioactivity against oomycetes and several fungal species. We placed the DTU12.1 strain within Pseudomonas gessardii subgroup of fluorescent pseudomonads, where it formed a distinct clade with other Pseudomonas strains, most of which also contained a complete thioquinolobactin gene cluster. Only two other Pseudomonas strains were found to contain the gene cluster, though they were present in a different phylogenetic clade and were missing a transcriptional regulator of the whole cluster. We show that having the complete genome sequence and establishing phylogenetic relationships with other strains can enable us to start evaluating the distribution and evolutionary origins of secondary metabolite clusters.
Collapse
Affiliation(s)
- Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Lindqvist Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - May Iren Aune
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marie Højmark Fischer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
37
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
38
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
39
|
Pršić J, Ongena M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:594530. [PMID: 33304371 PMCID: PMC7693457 DOI: 10.3389/fpls.2020.594530] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
The molecular basis of plant immunity triggered by microbial pathogens is being well-characterized as a complex sequential process leading to the activation of defense responses at the infection site, but which may also be systemically expressed in all organs, a phenomenon also known as systemic acquired resistance (SAR). Some plant-associated and beneficial bacteria are also able to stimulate their host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic resistance phenomenon. Induced systemic resistance resembles SAR considering its mechanistic principle as it successively involves recognition at the plant cell surface, stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to restrict pathogen invasion. However, according to our current vision, induced systemic resistance is specific considering some molecular aspects underpinning these different steps. Here we overview the chemical diversity of compounds that have been identified as induced systemic resistance elicitors and thereby illustrating the diversity of plants species that are responsive as well as the range of pathogens that can be controlled via this phenomenon. We also point out the need for further investigations allowing better understanding how these elicitors are sensed by the host and the diversity and nature of the stimulated defense mechanisms.
Collapse
|
40
|
Abstract
The phytohormone jasmonate (JA) modulates various defense and developmental responses of plants, and is implied in the integration of multiple environmental signals. Given its centrality in regulating plant physiology according to external stimuli, JA influences the establishment of interactions between plant roots and beneficial bacteria or fungi. In many cases, moderate JA signaling promotes the onset of mutualism, while massive JA signaling inhibits it. The output also depends on the compatibility between microbe and host plant and on nutritional or environmental cues. Also, JA biosynthesis and perception participate in the systemic regulation of mutualistic interactions and in microbe-induced resistance to biotic and abiotic stress. Here, we review our current knowledge of the role of JA biosynthesis, signaling, and responses during mutualistic root-microbe interactions.
Collapse
Affiliation(s)
- Veronica Basso
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France
| | - Claire Veneault-Fourrey
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France.
| |
Collapse
|
41
|
Balthazar C, Cantin G, Novinscak A, Joly DL, Filion M. Expression of Putative Defense Responses in Cannabis Primed by Pseudomonas and/or Bacillus Strains and Infected by Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2020; 11:572112. [PMID: 33324431 PMCID: PMC7723895 DOI: 10.3389/fpls.2020.572112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 05/06/2023]
Abstract
Cannabis (Cannabis sativa L.) offers many industrial, agricultural, and medicinal applications, but is commonly threatened by the gray mold disease caused by the fungus Botrytis cinerea. With few effective control measures currently available, the use of beneficial rhizobacteria represents a promising biocontrol avenue for cannabis. To counter disease development, plants rely on a complex network of inducible defense pathways, allowing them to respond locally and systemically to pathogens attacks. In this study, we present the first attempt to control gray mold in cannabis using beneficial rhizobacteria, and the first investigation of cannabis defense responses at the molecular level. Four promising Pseudomonas (LBUM223 and WCS417r) and Bacillus strains (LBUM279 and LBUM979) were applied as single or combined root treatments to cannabis seedlings, which were subsequently infected by B. cinerea. Symptoms were recorded and the expression of eight putative defense genes was monitored in leaves by reverse transcription quantitative polymerase chain reaction. The rhizobacteria did not significantly control gray mold and all infected leaves were necrotic after a week, regardless of the treatment. Similarly, no systemic activation of putative cannabis defense genes was reported, neither triggered by the pathogen nor by the rhizobacteria. However, this work identified five putative defense genes (ERF1, HEL, PAL, PR1, and PR2) that were strongly and sustainably induced locally at B. cinerea's infection sites, as well as two stably expressed reference genes (TIP41 and APT1) in cannabis. These markers will be useful in future researches exploring cannabis defense pathways.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Gabrielle Cantin
- Institute of Health Sciences, Collège La Cité, Ottawa, ON, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC, Canada
- *Correspondence: Martin Filion,
| |
Collapse
|
42
|
Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Ye W, Jiang J, Lin Y, Yeh KW, Lai Z, Xu X, Oelmüller R. Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC PLANT BIOLOGY 2019; 19:601. [PMID: 31888486 PMCID: PMC6937650 DOI: 10.1186/s12870-019-2105-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Erwinia chrysanthemi (Ec) is a destructive pathogen which causes soft-rot diseases in diverse plant species including orchids. We investigated whether colonization of Oncidium roots by the endophytic fungus Piriformospora indica (Pi) restricts Ec-induced disease development in leaves, and whether this might be related to the regulation of nucleotide binding site-leucine rich repeat (NBS-LRR) Resistance (R) genes. RESULTS Root colonization of Oncidium stackings by Pi restricts progression of Ec-induced disease development in the leaves. Since Pi does not inhibit Ec growth on agar plates, we tested whether NBS-LRR R gene transcripts and the levels of their potential target miRNAs in Oncidium leaves might be regulated by Pi. Using bioinformatic tools, we first identified NBS-LRR R gene sequences from Oncidium, which are predicted to be targets of miRNAs. Among them, the expression of two R genes was repressed and the accumulation of several regulatory miRNA stimulated by Ec in the leaves of Oncidium plants. This correlated with the progression of disease development, jasmonic and salicylic acid accumulation, ethylene synthesis and H2O2 production after Ec infection of Oncidium leaves. Interestingly, root colonization by Pi restricted disease development in the leaves, and this was accompanied by higher expression levels of several defense-related R genes and lower expression level of their target miRNA. CONCLUSION Based on these data we propose that Pi controls the levels of NBS-LRR R mRNAs and their target miRNAs in leaves. This regulatory circuit correlates with the protection of Oncidium plants against Ec infection, and molecular and biochemical investigations will demonstrate in the future whether, and if so, to what extent these two observations are related to each other.
Collapse
Affiliation(s)
- Wei Ye
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Kai-Wun Yeh
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xuming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Ralf Oelmüller
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
44
|
Besset-Manzoni Y, Joly P, Brutel A, Gerin F, Soudière O, Langin T, Prigent-Combaret C. Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria. PLoS One 2019; 14:e0225655. [PMID: 31805068 PMCID: PMC6894788 DOI: 10.1371/journal.pone.0225655] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023] Open
Abstract
Biological control is a great hope for reducing the overutilization of pesticides in agricultural soils. It often involves microorganisms or molecules produced by microorganisms that will be able to interact with either a plant or pathogens of this plant to reduce the growth of the pathogen and limit its negative impact on the host plant. When new biocontrol products are developed, strains were mostly selected based on their ability to inhibit a pathogen of interest under in vitro conditions via antagonistic effects. Strains with no in vitro effect are often discarded and not tested in planta. But is the in vitro selection of bacterial agents according to their antagonism activities towards a plant pathogen the best way to get effective biocontrol products? To answer this question, we used wheat and the fungal pathogen Fusarium graminearum as a study pathosystem model. A library of 205 soil bacteria was screened in 2 types of in vitro growth inhibition tests against F. graminearum, and in an in planta experiment. We find strains which do not have inhibition phenotypes in vitro but good efficacy in planta. Interestingly, some strains belong to species (Microbacterium, Arthrobacter, Variovorax) that are not known in the literature for their ability to protect plants against fungal pathogens. Thus, developing a biocontrol product against F. graminearum must be preferentially based on the direct screening of strains for their protective activity on wheat plants against fungal diseases, rather than on their in vitro antagonistic effects on fungal growth.
Collapse
Affiliation(s)
- Yoann Besset-Manzoni
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France
- Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France
| | - Pierre Joly
- Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France
| | - Aline Brutel
- Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France
| | - Florence Gerin
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France
| | - Olivier Soudière
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont–Ferrand, France
| | - Thierry Langin
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont–Ferrand, France
| | - Claire Prigent-Combaret
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France
- * E-mail:
| |
Collapse
|
45
|
Kamou NN, Cazorla F, Kandylas G, Lagopodi AL. Induction of defense-related genes in tomato plants after treatments with the biocontrol agents Pseudomonas chlororaphis ToZa7 and Clonostachys rosea IK726. Arch Microbiol 2019; 202:257-267. [DOI: 10.1007/s00203-019-01739-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
|
46
|
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: Puppet Masters of the Rhizosphere Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:165-176. [PMID: 30446306 DOI: 10.1016/j.tplants.2018.10.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
The rhizosphere microbiome is a central determinant of plant performance. Microbiome assembly has traditionally been investigated from a bottom-up perspective, assessing how resources such as root exudates drive microbiome assembly. However, the importance of predation as a driver of microbiome structure has to date largely remained overlooked. Here we review the importance of protists, a paraphyletic group of unicellular eukaryotes, as a key regulator of microbiome assembly. Protists can promote plant-beneficial functions within the microbiome, accelerate nutrient cycling, and remove pathogens. We conclude that protists form an essential component of the rhizosphere microbiome and that accounting for predator-prey interactions would greatly improve our ability to predict and manage microbiome function at the service of plant growth and health.
Collapse
Affiliation(s)
- Zhilei Gao
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; These authors contributed equally
| | - Ida Karlsson
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Dept. of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; These authors contributed equally
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
| | - George Kowalchuk
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
47
|
Yu F, Jing X, Li X, Wang H, Chen H, Zhong L, Yin J, Pan D, Yin Y, Fu J, Xia L, Bian X, Tu Q, Zhang Y. Recombineering Pseudomonas protegens CHA0: An innovative approach that improves nitrogen fixation with impressive bactericidal potency. Microbiol Res 2019; 218:58-65. [DOI: 10.1016/j.micres.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/06/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
48
|
Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, Keel C, Maurhofer M. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME JOURNAL 2018; 13:860-872. [PMID: 30504899 DOI: 10.1038/s41396-018-0317-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Abstract
The discovery of insecticidal activity in root-colonizing pseudomonads, best-known for their plant-beneficial effects, raised fundamental questions about the ecological relevance of insects as alternative hosts for these bacteria. Since soil bacteria are limited in their inherent abilities of dispersal, insects as vectors might be welcome vehicles to overcome large distances. Here, we report on the transmission of the root-colonizing, plant-beneficial and insecticidal bacterium Pseudomonas protegens CHA0 from root to root by the cabbage root fly, Delia radicum. Following ingestion by root-feeding D. radicum larvae, CHA0 persisted inside the insect until the pupal and adult stages. The emerging flies were then able to transmit CHA0 to a new plant host initiating bacterial colonization of the roots. CHA0 did not reduce root damages caused by D. radicum and had only small effects on Delia development suggesting a rather commensal than pathogenic relationship. Interestingly, when the bacterium was fed to two highly susceptible lepidopteran species, most of the insects died, but CHA0 could persist throughout different life stages in surviving individuals. In summary, this study investigated for the first time the interaction of P. protegens CHA0 and related strains with an insect present in their rhizosphere habitat. Our results suggest that plant-colonizing pseudomonads have different strategies for interaction with insects. They either cause lethal infections and use insects as food source or they live inside insect hosts without causing obvious damages and might use insects as vectors for dispersal, which implies a greater ecological versatility of these bacteria than previously thought.
Collapse
Affiliation(s)
- Pascale Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Camille Tinguely
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Cornelia I Ullrich
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany
| | - Regina G Kleespies
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
49
|
Zhou M, Wang W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2018; 9:1613. [PMID: 30459795 PMCID: PMC6232518 DOI: 10.3389/fpls.2018.01613] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 05/20/2023]
Abstract
Different from the conventional biocidal agrochemicals, synthetic chemical inducers of plant immunity activate, bolster, or prime plant defense machineries rather than directly acting on the pathogens. Advances in combinatorial synthesis and high-throughput screening methods have led to the discovery of various synthetic plant immune activators as well as priming agents. The availability of their structures and recent progress in the mechanistic understanding of plant immune responses have opened up the possibility of identifying new or more potent chemical inducers through rational design. In this review, we first summarize the chemical inducers identified through large-scale screening and then discuss the emerging trends in the identification and development of novel plant immune inducers including natural elicitor based chemical derivation, bifunctional combination, and computer-aided design.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Wei Wang
- School of Life Sciences, Peking University, Beijing, China
- Peking University – Tsinghua University Joint Center for Life Sciences, Beijing, China
| |
Collapse
|
50
|
Gadhave KR, Gange AC. Interactions Involving Rhizobacteria and Foliar-Feeding Insects. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-91614-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|