1
|
Nair SS, Kleffmann T, Smith B, Morris V, Göbl C, Pletzer D, Fellner M. Comparative lipidomics profiles of planktonic and biofilms of methicillin-resistant and -susceptible Staphylococcus aureus. Anal Biochem 2025; 698:115746. [PMID: 39672221 DOI: 10.1016/j.ab.2024.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Staphylococcus aureus is a significant human pathogen causing acute life-threatening, and chronic infections often linked to biofilms. This study conducted a comparative lipidomic analysis of a methicillin-resistant (MRSA) and a methicillin-susceptible (MSSA) S. aureus strain in both planktonic and biofilm cultures using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The developed protocol successfully differentiates between the strains in various living states (planktonic and biofilm) and growth media (Tryptic Soy Broth and Brain Heart Infusion) using S. aureus USA300 LAC (MRSA) and S. aureus Newman (MSSA). LC-MS and NMR lipidomics profiles revealed global differences and particular ones among the following classes of bacterial lipids: phosphatidylglycerols, diacylglycerols, monoglycosyldiacylglycerols, diglycosyldiacylglycerols, and cardiolipins. Lipid content was higher in the biofilm states for most of these classes. Growth media differences were significant, while differences between MRSA and MSSA were less pronounced but still detectable. Additionally, we provide data on hundreds of unknown compounds that differ based on living state, strain background, or growth media. This study offer insights into the dynamic nature of S. aureus lipid composition and the used methods are adaptable to other organisms.
Collapse
Affiliation(s)
- Shilpa Saseendran Nair
- Biochemistry Department, University of Otago, Dunedin, New Zealand; Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Briana Smith
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vanessa Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matthias Fellner
- Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Pizzuto M, Hurtado-Navarro L, Molina-Lopez C, Soubhye J, Gelbcke M, Rodriguez-Lopez S, Ruysschaert JM, Schroder K, Pelegrin P. Ornithine lipid is a partial TLR4 agonist and NLRP3 activator. Cell Rep 2024; 43:114788. [PMID: 39340778 DOI: 10.1016/j.celrep.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Gram-negative bacterial lipopolysaccharides (LPSs) trigger inflammatory reactions through Toll-like receptor 4 (TLR4) and prime myeloid cells for inflammasome activation. In phosphate-limited environments, bacteria reduce LPS and other phospholipid production and synthesize phosphorus-free alternatives such as amino-acid-containing lipids like the ornithine lipid (OL). This adaptive strategy conserves phosphate for other essential cellular processes and enhances bacterial survival in host environments. While OL is implicated in bacterial pathogenicity, the mechanism is unclear. Using primary murine macrophages and human mononuclear cells, we elucidate that OL activates TLR4 and induces potassium efflux-dependent nucleotide-binding domain and leucine-rich repeat-containing pyrin protein 3 (NLRP3) activation. OL upregulates the expression of NLRP3 and pro-interleukin (IL)-1β and induces cytokine secretion in primed and unprimed cells. By contrast, in the presence of LPS, OL functions as a partial TLR4 antagonist and reduces LPS-induced cytokine secretion. We thus suggest that in phosphate-depleted environments, OL replaces LPS bacterial immunogenicity, while constitutively present OL may allow bacteria to escape immune surveillance.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; Structure and Function of Biological Membranes Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia.
| | - Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Cristina Molina-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, 1050 Brussels, Belgium
| | - Michel Gelbcke
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, 1050 Brussels, Belgium
| | - Silvia Rodriguez-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
3
|
Kleetz J, Mizza AS, Shevyreva I, Welter L, Brocks C, Hemschemeier A, Aktas M, Narberhaus F. Three separate pathways in Rhizobium leguminosarum maintain phosphatidylcholine biosynthesis, which is required for symbiotic nitrogen fixation with clover. Appl Environ Microbiol 2024; 90:e0059024. [PMID: 39120150 PMCID: PMC11409717 DOI: 10.1128/aem.00590-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Phosphatidylcholine (PC) is critical for the nitrogen-fixing symbiosis between rhizobia and legumes. We characterized three PC biosynthesis pathways in Rhizobium leguminosarum and evaluated their impact on nitrogen fixation in clover nodules. In the presence of choline, a PC synthase catalyzes the condensation of cytidine diphosphate-diacylglycerol with choline to produce PC. In the presence of lyso-PC, acyltransferases acylate this mono-acylated phospholipid to PC. The third pathway relies on phospholipid N-methyltransferases (Pmts), which sequentially methylate phosphatidylethanolamine (PE) through three rounds of methylation, yielding PC via the intermediates monomethyl-PE and dimethyl-PE. In R. leguminosarum, at least three Pmts participate in this methylation cascade. To elucidate the functions of these enzymes, we recombinantly produced and biochemically characterized them. We moved on to determine the phospholipid profiles of R. leguminosarum mutant strains harboring single and combinatorial deletions of PC biosynthesis genes. The cumulative results show that PC production occurs through the combined action of multiple enzymes, each with distinct substrate and product specificities. The methylation pathway emerges as the dominant PC biosynthesis route, and we pinpoint PmtS2, which catalyzes all three methylation steps, as the enzyme responsible for providing adequate PC amounts for a functional nitrogen-fixing symbiosis with clover. IMPORTANCE Understanding the molecular mechanisms of symbiotic nitrogen fixation has important implications for sustainable agriculture. The presence of the phospholipid phosphatidylcholine (PC) in the membrane of rhizobia is critical for the establishment of productive nitrogen-fixing root nodules on legume plants. The reasons for the PC requirement are unknown. Here, we employed Rhizobium leguminosarum and clover as model system for a beneficial plant-microbe interaction. We found that R. leguminosarum produces PC by three distinct pathways. The relative contribution of these pathways to PC formation was determined in an array of single, double, and triple mutant strains. Several of the PC biosynthesis enzymes were purified and biochemically characterized. Most importantly, we demonstrated the essential role of PC formation by R. leguminosarum in nitrogen fixation and pinpointed a specific enzyme indispensable for plant-microbe interaction. Our study offers profound insights into bacterial PC biosynthesis and its pivotal role in biological nitrogen fixation.
Collapse
Affiliation(s)
- Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Ann-Sophie Mizza
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Irina Shevyreva
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Leon Welter
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Claudia Brocks
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anja Hemschemeier
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Li X, Yang Z, Liu J. Optimizing Systems for Robust Heterologous Production of Biosurfactants Rhamnolipid and Lyso-Ornithine Lipid in Pseudomonas putida KT2440. Molecules 2024; 29:3288. [PMID: 39064867 PMCID: PMC11279095 DOI: 10.3390/molecules29143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Surfactants are amphiphilic molecules that are capable of mixing water and oil. Biosurfactants are eco-friendly, low-toxicity, and stable to a variety of environmental factors. Optimizing conditions for microorganisms to produce biosurfactants can lead to improved production suitable for scaling up. In this study, we compared heterologous expression levels of the luminescence system luxCDABE operon controlled by regulatable promoters araC-PBAD and its strong version araC-PBAD-SD in Escherichia coli K12, Pseudomonas aeruginosa PAO1, and P. putida KT2440. Real-time monitoring of luminescence levels in the three strains indicated that luxCDABE controlled by araC-PBAD-SD promoter with 0.2% arabinose supplementation in P. putida produced the highest level of luminescence. By using the araC-PBAD-SD promoter-controlled rhlAB expression in P. putida, we were able to produce mono-rhamnolipid at a level of 1.5 g L-1 when 0.02% arabinose was supplemented. With the same system to express olsB, lyso-ornithine lipid was produced at a level of 10 mg L-1 when 0.2% arabinose was supplemented. To our knowledge, this is the first report about optimizing conditions for lyso-ornithine lipid production at a level up to 10 mg L-1. Taken together, our results demonstrate that regulatable araC-PBAD-SD promoter in P. putida KT2440 is a useful system for heterologous production of biosurfactants.
Collapse
Affiliation(s)
| | | | - Jianhua Liu
- Systems Biology, School for Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (X.L.); (Z.Y.)
| |
Collapse
|
5
|
Segers A, de Vos WM. Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components. MICROBIOME RESEARCH REPORTS 2023; 2:6. [PMID: 38045608 PMCID: PMC10688800 DOI: 10.20517/mrr.2023.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 12/05/2023]
Abstract
Akkermansia muciniphila is a promising next-generation beneficial microbe due to its natural presence in the mucus layer of the gut, its symbiotic ability to degrade mucus, and its capacity to improve the intestinal barrier function. A. muciniphila is able to counteract weight gain and immuno-metabolic disturbances in several animal models. Many of these disorders, including obesity and auto-immune diseases, have been associated with decreased gut barrier function and consequent increased inflammation. Since A. muciniphila was found to normalize these changes and strengthen the gut barrier function, it is hypothesized that other beneficial effects of A. muciniphila might be caused by this restoration. In search for A. muciniphila's mode of action in enhancing the gut barrier function and promoting health, we reasoned that secreted components or cell envelope components of A. muciniphila are interesting candidates as they can potentially reach and interact with the epithelial barrier. In this review, we focus on the potential mechanisms through which A. muciniphila can exert its beneficial effects on the host by the production of extracellular and secreted proteins, metabolites and cell envelope components. These products have been studied in isolation for their structure, signaling capacity, and in some cases, also for their effects in preclinical models. This includes the protein known as Amuc_1100, which we here rename as pilus-associated signaling (PAS) protein , the P9 protein encoded by Amuc_1631, the short-chain fatty acids acetate and propionate, and cell envelope components, such as phosphatidylethanolamine and peptidoglycan.
Collapse
Affiliation(s)
- Anneleen Segers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
6
|
Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut. Nat Microbiol 2023; 8:424-440. [PMID: 36759753 PMCID: PMC9981464 DOI: 10.1038/s41564-023-01326-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila-host interactions and support the role of host genetics as a determinant of responses to gut microbes.
Collapse
|
7
|
Kristoffersen V, Jenssen M, Jawad HR, Isaksson J, Hansen EH, Rämä T, Hansen KØ, Andersen JH. Two Novel Lyso-Ornithine Lipids Isolated from an Arctic Marine Lacinutrix sp. Bacterium. Molecules 2021; 26:molecules26175295. [PMID: 34500726 PMCID: PMC8434205 DOI: 10.3390/molecules26175295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Lacinutrix genus was discovered in 2005 and includes 12 Gram-negative bacterial species. To the best of our knowledge, the secondary metabolite production potential of this genus has not been explored before, and examination of Lacinutrix species may reveal novel chemistry. As part of a screening project of Arctic marine bacteria, the Lacinutrix sp. strain M09B143 was cultivated, extracted, fractionated and tested for antibacterial and cytotoxic activities. One fraction had antibacterial activity and was subjected to mass spectrometry analysis, which revealed two compounds with elemental composition that did not match any known compounds in databases. This resulted in the identification and isolation of two novel isobranched lyso-ornithine lipids, whose structures were elucidated by mass spectrometry and NMR spectroscopy. Lyso-ornithine lipids consist of a 3-hydroxy fatty acid linked to the alpha amino group of an ornithine amino acid through an amide bond. The fatty acid chains were determined to be iso-C15:0 (1) and iso-C16:0 (2). Compound 1 was active against the Gram-positive S. agalactiae, while 2 showed cytotoxic activity against A2058 human melanoma cells.
Collapse
Affiliation(s)
- Venke Kristoffersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
- Correspondence:
| | - Marte Jenssen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Heba Raid Jawad
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Johan Isaksson
- Department of Chemistry, Faculty of Natural Sciences, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway;
| | - Espen H. Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Teppo Rämä
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Kine Ø. Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| |
Collapse
|
8
|
Ding S, Bale NJ, Hopmans EC, Villanueva L, Arts MGI, Schouten S, Sinninghe Damsté JS. Lipidomics of Environmental Microbial Communities. II: Characterization Using Molecular Networking and Information Theory. Front Microbiol 2021; 12:659315. [PMID: 34322097 PMCID: PMC8311935 DOI: 10.3389/fmicb.2021.659315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Structurally diverse, specialized lipids are crucial components of microbial membranes and other organelles and play essential roles in ecological functioning. The detection of such lipids in the environment can reveal not only the occurrence of specific microbes but also the physicochemical conditions to which they are adapted to. Traditionally, liquid chromatography coupled with mass spectrometry allowed for the detection of lipids based on chromatographic separation and individual peak identification, resulting in a limited data acquisition and targeting of certain lipid groups. Here, we explored a comprehensive profiling of microbial lipids throughout the water column of a marine euxinic basin (Black Sea) using ultra high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). An information theory framework combined with molecular networking based on the similarity of the mass spectra of lipids enabled us to capture lipidomic diversity and specificity in the environment, identify novel lipids, differentiate microbial sources within a lipid group, and discover potential biomarkers for biogeochemical processes. The workflow presented here allows microbial ecologists and biogeochemists to process quickly and efficiently vast amounts of lipidome data to understand microbial lipids characteristics in ecosystems.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Milou G. I. Arts
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
| | - Stefan Schouten
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Dokwal D, Romsdahl TB, Kunz DA, Alonso AP, Dickstein R. Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules. PLANT PHYSIOLOGY 2021; 185:1847-1859. [PMID: 33793933 PMCID: PMC8133537 DOI: 10.1093/plphys/kiaa115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/13/2020] [Indexed: 05/12/2023]
Abstract
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization-mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization-mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.
Collapse
Affiliation(s)
- Dhiraj Dokwal
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Trevor B Romsdahl
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Daniel A Kunz
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
| | - Ana Paula Alonso
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
- Author for communication:
| |
Collapse
|
10
|
Trimethylornithine Membrane Lipids: Discovered in Planctomycetes and Identified in Diverse Environments. Metabolites 2021; 11:metabo11010049. [PMID: 33445571 PMCID: PMC7828035 DOI: 10.3390/metabo11010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Intact polar membrane lipids (IPLs) are the building blocks of all cell membranes. There is a wide range of phosphorus-free IPL structures, including amino acid containing IPLs, that can be taxonomically specific. Trimethylornithine membrane lipids (TMOs) were discovered in northern wetland Planctomycete species that were isolated and described in the last decade. The trimethylated terminal nitrogen moiety of the ornithine amino acid in the TMO structure gives the lipid a charged polar head group, similar to certain phospholipids. Since their discovery, TMOs have been identified in various other recently described northern latitude Planctomycete species, and in diverse environments including tundra soil, a boreal eutrophic lake, meso-oligotrophic lakes, and hot springs. The majority of environments or enrichment cultures in which TMOs have been observed include predominately heterotrophic microbial communities involved in the degradation of recalcitrant material and/or low oxygen methanogenic conditions at primarily northern latitudes. Other ecosystems occupied with microbial communities that possess similar metabolic pathways, such as tropical peatlands or coastal salt marshes, may include TMO producing Planctomycetes as well, further allowing these lipids to potentially be used to understand microbial community responses to environmental change in a wide range of systems. The occurrence of TMOs in hot springs indicates that these unique lipids could have broad environmental distribution with different specialized functions. Opportunities also exist to investigate the application of TMOs in microbiome studies, including forensic necrobiomes. Further environmental and microbiome lipidomics research involving TMOs will help reveal the evolution, functions, and applications of these unique membrane lipids.
Collapse
|
11
|
Hu Y, Cronan JE. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nat Commun 2020; 11:5598. [PMID: 33154364 PMCID: PMC7645780 DOI: 10.1038/s41467-020-19251-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Pimelic acid, a seven carbon α,ω-dicarboxylic acid (heptanedioic acid), is known to provide seven of the ten biotin carbon atoms including all those of the valeryl side chain. Distinct pimelate synthesis pathways were recently elucidated in Escherichia coli and Bacillus subtilis where fatty acid synthesis plus dedicated biotin enzymes produce the pimelate moiety. In contrast, the α-proteobacteria which include important plant and mammalian pathogens plus plant symbionts, lack all of the known pimelate synthesis genes and instead encode bioZ genes. Here we report a pathway in which BioZ proteins catalyze a 3-ketoacyl-acyl carrier protein (ACP) synthase III-like reaction to produce pimeloyl-ACP with five of the seven pimelate carbon atoms being derived from glutaryl-CoA, an intermediate in lysine degradation. Agrobacterium tumefaciens strains either deleted for bioZ or which encode a BioZ active site mutant are biotin auxotrophs, as are strains defective in CaiB which catalyzes glutaryl-CoA synthesis from glutarate and succinyl-CoA.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Pacheco AR, Segrè D. A multidimensional perspective on microbial interactions. FEMS Microbiol Lett 2020; 366:5513995. [PMID: 31187139 PMCID: PMC6610204 DOI: 10.1093/femsle/fnz125] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
Beyond being simply positive or negative, beneficial or inhibitory, microbial interactions can involve a diverse set of mechanisms, dependencies and dynamical properties. These more nuanced features have been described in great detail for some specific types of interactions, (e.g. pairwise metabolic cross-feeding, quorum sensing or antibiotic killing), often with the use of quantitative measurements and insight derived from modeling. With a growing understanding of the composition and dynamics of complex microbial communities for human health and other applications, we face the challenge of integrating information about these different interactions into comprehensive quantitative frameworks. Here, we review the literature on a wide set of microbial interactions, and explore the potential value of a formal categorization based on multidimensional vectors of attributes. We propose that such an encoding can facilitate systematic, direct comparisons of interaction mechanisms and dependencies, and we discuss the relevance of an atlas of interactions for future modeling and rational design efforts.
Collapse
Affiliation(s)
- Alan R Pacheco
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, 24 Cummington Mall, Boston, MA, 02215, USA
| | - Daniel Segrè
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, 24 Cummington Mall, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Department of Biology and Department of Physics, Boston University, 24 Cummington Mall, Boston, MA, 02215, USA
| |
Collapse
|
13
|
Paix B, Carriot N, Barry-Martinet R, Greff S, Misson B, Briand JF, Culioli G. A Multi-Omics Analysis Suggests Links Between the Differentiated Surface Metabolome and Epiphytic Microbiota Along the Thallus of a Mediterranean Seaweed Holobiont. Front Microbiol 2020; 11:494. [PMID: 32269559 PMCID: PMC7111306 DOI: 10.3389/fmicb.2020.00494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/06/2020] [Indexed: 11/13/2022] Open
Abstract
Marine macroalgae constitute an important living resource in marine ecosystems and complex ecological interactions occur at their surfaces with microbial communities. In this context, the present study aimed to investigate how the surface metabolome of the algal holobiont Taonia atomaria could drive epiphytic microbiota variations at the thallus scale. First, a clear discrimination was observed between algal surface, planktonic and rocky prokaryotic communities. These data strengthened the hypothesis of an active role of the algal host in the selection of epiphytic communities. Moreover, significant higher epibacterial density and α-diversity were found at the basal algal parts compared to the apical ones, suggesting a maturation gradient of the community along the thallus. In parallel, a multiplatform mass spectrometry-based metabolomics study, using molecular networking to annotate relevant metabolites, highlighted a clear chemical differentiation at the algal surface along the thallus with similar clustering as for microbial communities. In that respect, higher amounts of sesquiterpenes, phosphatidylcholines (PCs), and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanines (DGTAs) were observed at the apical regions while dimethylsulfoniopropionate (DMSP) and carotenoids were predominantly found at the basal parts of the thalli. A weighted UniFrac distance-based redundancy analysis linking the metabolomics and metabarcoding datasets indicated that these surface compounds, presumably of algal origin, may drive the zonal variability of the epibacterial communities. As only few studies were focused on microbiota and metabolome variation along a single algal thallus, these results improved our understanding about seaweed holobionts. Through this multi-omics approach at the thallus scale, we suggested a plausible scenario where the chemical production at the surface of T. atomaria, mainly induced by the algal physiology, could explain the specificity and the variations of the surface microbiota along the thallus.
Collapse
Affiliation(s)
- Benoît Paix
- EA 4323, Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, Toulon, France
| | - Nathan Carriot
- EA 4323, Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, Toulon, France
| | - Raphaëlle Barry-Martinet
- EA 4323, Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, Toulon, France
| | - Stéphane Greff
- UMR 7263, Aix Marseille Université, CNRS, IRD, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
| | - Benjamin Misson
- UMR 7294, Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, Marseille, France
| | - Jean-François Briand
- EA 4323, Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, Toulon, France
| | - Gérald Culioli
- EA 4323, Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, Toulon, France
| |
Collapse
|
14
|
Greffe VRG, Michiels J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol 2020; 104:3757-3770. [PMID: 32170388 DOI: 10.1007/s00253-020-10501-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth-promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants. KEY POINTS: Desiccation-induced damage affects most major macromolecules in bacteria. Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms. Sensitivity to drying severely hampers inoculant quality.
Collapse
Affiliation(s)
- Vincent Robert Guy Greffe
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
15
|
Chen B, Zhang G, Li P, Yang J, Guo L, Benning C, Wang X, Zhao J. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:155-171. [PMID: 31161718 PMCID: PMC6920143 DOI: 10.1111/pbi.13183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 05/09/2023]
Abstract
It has been reported that lipid biosynthesis in plant host root cells plays critical roles in legume-fungal or -rhizobial symbioses, but little is known about its regulatory mechanism in legume-rhizobia interaction. Soybean WRINKLED1 (WRI1) a and b, with their alternative splicing (AS) products a' and b', are highly expressed in developing seeds and nodules, but their functions in soybean nodulation are not known. GmWRI1a and b differently promoted triacylglycerol (TAG) accumulation in both Arabidopsis wild-type and wri1 mutant seeds and when they ectopically expressed in the soybean hairy roots. Transcriptome analysis revealed that 15 genes containing AW boxes in their promoters were targeted by GmWRI1s, including genes involved in glycolysis, fatty acid (FA) and TAG biosynthesis. GmWRI1a, GmWRI1b and b' differentially transactivated most targeted genes. Overexpression of GmWRI1s affected phospholipid and galactolipid synthesis, soluble sugar and starch contents and led to increased nodule numbers, whereas GmWRI1 knockdown hairy roots interfered root glycolysis and lipid biosynthesis and resulted in fewer nodules. These phenomena in GmWRI1 mutants coincided with the altered expression of nodulation genes. Thus, GmWRI1-regulated starch degradation, glycolysis and lipid biosynthesis were critical for nodulation. GmWRI1 mutants also altered auxin and other hormone-related biosynthesis and hormone-related genes, by which GmWRI1s may affect nodule development. The study expands the views for pleiotropic effects of WRI1s in regulating soybean seed filling and root nodulation.
Collapse
Affiliation(s)
- Beibei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Christoph Benning
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Xuemin Wang
- Department of BiologyUniversity of MissouriSt. LouisMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
16
|
Chamberlain CA, Hatch M, Garrett TJ. Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC-HRMS. Anal Bioanal Chem 2019; 411:4807-4818. [PMID: 30740635 DOI: 10.1007/s00216-019-01639-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Diseases of oxalate, such as nephrolithiasis and primary hyperoxaluria, affect a significant portion of the US population and have limited treatment options. Oxalobacter formigenes, an obligate oxalotrophic bacterium in the mammalian intestine, has generated great interest as a potential probiotic or therapeutic treatment for oxalate-related conditions due to its ability to degrade both exogenous (dietary) and endogenous (metabolic) oxalate, lowering the risk of hyperoxaluria/hyperoxalemia. Although all oxalotrophs degrade dietary oxalate, Oxalobacter formigenes is the only species shown to initiate intestinal oxalate secretion to draw upon endogenous, circulating oxalate for consumption. Evidence suggests that Oxalobacter regulates oxalate transport proteins in the intestinal epithelium using an unidentified secreted bioactive compound, but the mechanism of this function remains elusive. It is essential to gain an understanding of the biochemical relationship between Oxalobacter and the host intestinal epithelium for this microbe to progress as a potential remedy for oxalate diseases. This investigation includes the first profiling of the metabolome and lipidome of Oxalobacter formigenes, specifically the human strain HC1 and rat strain OxWR, the only two strains shown thus far to initiate net intestinal oxalate secretion across native gut epithelia. This study was performed using untargeted and targeted metabolomics and lipidomics methodologies utilizing ultra-high-performance liquid chromatography-mass spectrometry. We report our findings that the metabolic profiles of these strains, although largely conserved, show significant differences in their expression of many compounds. Several strain-specific features were also detected. Discussed are trends in the whole metabolic profile as well as in individual features, both identified and unidentified. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Casey A Chamberlain
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Kim SK, Park SJ, Li XH, Choi YS, Im DS, Lee JH. Bacterial ornithine lipid, a surrogate membrane lipid under phosphate-limiting conditions, plays important roles in bacterial persistence and interaction with host. Environ Microbiol 2018; 20:3992-4008. [PMID: 30252196 DOI: 10.1111/1462-2920.14430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Ornithine lipids (OLs) are bacteria-specific lipids that are found in the outer membrane of Gram (-) bacteria and increase as surrogates of phospholipids under phosphate-limited environmental conditions. We investigated the effects of OL increase in bacterial membranes on pathogen virulence and the host immune response. In Pseudomonas aeruginosa, we increased OL levels in membranes by overexpressing the OL-synthesizing operon (olsBA). These increases changed the bacterial surface charge and hydrophobicity, which reduced bacterial susceptibility to antibiotics and antimicrobial peptides (AMPs), interfered with the binding of macrophages to bacterial cells and enhanced bacterial biofilm formation. When grown under low phosphate conditions, P. aeruginosa became more persistent in the treatment of antibiotics and AMPs in an olsBA-dependent manner. While OLs increased persistence, they attenuated P. aeruginosa virulence; in host cells, they reduced the production of inflammatory factors (iNOS, COX-2, PGE2 and nitric oxide) and increased intracellular Ca2+ release. Exogenously added OL had similar effects on P. aeruginosa and host cells. Our results suggest that bacterial OL plays important roles in bacteria-host interaction in a way that enhances bacterial persistence and develops chronic adaptation to infection.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Soo-Jin Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Yu-Sang Choi
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Dong-Soon Im
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| |
Collapse
|
18
|
Epihov DZ, Batterman SA, Hedin LO, Leake JR, Smith LM, Beerling DJ. N 2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic? Proc Biol Sci 2017; 284:20170370. [PMID: 28814651 PMCID: PMC5563791 DOI: 10.1098/rspb.2017.0370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/12/2017] [Indexed: 11/30/2022] Open
Abstract
Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation.
Collapse
Affiliation(s)
- Dimitar Z Epihov
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sarah A Batterman
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds LS2 9JT, UK
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Lars O Hedin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lisa M Smith
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 2016; 47 Suppl 1:86-98. [PMID: 27825606 PMCID: PMC5156507 DOI: 10.1016/j.bjm.2016.10.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
The microorganism–microorganism or microorganism–host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial–host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Manuella Nóbrega Dourado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Welington Luiz Araújo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Damsté JSS. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:739-750. [PMID: 27281845 DOI: 10.1002/rcm.7503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs have been observed to be involved in response to changing environmental conditions in various species of bacteria. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has become the primary method for analysis of IPLs. Many glycerol-free amino acid containing membrane lipids (AA-IPLs), which are structurally different than abundant aminophospholipids, have not been characterized using HPLC/MS. This results in many lipids remaining unrecognized in IPL analysis of microbial cultures and environmental samples, hampering the study of their occurrence and functionality. METHODS We analyzed the amino acid containing IPLs of a number of bacteria (i.e. Gluconobacter cerinus, Cyclobacterium marinus, Rhodobacter sphaeroides, and Pedobacter heparinus) in order to decipher fragmentation pathways, and explore potential novel lipid structures using HPLC/electrospray ionization ion trap MS (HPLC/ESI-IT-MS) and HPLC/high-resolution MS (HPLC/HRMS). RESULTS We report differentiation between glutamine and lysine lipids with the same nominal masses, novel MS fragmentation pathways of cytolipin, the lipopeptides cerilipin and flavolipin, head group hydroxylated ornithine lipids, and the novel identification of cerilipin with a hydroxylated fatty acid. CONCLUSIONS Non-glycerol AA lipids can be readily recognized as their fragmentation follows a clear pattern with initial dehydration or other loss from the head group, followed by fatty acid losses resulting in a diagnostic fragment ion. Higher level MSn and HRMS are valuable tools in characterizing AA lipid head group structural components.
Collapse
|
21
|
Granafei S, Losito I, Trotta M, Italiano F, de Leo V, Agostiano A, Palmisano F, Cataldi TRI. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)). Anal Chim Acta 2015; 903:110-20. [PMID: 26709304 DOI: 10.1016/j.aca.2015.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 11/15/2022]
Abstract
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides.
Collapse
Affiliation(s)
- Sara Granafei
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Massimo Trotta
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Francesca Italiano
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Vincenzo de Leo
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Angela Agostiano
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy.
| |
Collapse
|
22
|
Smith AM, Harrison JS, Grube CD, Sheppe AEF, Sahara N, Ishii R, Nureki O, Roy H. tRNA-dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum. Mol Microbiol 2015; 98:681-93. [PMID: 26235234 DOI: 10.1111/mmi.13150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
Aminoacyl-phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala-PG and a novel alanylated lipid, Alanyl-diacylglycerol (Ala-DAG). Ala-DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala-PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.
Collapse
Affiliation(s)
- Angela M Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Jesse S Harrison
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Christopher D Grube
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Austin E F Sheppe
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Nahoko Sahara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan.,RIKEN Advanced Science Institute, Wako-shi, 351-0198, Saitama, Japan
| | - Ryohei Ishii
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan.,RIKEN Advanced Science Institute, Wako-shi, 351-0198, Saitama, Japan
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan.,RIKEN Advanced Science Institute, Wako-shi, 351-0198, Saitama, Japan
| | - Hervé Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| |
Collapse
|
23
|
Senik SV, Maloshenok LG, Kotlova ER, Shavarda AL, Moiseenko KV, Bruskin SA, Koroleva OV, Psurtseva NV. Diacylglyceryltrimethylhomoserine content and gene expression changes triggered by phosphate deprivation in the mycelium of the basidiomycete Flammulina velutipes. PHYTOCHEMISTRY 2015; 117:34-42. [PMID: 26057227 DOI: 10.1016/j.phytochem.2015.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/16/2015] [Accepted: 05/27/2015] [Indexed: 05/08/2023]
Abstract
Diacylglyceryltrimethylhomoserines (DGTS) are betaine-type lipids that are phosphate-free analogs of phosphatidylcholines (PC). DGTS are abundant in some bacteria, algae, primitive vascular plants and fungi. In this study, we report inorganic phosphate (Pi) deficiency-induced DGTS synthesis in the basidial fungus Flammulina velutipes (Curt.: Fr.) Sing. We present results of an expression analysis of the BTA1 gene that codes for betaine lipid synthase and two genes of PC biosynthesis (CHO2 and CPT1) during phosphate starvation of F. velutipes culture. We demonstrate that FvBTA1 gene has increased transcript abundance under phosphate starvation. Despite depletion in PC, both CHO2 and CPT1 were determined to have increased expression. We also describe the deduced amino acid sequence and genomic structure of the BTA1 gene in F. velutipes. Phylogenetic relationships between putative orthologs of BTA1 proteins of basidiomycete fungi are discussed.
Collapse
Affiliation(s)
- Svetlana V Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., St. Petersburg 197376, Russia.
| | - Liliya G Maloshenok
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str., Moscow 119991, Russia
| | - Ekaterina R Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., St. Petersburg 197376, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., St. Petersburg 197376, Russia
| | - Konstantin V Moiseenko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 33 Leninsky pr., Moscow 117071, Russia
| | - Sergey A Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str., Moscow 119991, Russia
| | - Olga V Koroleva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 33 Leninsky pr., Moscow 117071, Russia
| | - Nadezhda V Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., St. Petersburg 197376, Russia
| |
Collapse
|
24
|
Moore EK, Hopmans EC, Rijpstra WIC, Sánchez-Andrea I, Villanueva L, Wienk H, Schoutsen F, Stams AJM, Sinninghe Damsté JS. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Front Microbiol 2015; 6:637. [PMID: 26175720 PMCID: PMC4484230 DOI: 10.3389/fmicb.2015.00637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/12/2015] [Indexed: 01/08/2023] Open
Abstract
Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress response of soil bacteria.
Collapse
Affiliation(s)
- Eli K. Moore
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | - W. Irene C. Rijpstra
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | | | - Laura Villanueva
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | - Hans Wienk
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrecht, Netherlands
| | | | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
- Faculty of Geosciences, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
25
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
26
|
Semeniuk A, Sohlenkamp C, Duda K, Hölzl G. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J Biol Chem 2014; 289:10104-14. [PMID: 24558041 PMCID: PMC3974981 DOI: 10.1074/jbc.m113.519298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/14/2014] [Indexed: 12/31/2022] Open
Abstract
Glycolipids are mainly found in phototrophic organisms (like plants and cyanobacteria), in Gram-positive bacteria, and a few other bacterial phyla. Besides the function as bulk membrane lipids, they often play a role under phosphate deprivation as surrogates for phospholipids. The Gram-negative Agrobacterium tumefaciens accumulates four different glycolipids under phosphate deficiency, including digalactosyl diacylglycerol and glucosylgalactosyl diacylglycerol synthesized by a processive glycosyltransferase. The other two glycolipids have now been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as monoglucosyl diacylglycerol and glucuronosyl diacylglycerol. These two lipids are synthesized by a single promiscuous glycosyltransferase encoded by the ORF atu2297, with UDP-glucose or UDP-glucuronic acid as sugar donors. The transfer of sugars differing in their chemistry is a novel feature not observed before for lipid glycosyltransferases. Furthermore, this enzyme is the first glucuronosyl diacylglycerol synthase isolated. Deletion mutants of Agrobacterium lacking monoglucosyl diacylglycerol and glucuronosyl diacylglycerol or all glycolipids are not impaired in growth or virulence during infection of tobacco leaf discs. Our data suggest that the four glycolipids and the nonphospholipid diacylglyceryl trimethylhomoserine can mutually replace each other during phosphate deprivation. This redundancy of different nonphospholipids may represent an adaptation mechanism to enhance the competitiveness in nature.
Collapse
Affiliation(s)
- Adrian Semeniuk
- From the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany
| | - Christian Sohlenkamp
- the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos CP62210, Mexico, and
| | - Katarzyna Duda
- the Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Georg Hölzl
- From the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
27
|
Aktas M, Danne L, Möller P, Narberhaus F. Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:109. [PMID: 24723930 PMCID: PMC3972451 DOI: 10.3389/fpls.2014.00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/07/2014] [Indexed: 05/25/2023]
Abstract
Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidylcholine (PC) and cardiolipin, and ornithine lipids (OLs). Under phosphate-limited conditions, the membrane composition shifts to phosphate-free lipids like glycolipids, OLs and a betaine lipid. Remarkably, PC and OLs have opposing effects on virulence of A. tumefaciens. OL-lacking A. tumefaciens mutants form tumors on the host plant earlier than the wild type suggesting a reduced host defense response in the absence of OLs. In contrast, A. tumefaciens is compromised in tumor formation in the absence of PC. In general, PC is a rare component of bacterial membranes but amount to ~22% of all PLs in A. tumefaciens. PC biosynthesis occurs via two pathways. The phospholipid N-methyltransferase PmtA methylates PE via the intermediates monomethyl-PE and dimethyl-PE to PC. In the second pathway, the membrane-integral enzyme PC synthase (Pcs) condenses choline with CDP-diacylglycerol to PC. Apart from the virulence defect, PC-deficient A. tumefaciens pmtA and pcs double mutants show reduced motility, enhanced biofilm formation and increased sensitivity towards detergent and thermal stress. In summary, there is cumulative evidence that the membrane lipid composition of A. tumefaciens is critical for agrobacterial physiology and tumor formation.
Collapse
Affiliation(s)
| | | | | | - Franz Narberhaus
- *Correspondence: Franz Narberhaus, Microbial Biology, Department for Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany e-mail:
| |
Collapse
|
28
|
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM. The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules. PLoS One 2013; 8:e74717. [PMID: 24098345 PMCID: PMC3788101 DOI: 10.1371/journal.pone.0074717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/04/2013] [Indexed: 11/25/2022] Open
Abstract
In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | | | | | - Ángeles Hidalgo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - José E. Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - José M. Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| |
Collapse
|
29
|
Novel mono-, di-, and trimethylornithine membrane lipids in northern wetland planctomycetes. Appl Environ Microbiol 2013; 79:6874-84. [PMID: 23995937 DOI: 10.1128/aem.02169-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Northern peatlands represent a significant global carbon store and commonly originate from Sphagnum moss-dominated wetlands. These ombrotrophic ecosystems are rain fed, resulting in nutrient-poor, acidic conditions. Members of the bacterial phylum Planctomycetes are highly abundant and appear to play an important role in the decomposition of Sphagnum-derived litter in these ecosystems. High-performance liquid chromatography coupled to high-resolution accurate-mass mass spectrometry (HPLC-HRAM/MS) analysis of lipid extracts of four isolated planctomycetes from wetlands of European north Russia revealed novel ornithine membrane lipids (OLs) that are mono-, di-, and trimethylated at the ε-nitrogen position of the ornithine head group. Nuclear magnetic resonance (NMR) analysis of the isolated trimethylornithine lipid confirmed the structural identification. Similar fatty acid distributions between mono-, di-, and trimethylornithine lipids suggest that the three lipid classes are biosynthetically linked, as in the sequential methylation of the terminal nitrogen in phosphatidylethanolamine to produce phosphatidylcholine. The mono-, di-, and trimethylornithine lipids described here represent the first report of methylation of the ornithine head groups in biological membranes. Various bacteria are known to produce OLs under phosphorus limitation or fatty-acid-hydroxylated OLs under thermal or acid stress. The sequential methylation of OLs, leading to a charged choline-like moiety in the trimethylornithine lipid head group, may be an adaptation to provide membrane stability under acidic conditions without the use of scarce phosphate in nutrient-poor ombrotrophic wetlands.
Collapse
|
30
|
Bélanger L, Charles TC. Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen. BMC Microbiol 2013; 13:132. [PMID: 23758731 PMCID: PMC3687685 DOI: 10.1186/1471-2180-13-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/28/2022] Open
Abstract
Background The Sinorhizobium meliloti ExoS/ChvI two component regulatory system is required for N2-fixing symbiosis and exopolysaccharide synthesis. Orthologous systems are present in other Alphaproteobacteria, and in many instances have been shown to be necessary for normal interactions with corresponding eukaryotic hosts. Only a few transcriptional regulation targets have been determined, and as a result there is limited understanding of the mechanisms that are controlled by the system. Results In an attempt to better define the members of the regulon, we have applied a simple in vitro electrophoretic screen for DNA fragments that are bound by the ChvI response regulator protein. Several putative transcriptional targets were identified and three were further examined by reporter gene fusion experiments for transcriptional regulation. Two were confirmed to be repressed by ChvI, while one was activated by ChvI. Conclusions Our results suggest a role for ChvI as both a direct activator and repressor of transcription. The identities and functions of many of these genes suggest explanations for some aspects of the pleiotropic phenotype of exoS and chvI mutants. This work paves the way for in depth characterization of the ExoS/ChvI regulon and its potential role in directing bacteria-host relationships.
Collapse
Affiliation(s)
- Louise Bélanger
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
31
|
Gibson RA, van der Meer MTJ, Hopmans EC, Reysenbach AL, Schouten S, Sinninghe Damsté JS. Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. GEOBIOLOGY 2013; 11:72-85. [PMID: 23231657 DOI: 10.1111/gbi.12017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep-sea hydrothermal locations. Gene-based culture-independent surveys of the microbial populations of the same vent deposits have shown that microbial populations are different in the two locations and appear to be controlled by the geochemical and geological processes that drive hydrothermal circulation. Large differences in the IPL composition between these two sites are evident. In the ultramafic-hosted RHF, mainly archaeal-IPLs were identified, including those known to be produced by hyperthermophilic Euryarchaeota. More specifically, polyglycosyl derivatives of archaeol and macrocyclic archaeol indicate the presence of hyperthermophilic methanogenic archaea in the vent deposits, which are related to members of the Methanocaldococcaceae or Methanococcaceae. In contrast, bacterial IPLs dominate IPL distributions from LSHF, suggesting that bacteria are more predominant at LSHF than at RHF. Bacterial Diacyl glycerol (DAG) IPLs containing phosphocholine, phosphoethanolamine or phosphoglycerol head groups were identified at both vent fields. In some vent deposits from LSHF ornithine lipids and IPLs containing phosphoaminopentanetetrol head groups were also observed. By comparison with previously characterized bacterial communities at the sites, it is likely the DAG-IPLs observed derive from Epsilon- and Gammaproteobacteria. Variation in the relative amounts of archaeal versus bacterial IPLs appears to indicate differences in the microbial community between vent sites. Overall, IPL distributions appear to be consistent with gene-based surveys.
Collapse
Affiliation(s)
- R A Gibson
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Vences-Guzmán MÁ, Guan Z, Bermúdez-Barrientos JR, Geiger O, Sohlenkamp C. Agrobacteria lacking ornithine lipids induce more rapid tumour formation. Environ Microbiol 2012; 15:895-906. [PMID: 22958119 DOI: 10.1111/j.1462-2920.2012.02867.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/02/2012] [Accepted: 08/04/2012] [Indexed: 01/23/2023]
Abstract
Ornithine lipids (OLs) are phosphorus-free membrane lipids that are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. It has been shown that OLs can be hydroxylated within the amide-linked fatty acyl moiety, the secondary fatty acyl moiety or within the ornithine moiety. These modifications have been related to increased stress tolerance and symbiotic proficiency in different organisms such as Rhizobium tropici or Burkholderia cenocepacia. Analysing the membrane lipid composition of the plant pathogen Agrobacterium tumefaciens we noticed that it forms two different OLs. In the present work we studied if OLs play a role in stress tolerance and pathogenicity in A. tumefaciens. Mutants deficient in the OLs biosynthesis genes olsB or olsE were constructed and characterized. They either completely lack OLs (ΔolsB) or only form the unmodified OL (ΔolsE). Here we present a characterization of both OL mutants under stress conditions and in a plant transformation assay using potato tuber discs. Surprisingly, the lack of agrobacterial OLs promotes earlier tumour formation on the plant host.
Collapse
Affiliation(s)
- Miguel Ángel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | |
Collapse
|
33
|
Senik SV, Kotlova ER, Novikov AV, Shavarda AL, Psurtseva NV. Formation of diacylglyceryltrimethylhomoserines in the surface culture of the basidiomycete Flammulina velutipes. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712040145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Geske T, Vom Dorp K, Dörmann P, Hölzl G. Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 2012; 23:69-80. [PMID: 22923441 DOI: 10.1093/glycob/cws124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphate deficiency is characteristic for many natural habitats, resulting in different physiological responses in plants and bacteria including the replacement of phospholipids by glycolipids and other phosphorous-free lipids. The plant pathogenic bacterium Agrobacterium tumefaciens, which is free of glycolipids under full nutrition, harbors an open reading frame (ORF) coding for a processive glycosyltransferase (named as Pgt). This glycosyltransferase was previously shown to synthesize glucosylgalactosyldiacylglycerol (GGD) and digalactosyldiacylglycerol (DGD) after heterologous expression. The native function of this enzyme and the conditions for its activation remained unknown. We show here that Pgt is active under phosphate deprivation synthesizing GGD and DGD in Agrobacterium. A corresponding deletion mutant (Δpgt) is free of these two glycolipids. Glycolipid accumulation is mainly regulated by substrate (diacylglycerol) availability. Diacylglycerol and the total fatty acid pool are characterized by an altered acyl composition in dependence of the phosphate status with a strong decrease of 18:1 and concomitant increase of 19:0 cyclo during phosphate deprivation. Furthermore, Agrobacterium accumulates two additional unknown glycolipids and diacylglycerol trimethylhomoserine (DGTS) during phosphate deprivation. Accumulation of all these lipids is accompanied by a reduction in phospholipids from 75 to 45% in the wild type. A further non-phosphorous lipid, ornithine lipid, was not increased but its degree of hydroxylation was elevated under phosphate deprivation. The lack of GGD and DGD in the Δpgt mutant has no effect on growth and virulence of Agrobacterium, suggesting that these two lipids are functionally replaced by DGTS and the two unknown glycolipids under phosphate deprivation.
Collapse
Affiliation(s)
- Thomas Geske
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | | | | | |
Collapse
|
35
|
Vences-Guzmán MÁ, Geiger O, Sohlenkamp C. Ornithine lipids and their structural modifications: from A to E and beyond. FEMS Microbiol Lett 2012; 335:1-10. [PMID: 22724388 DOI: 10.1111/j.1574-6968.2012.02623.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/26/2022] Open
Abstract
Ornithine lipids (OLs) are phosphorus-free membrane lipids that are widespread in eubacteria, but absent from archaea and eukaryotes. They contain a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of the amino acid ornithine. A second fatty acyl group is ester-linked to the 3-hydroxy position of the first fatty acid. About 25% of the bacterial species whose genomes have been sequenced are predicted to have the capacity to form OLs. Distinct OL hydroxylations have been described in the ester-linked fatty acid, the amide-linked fatty acid, and the ornithine moiety. These modifications often seem to form part of a bacterial stress response to changing environmental conditions, allowing the bacteria to adjust membrane properties by simply modifying already existing membrane lipids without the need to synthesize new lipids.
Collapse
Affiliation(s)
- Miguel Á Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
36
|
Solís-Oviedo RL, Martínez-Morales F, Geiger O, Sohlenkamp C. Functional and topological analysis of phosphatidylcholine synthase from Sinorhizobium meliloti. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:573-81. [DOI: 10.1016/j.bbalip.2012.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
37
|
Zhang X, Tamot B, Hiser C, Reid GE, Benning C, Ferguson-Miller S. Cardiolipin deficiency in Rhodobacter sphaeroides alters the lipid profile of membranes and of crystallized cytochrome oxidase, but structure and function are maintained. Biochemistry 2011; 50:3879-90. [PMID: 21476578 DOI: 10.1021/bi101702c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many recent studies highlight the importance of lipids in membrane proteins, including in the formation of well-ordered crystals. To examine the effect of changes in one lipid, cardiolipin, on the lipid profile and the production, function, and crystallization of an intrinsic membrane protein, cytochrome c oxidase, we mutated the cardiolipin synthase (cls) gene of Rhodobacter sphaeroides, causing a >90% reduction in cardiolipin content in vivo and selective changes in the abundances of other lipids. Under these conditions, a fully native cytochrome c oxidase (CcO) was produced, as indicated by its activity, spectral properties, and crystal characteristics. Analysis by MALDI tandem mass spectrometry (MS/MS) revealed that the cardiolipin level in CcO crystals, as in the membranes, was greatly decreased. Lipid species present in the crystals were directly analyzed for the first time using MS/MS, documenting their identities and fatty acid chain composition. The fatty acid content of cardiolipin in R. sphaeroides CcO (predominantly 18:1) differs from that in mammalian CcO (18:2). In contrast to the cardiolipin dependence of mammalian CcO activity, major depletion of cardiolipin in R. sphaeroides did not impact any aspect of CcO structure or behavior, suggesting a greater tolerance of interchange of cardiolipin with other lipids in this bacterial system.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | | | | | |
Collapse
|
38
|
Keck M, Gisch N, Moll H, Vorhölter FJ, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Holst O. Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56. J Biol Chem 2011; 286:12850-9. [PMID: 21321121 PMCID: PMC3075632 DOI: 10.1074/jbc.m110.194209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/11/2011] [Indexed: 11/06/2022] Open
Abstract
The gram-negative myxobacterium Sorangium cellulosum So ce56 bears the largest bacterial genome published so far, coding for nearly 10,000 genes. Careful analysis of this genome data revealed that part of the genes coding for the very well conserved biosynthesis of lipopolysaccharides (LPS) are missing in this microbe. Biochemical analysis gave no evidence for the presence of LPS in the membranes of So ce56. By analyzing the lipid composition of its outer membrane sphingolipids were identified as the major lipid class, together with ornithine-containing lipids (OL) and ether lipids. A detailed analysis of these lipids resulted in the identification of more than 50 structural variants within these three classes, which possessed several interesting properties regarding to LPS replacement, mediators in myxobacterial differentiation, as well as potential bioactive properties. The sphingolipids with the basic structure C9-methyl-C(20)-sphingosine possessed as an unusual trait C9-methylation, which is common to fungi but highly uncommon to bacteria. Such sphingolipids have not been found in bacteria before, and they may have a function in myxobacterial development. The OL, also identified in myxobacteria for the first time, contained acyloxyacyl groups, which are also characteristic for LPS and might replace those in certain functions. Finally, the ether lipids may serve as biomarkers in myxobacterial development.
Collapse
Affiliation(s)
- Matthias Keck
- From the Department of Proteome and Metabolome Research, Faculty of Biology and
| | | | | | | | - Klaus Gerth
- the Research Group Microbial Drugs, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Uwe Kahmann
- ZUD in the IIT GmbH, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Manfred Lissel
- From the Department of Proteome and Metabolome Research, Faculty of Biology and
| | | | - Karsten Niehaus
- From the Department of Proteome and Metabolome Research, Faculty of Biology and
| | - Otto Holst
- Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/c, 23845 Borstel, Germany, and
| |
Collapse
|
39
|
Bühring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS, Krumholz LR, Hinrichs KU. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. GEOBIOLOGY 2011; 9:166-179. [PMID: 21244620 DOI: 10.1111/j.1472-4669.2010.00268.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations.
Collapse
Affiliation(s)
- S I Bühring
- Department of Geosciences, Universität Bremen, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Vences-Guzmán MÁ, Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara IM, Martínez-Romero E, Geiger O, Sohlenkamp C. Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 2011; 79:1496-514. [PMID: 21205018 DOI: 10.1111/j.1365-2958.2011.07535.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ornithine lipids (OLs) are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increased stress tolerance. Rhizobium tropici, a nodule-forming α-proteobacterium known for its stress tolerance, forms four different OLs. Studies of the function of these OLs have been hampered due to lack of knowledge about their biosynthesis. Here we describe that OL biosynthesis increases under acid stress and that OLs are enriched in the outer membrane. Using a functional expression screen, the OL hydroxylase OlsE was identified, which in combination with the OL hydroxylase OlsC is responsible for the synthesis of modified OLs in R. tropici. Unlike described OL hydroxylations, the OlsE-catalysed hydroxylation occurs within the ornithine moiety. Mutants deficient in OlsE or OlsC and double mutants deficient in OlsC/OlsE were characterized. R. tropici mutants deficient in OlsC-mediated OL hydroxylation are more susceptible to acid and temperature stress. All three mutants lacking OL hydroxylases are affected during symbiosis.
Collapse
Affiliation(s)
- Miguel Á Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
41
|
A processive glycosyltransferase involved in glycolipid synthesis during phosphate deprivation in Mesorhizobium loti. J Bacteriol 2011; 193:1377-84. [PMID: 21239587 DOI: 10.1128/jb.00768-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural habitats are often characterized by a low availability of phosphate. In plants and many bacteria, phosphate deficiency causes different physiological responses, including the replacement of phosphoglycerolipids in the membranes with nonphosphorous lipids. We describe here a processive glycosyltransferase (Pgt) in Mesorhizobium loti (Rhizobiales) involved in the synthesis of di- and triglycosyldiacylglycerols (DGlycD and TGlycD) during phosphate deprivation. Cells of the corresponding Δpgt deletion mutant are deficient in DGlycD and TGlycD. Additional Pgt-independent lipids accumulate in Mesorhizobium after phosphate starvation, including diacylglyceryl trimethylhomoserine (DGTS) and ornithine lipid (OL). The accumulation of the nonphosphorous lipids during phosphate deprivation leads to the reduction of phosphoglycerolipids from 90 to 50%. Nodulation experiments of Mesorhizobium wild type and the Δpgt mutant with its host plant, Lotus japonicus, revealed that DGlycD and TGlycD are not essential for nodulation under phosphate-replete or -deficient conditions. Lipid measurements showed that the Pgt-independent lipids including OL and DGTS accumulate to higher proportions in the Δpgt mutant and therefore might functionally replace DGlycD and TGlycD during phosphate deprivation.
Collapse
|
42
|
Palacios-Chaves L, Conde-Álvarez R, Gil-Ramírez Y, Zúñiga-Ripa A, Barquero-Calvo E, Chacón-Díaz C, Chaves-Olarte E, Arce-Gorvel V, Gorvel JP, Moreno E, de Miguel MJ, Grilló MJ, Moriyón I, Iriarte M. Brucella abortus ornithine lipids are dispensable outer membrane components devoid of a marked pathogen-associated molecular pattern. PLoS One 2011; 6:e16030. [PMID: 21249206 PMCID: PMC3017556 DOI: 10.1371/journal.pone.0016030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022] Open
Abstract
The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.
Collapse
Affiliation(s)
- Leyre Palacios-Chaves
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
- Focal Area Infection Biology, Biozentrum of the University of Basel, Basel, Switzerland
| | - Yolanda Gil-Ramírez
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, INSERM U631, CNRS UMR6102, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, INSERM U631, CNRS UMR6102, Marseille, France
| | - Edgardo Moreno
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San Pedro, Costa Rica
| | - María-Jesús de Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Unidad de Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
43
|
Abstract
Replicon architecture in bacteria is commonly comprised of one indispensable chromosome and several dispensable plasmids. This view has been enriched by the discovery of additional chromosomes, identified mainly by localization of rRNA and/or tRNA genes, and also by experimental demonstration of their requirement for cell growth. The genome of Rhizobium etli CFN42 is constituted by one chromosome and six large plasmids, ranging in size from 184 to 642 kb. Five of the six plasmids are dispensable for cell viability, but plasmid p42e is unusually stable. One possibility to explain this stability would be that genes on p42e carry out essential functions, thus making it a candidate for a secondary chromosome. To ascertain this, we made an in-depth functional analysis of p42e, employing bioinformatic tools, insertional mutagenesis, and programmed deletions. Nearly 11% of the genes in p42e participate in primary metabolism, involving biosynthetic functions (cobalamin, cardiolipin, cytochrome o, NAD, and thiamine), degradation (asparagine and melibiose), and septum formation (minCDE). Synteny analysis and incompatibility studies revealed highly stable replicons equivalent to p42e in content and gene order in other Rhizobium species. A systematic deletion analysis of p42e allowed the identification of two genes (RHE_PE00001 and RHE_PE00024), encoding, respectively, a hypothetical protein with a probable winged helix-turn-helix motif and a probable two-component sensor histidine kinase/response regulator hybrid protein, which are essential for growth in rich medium. These data support the proposal that p42e and its homologous replicons (pA, pRL11, pRLG202, and pR132502) merit the status of secondary chromosomes.
Collapse
|
44
|
Cotner JB, Hall EK, Scott JT, Heldal M. Freshwater Bacteria are Stoichiometrically Flexible with a Nutrient Composition Similar to Seston. Front Microbiol 2010; 1:132. [PMID: 21687767 PMCID: PMC3109486 DOI: 10.3389/fmicb.2010.00132] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/08/2010] [Indexed: 11/13/2022] Open
Abstract
Although aquatic bacteria are assumed to be nutrient-rich, they out-compete other foodweb osmotrophs for nitrogen (N) and phosphorus (P) an apparent contradiction to resource ratio theory. This paradox could be resolved if aquatic bacteria were demonstrated to be nutrient-poor relative other portions of the planktonic food web. In a survey of >120 lakes in the upper Midwest of the USA, the nutrient content of bacteria was lower than previously reported and very similar to the Redfield ratio, with a mean biomass composition of 102:12:1 (C:N:P). Individual freshwater bacterial isolates grown under P-limiting and P-replete conditions had even higher C:P and N:P ratios with a mean community biomass composition ratio of 875C:179N:1P suggesting that individual strains can be extremely nutrient-poor, especially with respect to P. Cell-specific measurements of individual cells from one lake confirmed that low P content could be observed at the community level in natural systems with a mean biomass composition of 259C:69N:1P. Variability in bacterial stoichiometry is typically not recognized in the literature as most studies assume constant and nutrient-rich bacterial biomass composition. We present evidence that bacteria can be extremely P-poor in individual systems and in culture, suggesting that bacteria in freshwater ecosystems can either play a role as regenerators or consumers of inorganic nutrients and that this role could switch depending on the relationship between bacterial biomass stoichiometry and resource stoichiometry. This ability to switch roles between nutrient retention and regeneration likely facilitates processing of terrestrial organic matter in lakes and rivers and has important implications for a wide range of bacterially mediated biogeochemical processes.
Collapse
Affiliation(s)
- James B Cotner
- Department of Ecology, Evolution and Behavior, University of Minnesota St. Paul, MN, USA
| | | | | | | |
Collapse
|
45
|
Aktas M, Wessel M, Hacker S, Klüsener S, Gleichenhagen J, Narberhaus F. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 2010; 89:888-94. [PMID: 20656373 DOI: 10.1016/j.ejcb.2010.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Phosphatidylcholine (PC), a typical eukaryotic membrane phospholipid, is present in only about 10% of all bacterial species, in particular in bacteria interacting with eukaryotes. A number of studies revealed that PC plays a fundamental role in symbiotic and pathogenic microbe-host interactions. Agrobacterium tumefaciens mutants lacking PC are unable to elicit plant tumors. The human pathogens Brucella abortus and Legionella pneumophila require PC for full virulence. The plant symbionts Bradyrhizobium japonicum and Sinorhizobium meliloti depend on wild-type levels of PC to establish an efficient root nodule symbiosis. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (Pcs) pathway. The methylation pathway involves a three-step methylation of phosphatidylethanolamine by at least one phospholipid N-methyltransferase to yield phosphatidylcholine. In the Pcs pathway, choline is condensed directly with CDP-diacylglycerol to form PC. This review focuses on the biosynthetic pathways and the significance of PC in bacteria with an emphasis on plant-microbe interactions.
Collapse
Affiliation(s)
- Meriyem Aktas
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Cloning and functional expression of an MscL ortholog from Rhizobium etli: characterization of a mechanosensitive channel. J Membr Biol 2010; 234:13-27. [PMID: 20177670 DOI: 10.1007/s00232-010-9235-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Rhizobium etli is equipped with several systems to handle both hyper- and hypo-osmotic stress. For adaptation to hypo-osmotic stress, R. etli possesses a single gene with clear homology to MscS, four MscS-like channels and one ortholog of MscL (ReMscL, identity approximately 44% compared to Escherichia coli MscL). We subcloned and expressed the ReMscL channel ortholog from R. etli in E. coli to examine its activity by patch clamp in giant spheroplasts and characterized it at the single-channel level. We obtained evidence that ReMscL prevents the lysis of E. coli null mutant log-phase cells upon a rapid, osmotic downshock and identified a slight pH dependence for ReMscL activation. Here, we describe the facilitation of ReMscL activation by arachidonic acid (AA) and a reversible inhibitory effect of Gd(3+). The results obtained in these experiments suggest a stabilizing effect of micromolar AA and traces of Gd(3+) ions in the partially expanded conformation of the protein. Finally, we discuss a possible correlation between the number of gene paralogs for MS channels and the habitats of several microorganisms. Taken together, our data show that ReMscL may play an important role in free-living rhizobacteria during hypo-osmotic shock in the rhizosphere.
Collapse
|
47
|
Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D'Acqui LP, Solheim B, Turicchia S, Marasco R, Hinrichs KU, Baldi F, Adani F, Daffonchio D. Rock weathering creates oases of life in a High Arctic desert. Environ Microbiol 2010; 12:293-303. [DOI: 10.1111/j.1462-2920.2009.02059.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C. Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 2010; 49:46-60. [DOI: 10.1016/j.plipres.2009.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Boeris P, Liffourrena A, Salvano M, Lucchesi G. Physiological role of phosphatidylcholine in thePseudomonas putidaA ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium. Lett Appl Microbiol 2009; 49:491-6. [DOI: 10.1111/j.1472-765x.2009.02699.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2873-82. [DOI: 10.1016/j.jchromb.2009.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/05/2009] [Accepted: 05/09/2009] [Indexed: 02/04/2023]
|