1
|
Teulet A, Camuel A, Perret X, Giraud E. The Versatile Roles of Type III Secretion Systems in Rhizobia-Legume Symbioses. Annu Rev Microbiol 2022; 76:45-65. [PMID: 35395168 DOI: 10.1146/annurev-micro-041020-032624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Albin Teulet
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France;
| | - Alicia Camuel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France; .,PHIM Plant Health Institute, IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France
| | - Xavier Perret
- Laboratory of Microbial Genetics, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France; .,PHIM Plant Health Institute, IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France
| |
Collapse
|
2
|
Jorrin B, Maluk M, Atoliya N, Kumar SC, Chalasani D, Tkacz A, Singh P, Basu A, Pullabhotla SVSRN, Kumar M, Mohanty SR, East AK, Ramachandran VK, James EK, Podile AR, Saxena AK, Rao DLN, Poole PS. Genomic Diversity of Pigeon Pea ( Cajanus cajan L. Millsp.) Endosymbionts in India and Selection of Potential Strains for Use as Agricultural Inoculants. FRONTIERS IN PLANT SCIENCE 2021; 12:680981. [PMID: 34557206 PMCID: PMC8453007 DOI: 10.3389/fpls.2021.680981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Pigeon pea (Cajanus cajan L. Millsp. ) is a legume crop resilient to climate change due to its tolerance to drought. It is grown by millions of resource-poor farmers in semiarid and tropical subregions of Asia and Africa and is a major contributor to their nutritional food security. Pigeon pea is the sixth most important legume in the world, with India contributing more than 70% of the total production and harbouring a wide variety of cultivars. Nevertheless, the low yield of pigeon pea grown under dry land conditions and its yield instability need to be improved. This may be done by enhancing crop nodulation and, hence, biological nitrogen fixation (BNF) by supplying effective symbiotic rhizobia through the application of "elite" inoculants. Therefore, the main aim in this study was the isolation and genomic analysis of effective rhizobial strains potentially adapted to drought conditions. Accordingly, pigeon pea endosymbionts were isolated from different soil types in Southern, Central, and Northern India. After functional characterisation of the isolated strains in terms of their ability to nodulate and promote the growth of pigeon pea, 19 were selected for full genome sequencing, along with eight commercial inoculant strains obtained from the ICRISAT culture collection. The phylogenomic analysis [Average nucleotide identity MUMmer (ANIm)] revealed that the pigeon pea endosymbionts were members of the genera Bradyrhizobium and Ensifer. Based on nodC phylogeny and nod cluster synteny, Bradyrhizobium yuanmingense was revealed as the most common endosymbiont, harbouring nod genes similar to those of Bradyrhizobium cajani and Bradyrhizobium zhanjiangense. This symbiont type (e.g., strain BRP05 from Madhya Pradesh) also outperformed all other strains tested on pigeon pea, with the notable exception of an Ensifer alkalisoli strain from North India (NBAIM29). The results provide the basis for the development of pigeon pea inoculants to increase the yield of this legume through the use of effective nitrogen-fixing rhizobia, tailored for the different agroclimatic regions of India.
Collapse
Affiliation(s)
- Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Marta Maluk
- The James Hutton Institute, Dundee, United Kingdom
| | | | - Shiv Charan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Danteswari Chalasani
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Prachi Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anirban Basu
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Sarma VSRN Pullabhotla
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | | | - Alison K. East
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Appa Rao Podile
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - DLN Rao
- ICAR-Indian Institute of Soil Science, Bhopal, India
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Basile LA, Lepek VC. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol 2021; 14:1897-1917. [PMID: 34318611 PMCID: PMC8449669 DOI: 10.1111/1751-7915.13906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.
Collapse
Affiliation(s)
- Laura A. Basile
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| |
Collapse
|
4
|
Sugiyama A. Flavonoids and saponins in plant rhizospheres: roles, dynamics, and the potential for agriculture. Biosci Biotechnol Biochem 2021; 85:1919-1931. [PMID: 34113972 DOI: 10.1093/bbb/zbab106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Plants are in constant interaction with a myriad of soil microorganisms in the rhizosphere, an area of soil in close contact with plant roots. Recent research has highlighted the importance of plant-specialized metabolites (PSMs) in shaping and modulating the rhizosphere microbiota; however, the molecular mechanisms underlying the establishment and function of the microbiota mostly remain unaddressed. Flavonoids and saponins are a group of PSMs whose biosynthetic pathways have largely been revealed. Although these PSMs are abundantly secreted into the rhizosphere and exert various functions, the secretion mechanisms have not been clarified. This review summarizes the roles of flavonoids and saponins in the rhizosphere with a special focus on interactions between plants and the rhizosphere microbiota. Furthermore, this review introduces recent advancements in the dynamics of these metabolites in the rhizosphere and indicates potential applications of PSMs for crop production and discusses perspectives in this emerging research field.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| |
Collapse
|
5
|
Safronova VI, Guro PV, Sazanova AL, Kuznetsova IG, Belimov AA, Yakubov VV, Chirak ER, Afonin AМ, Gogolev YV, Andronov EE, Tikhonovich IA. Rhizobial Microsymbionts of Kamchatka Oxytropis Species Possess Genes of the Type III and VI Secretion Systems, Which Can Affect the Development of Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1232-1241. [PMID: 32686981 DOI: 10.1094/mpmi-05-20-0114-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A collection of rhizobial strains isolated from root nodules of the narrowly endemic legume species Oxytropis erecta, O. anadyrensis, O. kamtschatica, and O. pumilio originating from the Kamchatka Peninsula (Russian Federation) was obtained. Analysis of the 16S ribosomal RNA gene sequence showed a significant diversity of isolates belonging to families Rhizobiaceae (genus Rhizobium), Phyllobacteriaceae (genera Mesorhizobium, Phyllobacterium), and Bradyrhizobiaceae (genera Bosea, Tardiphaga). A plant nodulation assay showed that only strains belonging to genus Mesorhizobium could form nitrogen-fixing nodules on Oxytropis plants. The strains M. loti 582 and M. huakuii 583, in addition to symbiotic clusters, possessed genes of the type III and type VI secretion systems (T3SS and T6SS, respectively), which can influence the host specificity of strains. These strains formed nodules of two types (elongated and rounded) on O. kamtschatica roots. We suggest this phenomenon may result from Nod factor-dependent and -independent nodulation strategies. The obtained strains are of interest for further study of the T3SS and T6SS gene function and their role in the development of rhizobium-legume symbiosis. The prospects of using rhizobia having both gene systems related to symbiotic and nonsymbiotic nodulation strategies to enhance the efficiency of plant-microbe interactions by expanding the host specificity and increasing nodulation efficiency are discussed.
Collapse
Affiliation(s)
- Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Polina V Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Anna L Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Irina G Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Valentin V Yakubov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, 690022, Vladivostok, Ave. 100-let Vladivostoka 159, Russian Federation
| | - Elizaveta R Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Alexey М Afonin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan 420111, Russian Federation
| | - Evgeny E Andronov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
- Saint Petersburg State University, Department of Genetics and Biotechnology, 199034, St.-Petersburg, Universitetskaya Emb. 7/9, Russian Federation
| |
Collapse
|
6
|
Dong W, Song Y. The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. Int J Mol Sci 2020; 21:E5926. [PMID: 32824698 PMCID: PMC7460597 DOI: 10.3390/ijms21165926] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza-Rhizobium-legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.
Collapse
Affiliation(s)
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
7
|
Wu Y, Li YH, Shang JY, Wang ET, Chen L, Huo B, Sui XH, Tian CF, Chen WF, Chen WX. Multiple Genes of Symbiotic Plasmid and Chromosome in Type II Peanut Bradyrhizobium Strains Corresponding to the Incompatible Symbiosis With Vigna radiata. Front Microbiol 2020; 11:1175. [PMID: 32655513 PMCID: PMC7324677 DOI: 10.3389/fmicb.2020.01175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/07/2020] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are capable of establishing compatible symbiosis with their hosts of origin and plants in the cross-nodulation group that the hosts of origin belonged to. However, different from the normal peanut Bradyrhizobium (Type I strains), the Type II strains showed incompatible symbiosis with Vigna radiata. Here, we employed transposon mutagenesis to identify the genetic loci related to this incompatibility in Type II strain CCBAU 53363. As results, seven Tn5 transposon insertion mutants resulted in an increase in nodule number on V. radiata. By sequencing analysis of the sequence flanking Tn5 insertion, six mutants were located in the chromosome of CCBAU 53363, respectively encoding acyltransferase (L265) and hypothetical protein (L615)—unique to CCBAU 53363, two hypothetical proteins (L4 and L82), tripartite tricarboxylate transporter substrate binding protein (L373), and sulfur oxidation c-type cytochrome SoxA (L646), while one mutant was in symbiotic plasmid encoding alanine dehydrogenase (L147). Significant differences were observed in L147 gene sequences and the deduced protein 3D structures between the Type II (in symbiotic plasmid) and Type I strains (in chromosome). Conversely, strains in both types shared high homologies in the chromosome genes L373 and L646 and in their protein 3D structures. These data indicated that the symbiotic plasmid gene in Type II strains might have directly affected their symbiosis incompatibility, whereas the chromosome genes might be indirectly involved in this process by regulating the plasmid symbiosis genes. The seven genes may initially explain the complication associated with symbiotic incompatibility.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yong Hua Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiao Ying Shang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - La Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Huo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Dorival J, Philys S, Giuntini E, Brailly R, de Ruyck J, Czjzek M, Biondi E, Bompard C. Structural and enzymatic characterisation of the Type III effector NopAA (=GunA) from Sinorhizobium fredii USDA257 reveals a Xyloglucan hydrolase activity. Sci Rep 2020; 10:9932. [PMID: 32555346 PMCID: PMC7303141 DOI: 10.1038/s41598-020-67069-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
Rhizobia are nitrogen-fixing soil bacteria that can infect legume plants to establish root nodules symbiosis. To do that, a complex exchange of molecular signals occurs between plants and bacteria. Among them, rhizobial Nops (Nodulation outer proteins), secreted by a type III secretion system (T3SS) determine the host-specificity for efficient symbiosis with plant roots. Little is known about the molecular function of secreted Nops (also called effectors (T3E)) and their role in the symbiosis process. We performed the structure-function characterization of NopAA, a T3E from Sinorhizobium fredii by using a combination of X-ray crystallography, biochemical and biophysical approaches. This work displays for the first time a complete structural and biochemical characterization of a symbiotic T3E. Our results showed that NopAA has a catalytic domain with xyloglucanase activity extended by a N-terminal unfolded secretion domain that allows its secretion. We proposed that these original structural properties combined with the specificity of NopAA toward xyloglucan, a key component of root cell wall which is also secreted by roots in the soil, can give NopAA a strategic position to participate in recognition between bacteria and plant roots and to intervene in nodulation process.
Collapse
Affiliation(s)
- Jonathan Dorival
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, Bretagne, France
| | - Sonia Philys
- CNRS, Univ. Lille, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Elisa Giuntini
- CNRS, Univ. Lille, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Romain Brailly
- CNRS, Univ. Lille, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Jérôme de Ruyck
- CNRS, Univ. Lille, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Mirjam Czjzek
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, Bretagne, France
| | | | - Coralie Bompard
- CNRS, Univ. Lille, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
| |
Collapse
|
9
|
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 2020; 35. [PMID: 32074548 PMCID: PMC7104275 DOI: 10.1264/jsme2.me19141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bradyrhizobium elkanii, a rhizobium with a relatively wide host range, possesses a functional type III secretion system (T3SS) that is involved in symbiotic incompatibility against Rj4-genotype soybean (Glycine max) and some accessions of mung bean (Vigna radiata). To expand our knowledge on the T3SS-mediated partner selection mechanism in the symbiotic legume-rhizobia association, we inoculated three Lotus experimental accessions with wild-type and T3SS-mutant strains of B. elkanii USDA61. Different responses were induced by T3SS in a host genotype-dependent manner. Lotus japonicus Gifu inhibited infection; L. burttii allowed infection, but inhibited nodule maturation at the post-infection stage; and L. burttii and L. japonicus MG-20 both displayed a nodule early senescence-like response. By conducting inoculation tests with mutants of previously reported and newly identified effector protein genes of B. elkanii USDA61, we identified NopF as the effector protein triggering the inhibition of infection, and NopM as the effector protein triggering the nodule early senescence–like response. Consistent with these results, the B. elkanii USDA61 gene for NopF introduced into the Lotus symbiont Mesorhizobium japonicum induced infection inhibition in L. japonicus Gifu, but did not induce any response in L. burttii or L. japonicus MG-20. These results suggest that Lotus accessions possess at least three checkpoints to eliminate unfavorable symbionts, including the post-infection stage, by recognizing different T3SS effector proteins at each checkpoint.
Collapse
Affiliation(s)
| | | | | | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuhiko Saeki
- Department of Biological Sciences and Kyousei Science Center for Life and Nature, Nara Women's University
| | | | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
10
|
Rehman HM, Cheung WL, Wong KS, Xie M, Luk CY, Wong FL, Li MW, Tsai SN, To WT, Chan LY, Lam HM. High-Throughput Mass Spectrometric Analysis of the Whole Proteome and Secretome From Sinorhizobium fredii Strains CCBAU25509 and CCBAU45436. Front Microbiol 2019; 10:2569. [PMID: 31798547 PMCID: PMC6865838 DOI: 10.3389/fmicb.2019.02569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023] Open
Abstract
Sinorhizobium fredii is a dominant rhizobium on alkaline-saline land that can induce nitrogen-fixing symbiotic root nodules in soybean. Two S. fredii strains, CCBAU25509 and CCBAU45436, were used in this study to facilitate in-depth analyses of this species and its interactions with soybean. We have previously completed the full assembly of the genomes and detailed transcriptomic analyses for these two S. fredii strains, CCBAU25509 and CCBAU45436, that exhibit differential compatibility toward some soybean hosts. In this work, we performed high-throughput Orbitrap analyses of the whole proteomes and secretomes of CCBAU25509 and CCBAU45436 at different growth stages. Our proteomic data cover coding sequences in the chromosome, chromid, symbiotic plasmid, and other accessory plasmids. In general, we found higher levels of protein expression by genes in the chromosomal genome, whereas proteins encoded by the symbiotic plasmid were differentially accumulated in bacteroids. We identified secreted proteins from the extracellular medium, including seven and eight Nodulation Outer Proteins (Nops) encoded by the symbiotic plasmid of CCBAU25509 and CCBAU45436, respectively. Differential host restriction of CCBAU25509 and CCBAU45436 is regulated by the allelic type of the soybean Rj2(Rfg1) protein. Using sequencing data from this work and available in public databases, our analysis confirmed that the soybean Rj2(Rfg1) protein has three major allelic types (Rj2/rfg1, rj2/Rfg1, rj2/rfg1) that determine the host restriction of some Bradyrhizobium diazoefficiens and S. fredii strains. A mutant defective in the type 3 protein secretion system (T3SS) in CCBAU25509 allowed this strain to nodulate otherwise-incompatible soybeans carrying the rj2/Rfg1 allelic type, probably by disrupting Nops secretion. The allelic forms of NopP and NopI in S. fredii might be associated with the restriction imposed by Rfg1. By swapping the NopP between CCBAU25509 and CCBAU45436, we found that only the strains carrying NopP from CCBAU45436 could nodulate soybeans carrying the rj2/Rfg1 allelic type. However, no direct interaction between either forms of NopP and Rfg1 could be observed.
Collapse
Affiliation(s)
- Hafiz Mamoon Rehman
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai-Lun Cheung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong-Sen Wong
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Min Xie
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ching-Yee Luk
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuk-Ling Wong
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sau-Na Tsai
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing-Ting To
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lok-Yi Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
11
|
Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heat- and Metallo-Resistant PGPR. Microorganisms 2019; 7:microorganisms7070212. [PMID: 31336693 PMCID: PMC6680742 DOI: 10.3390/microorganisms7070212] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
Soil contamination with heavy metals is a constraint for plant establishment and development for which phytoremediation may be a solution, since rhizobacteria may alleviate plant stress under these conditions. A greenhouse experiment was conducted to elucidate the effect of toxic metals on growth, the activities of ROS (reactive oxygen species)-scavenging enzymes, and gene expression of Medicago sativa grown under different metal and/or inoculation treatments. The results showed that, besides reducing biomass, heavy metals negatively affected physiological parameters such as chlorophyll fluorescence and gas exchange, while increasing ROS-scavenging enzyme activities. Inoculation of M. sativa with a bacterial consortium of heat- and metallo-resistant bacteria alleviated metal stress, as deduced from the improvement of growth, lower levels of antioxidant enzymes, and increased physiological parameters. The bacteria were able to effectively colonize and form biofilms onto the roots of plants cultivated in the presence of metals, as observed by scanning electron microscopy. Results also evidenced the important role of glutathione reductase (GR), phytochelatin synthase (PCS), and metal transporter NRAMP1 genes as pathways for metal stress management, whereas the gene coding for cytochrome P450 (CP450) seemed to be regulated by the presence of the bacteria. These outcomes showed that the interaction of metal-resistant rhizobacteria/legumes can be used as an instrument to remediate metal-contaminated soils, while cultivation of inoculated legumes on these soils is still safe for animal grazing, since inoculation with bacteria diminished the concentrations of heavy metals accumulated in the aboveground parts of the plants to below toxic levels.
Collapse
|
12
|
Alaswad AA, Oehrle NW, Krishnan HB. Classical Soybean ( Glycine max (L.) Merr) Symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, Reveal Contrasting Symbiotic Phenotype on Pigeon Pea ( Cajanus cajan (L.) Millsp). Int J Mol Sci 2019; 20:E1091. [PMID: 30832430 PMCID: PMC6429105 DOI: 10.3390/ijms20051091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Pigeon pea (Cajanus cajan (L.) Millspaugh) is cultivated widely in semiarid agricultural regions in over 90 countries around the world. This important legume can enter into symbiotic associations with a wide range of rhizobia including Bradyrhizobium and fast-growing rhizobia. In comparison with other major legumes such as soybean and common bean, only limited information is available on the symbiotic interaction of pigeon pea with rhizobia. In this study, we investigated the ability of two classical soybean symbionts-S. fredii USDA191 and B. diazoefficiens USDA110-and their type 3 secretion system (T3SS) mutants, to nodulate pigeon pea. Both S. fredii USDA191 and a T3SS mutant S. fredii RCB26 formed nitrogen-fixing nodules on pigeon pea. Inoculation of pigeon pea roots with B. diazoefficiens USDA110 and B. diazoefficiens Δ136 (a T3SS mutant) resulted in the formation of Fix- and Fix+ nodules, respectively. Light and transmission electron microscopy of Fix- nodules initiated by B. diazoefficiens USDA110 revealed the complete absence of rhizobia within these nodules. In contrast, Fix+ nodules formed by B. diazoefficiens Δ136 revealed a central region that was completely filled with rhizobia. Ultrastructural investigation revealed the presence of numerous bacteroids surrounded by peribacteroid membranes in the infected cells. Analysis of nodule proteins by one- and two-dimensional gel electrophoresis revealed that leghemoglobin was absent in B. diazoefficiens USDA110 nodules, while it was abundantly present in B. diazoefficiens Δ136 nodules. Results of competitive nodulation assays indicated that B. diazoefficiens Δ136 had greater competitiveness for nodulation on pigeon pea than did the wild type strain. Our results suggest that this T3SS mutant of B. diazoefficiens, due to its greater competitiveness and ability to form Fix+ nodules, could be exploited as a potential inoculant to boost pigeon pea productivity.
Collapse
Affiliation(s)
- Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
- King Abdul Aziz University, 21589 Jeddah, Saudi Arabia.
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA.
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA.
| |
Collapse
|
13
|
Piromyou P, Songwattana P, Teamtisong K, Tittabutr P, Boonkerd N, Tantasawat PA, Giraud E, Göttfert M, Teaumroong N. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia. Microbiologyopen 2019; 8:e00781. [PMID: 30628192 PMCID: PMC6612562 DOI: 10.1002/mbo3.781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
This study supports the idea that the evolution of type III secretion system (T3SS) is one of the factors that controls Vigna radiata-bradyrhizobia symbiosis. Based on phylogenetic tree data and gene arrangements, it seems that the T3SSs of the Thai bradyrhizobial strains SUTN9-2, DOA1, and DOA9 and the Senegalese strain ORS3257 may share the same origin. Therefore, strains SUTN9-2, DOA1, DOA9, and ORS3257 may have evolved their T3SSs independently from other bradyrhizobia, depending on biological and/or geological events. For functional analyses, the rhcJ genes of ORS3257, SUTN9-2, DOA9, and USDA110 were disrupted. These mutations had cultivar-specific effects on nodulation properties. The T3SSs of ORS3257 and DOA9 showed negative effects on V. radiata nodulation, while the T3SS of SUTN9-2 showed no effect on V. radiata symbiosis. In the roots of V. radiata CN72, the expression levels of the PR1 gene after inoculation with ORS3257 and DOA9 were significantly higher than those after inoculation with ORS3257 ΩT3SS, DOA9 ΩT3SS, and SUTN9-2. The T3Es from ORS3257 and DOA9 could trigger PR1 expression, which ultimately leads to abort nodulation. In contrast, the T3E from SUTN9-2 reduced PR1 expression. It seems that the mutualistic relationship between SUTN9-2 and V. radiata may have led to the selection of the most well-adapted combination of T3SS and symbiotic bradyrhizobial genotype.
Collapse
Affiliation(s)
- Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological EquipmentSuranaree University of TechnologyNakhon RatchasimaThailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Eric Giraud
- IRD, Laboratory of Tropical and Mediterranean SymbiosesUMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de BaillarguetMontpellierFrance
| | | | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
14
|
Stambulska UY, Bayliak MM. Legume-Rhizobium Symbiosis: Secondary Metabolites, Free Radical Processes, and Effects of Heavy Metals. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_43-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S. InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species. Front Microbiol 2018; 9:3155. [PMID: 30619219 PMCID: PMC6305347 DOI: 10.3389/fmicb.2018.03155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean (Glycine max cv. BARC2) and unable to nodulate either plant. This incompatibility is due to the presence of a functional type III secretion system (T3SS) that translocates effector protein into host cells. We previously identified five genes in B. elkanii that are responsible for its incompatibility with KPS1 plants. Among them, a novel gene designated as innB exhibited some characteristics associated with the T3SS and was found to be responsible for the restriction of nodulation on KPS1. In the present study, we further characterized innB by analysis of gene expression, protein secretion, and symbiotic phenotypes. The innB gene was found to encode a hypothetical protein that is highly conserved among T3SS-harboring rhizobia. Similar to other rhizobial T3SS-associated genes, the expression of innB was dependent on plant flavonoids and a transcriptional regulator TtsI. The InnB protein was secreted via the T3SS and was not essential for secretion of other nodulation outer proteins. In addition, T3SS-dependent translocation of InnB into nodule cells was confirmed by an adenylate cyclase assay. According to inoculation tests using several Vigna species, InnB promoted nodulation of at least one V. mungo cultivar. These results indicate that innB encodes a novel type III effector controlling symbiosis with Vigna species.
Collapse
Affiliation(s)
- Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Safirah T N Ratu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
16
|
Antonets KS, Kliver SF, Nizhnikov AA. Exploring Proteins Containing Amyloidogenic Regions in the Proteomes of Bacteria of the Order Rhizobiales. Evol Bioinform Online 2018; 14:1176934318768781. [PMID: 29720870 PMCID: PMC5922492 DOI: 10.1177/1176934318768781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Amyloids are protein fibrils with a highly ordered spatial structure called cross-β. To date, amyloids were shown to be implicated in a wide range of biological processes, both pathogenic and functional. In bacteria, functional amyloids are involved in forming biofilms, storing toxins, overcoming the surface tension, and other functions. Rhizobiales represent an economically important group of Alphaproteobacteria, various species of which are not only capable of fixing nitrogen in the symbiosis with leguminous plants but also act as the causative agents of infectious diseases in animals and plants. Here, we implemented bioinformatic screening for potentially amyloidogenic proteins in the proteomes of more than 80 species belonging to the order Rhizobiales. Using SARP (Sequence Analysis based on the Ranking of Probabilities) and Waltz bioinformatic algorithms, we identified the biological processes, where potentially amyloidogenic proteins are overrepresented. We detected protein domains and regions associated with amyloidogenic sequences in the proteomes of various Rhizobiales species. We demonstrated that amyloidogenic regions tend to occur in the membrane or extracellular proteins, many of which are involved in pathogenesis-related processes, including adhesion, assembly of flagellum, and transport of siderophores and lipopolysaccharides, and contain domains typical of the virulence factors (hemolysin, RTX, YadA, LptD); some of them (rhizobiocins, LptD) are also related to symbiosis.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sergey F Kliver
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
17
|
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L. Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp. FEMS Microbiol Lett 2018; 365:4769627. [PMID: 29281013 DOI: 10.1093/femsle/fnx276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Several genes coding for proteins with metal ion-inducible autocleavage (MIIA) domains were identified in type III secretion system tts gene clusters from draft genomes of recently isolated Bradyrhizobium spp. MIIA domains have been first described in the effectors NopE1 and NopE2 of Bradyrhizobium diazoefficiens USDA 110. All identified genes are preceded by tts box promoter motifs. The identified proteins contain one or two MIIA domains. A phylogenetic analysis of 35 MIIA domain sequences from 16 Bradyrhizobium strains revealed four groups. The protein from Bradyrhizobium sp. LmjC strain contains a single MIIA domain and was designated MdcE (MdcELmjC). It was expressed as a fusion to maltose-binding protein (MalE) in Escherichia coli and subsequently purified by affinity chromatography. Recombinant MalE-MdcELmjC-Strep protein exhibited autocleavage in the presence of Ca2+, Cu2+, Cd2+ and Mn2+, but not in the presence of Mg2+, Ni2+ or Co2+. Site-directed mutagenesis at the predicted cleavage site abolished autocleavage activity of MdcELmjC. An LmjC mdcE- mutant was impaired in the ability to nodulate Lupinus angustifolius and Macroptilium atropurpureum.
Collapse
Affiliation(s)
- David Durán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid.,Instituto de Ciencias Agrarias (ICA), Consejo Superior Investigaciones Científicas, Serrano 115, bis, 28006 Madrid, Spain
| | - José Palacios
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Tomás Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Susanne Zehner
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| |
Collapse
|
18
|
Wang Q, Liu J, Zhu H. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:313. [PMID: 29593768 PMCID: PMC5854654 DOI: 10.3389/fpls.2018.00313] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.
Collapse
|
19
|
Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata. Genes (Basel) 2017; 8:genes8120374. [PMID: 29292795 PMCID: PMC5748692 DOI: 10.3390/genes8120374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
The establishment of a root nodule symbiosis between a leguminous plant and a rhizobium requires complex molecular interactions between the two partners. Compatible interactions lead to the formation of nitrogen-fixing nodules, however, some legumes exhibit incompatibility with specific rhizobial strains and restrict nodulation by the strains. Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean cultivars carrying the Rj4 allele. Here, we explored genetic loci in USDA61 that determine incompatibility with V. radiata KPS1. We identified five novel B. elkanii genes that contribute to this incompatibility. Four of these genes also control incompatibility with soybean cultivars carrying the Rj4 allele, suggesting that a common mechanism underlies nodulation restriction in both legumes. The fifth gene encodes a hypothetical protein that contains a tts box in its promoter region. The tts box is conserved in genes encoding the type III secretion system (T3SS), which is known for its delivery of virulence effectors by pathogenic bacteria. These findings revealed both common and unique genes that are involved in the incompatibility of B. elkanii with mung bean and soybean. Of particular interest is the novel T3SS-related gene, which causes incompatibility specifically with mung bean cv. KPS1.
Collapse
|
20
|
Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N. Type 3 Secretion System (T3SS) of Bradyrhizobium sp. DOA9 and Its Roles in Legume Symbiosis and Rice Endophytic Association. Front Microbiol 2017; 8:1810. [PMID: 28979252 PMCID: PMC5611442 DOI: 10.3389/fmicb.2017.01810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/05/2017] [Indexed: 11/15/2022] Open
Abstract
The Bradyrhizobium sp. DOA9 strain isolated from a paddy field has the ability to nodulate a wide spectrum of legumes. Unlike other bradyrhizobia, this strain has a symbiotic plasmid harboring nod, nif, and type 3 secretion system (T3SS) genes. This T3SS cluster contains all the genes necessary for the formation of the secretory apparatus and the transcriptional activator (TtsI), which is preceded by a nod-box motif. An in silico search predicted 14 effectors putatively translocated by this T3SS machinery. In this study, we explored the role of the T3SS in the symbiotic performance of DOA9 by evaluating the ability of a T3SS mutant (ΩrhcN) to nodulate legumes belonging to Dalbergioid, Millettioid, and Genistoid tribes. Among the nine species tested, four (Arachis hypogea, Vigna radiata, Crotalaria juncea, and Macroptilium atropurpureum) responded positively to the rhcN mutation (ranging from suppression of plant defense reactions, an increase in the number of nodules and a dramatic improvement in nodule development and infection), one (Stylosanthes hamata) responded negatively (fewer nodules and less nitrogen fixation) and four species (Aeschynomene americana, Aeschynomene afraspera, Indigofera tinctoria, and Desmodium tortuosum) displayed no phenotype. We also tested the role of the T3SS in the ability of the DOA9 strain to endophytically colonize rice roots, but detected no effect of the T3SS mutation, in contrast to what was previously reported in the Bradyrhizobium SUTN9-2 strain. Taken together, these data indicate that DOA9 contains a functional T3SS that interferes with the ability of the strain to interact symbiotically with legumes but not with rice.
Collapse
Affiliation(s)
- Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Rujirek Noisangiam
- National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and CooperativesBangkok, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Janpen Prakamhang
- Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology IsanNakhon Ratchasima, Thailand
| | - Albin Teulet
- Institut de Recherche pour le Développement, LSTM, UMR IRD/SupAgro/INRA/Univ. Montpellier/CIRADMontpellier, France
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Eric Giraud
- Institut de Recherche pour le Développement, LSTM, UMR IRD/SupAgro/INRA/Univ. Montpellier/CIRADMontpellier, France
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| |
Collapse
|
21
|
Abstract
Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis.
Collapse
Affiliation(s)
- Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
22
|
The naringenin-induced exoproteome of Rhizobium etli CE3. Arch Microbiol 2017; 199:737-755. [PMID: 28255691 DOI: 10.1007/s00203-017-1351-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/29/2023]
Abstract
Flavonoids excreted by legume roots induce the expression of symbiotically essential nodulation (nod) genes in rhizobia, as well as that of specific protein export systems. In the bean microsymbiont Rhizobium etli CE3, nod genes are induced by the flavonoid naringenin. In this study, we identified 693 proteins in the exoproteome of strain CE3 grown in minimal medium with or without naringenin, with 101 and 100 exoproteins being exclusive to these conditions, respectively. Four hundred ninety-two (71%) of the extracellular proteins were found in both cultures. Of the total exoproteins identified, nearly 35% were also present in the intracellular proteome of R. etli bacteroids, 27% had N-terminal signal sequences and a significant number had previously demonstrated or possible novel roles in symbiosis, including bacterial cell surface modification, adhesins, proteins classified as MAMPs (microbe-associated molecular patterns), such as flagellin and EF-Tu, and several normally cytoplasmic proteins as Ndk and glycolytic enzymes, which are known to have extracellular "moonlighting" roles in bacteria that interact with eukaryotic cells. It is noteworthy that the transmembrane ß (1,2) glucan biosynthesis protein NdvB, an essential symbiotic protein in rhizobia, was found in the R. etli naringenin-induced exoproteome. In addition, potential binding sites for two nod-gene transcriptional regulators (NodD) occurred somewhat more frequently in the promoters of genes encoding naringenin-induced exoproteins in comparison to those ofexoproteins found in the control condition.
Collapse
|
23
|
Fan Y, Liu J, Lyu S, Wang Q, Yang S, Zhu H. The Soybean Rfg1 Gene Restricts Nodulation by Sinorhizobium fredii USDA193. FRONTIERS IN PLANT SCIENCE 2017; 8:1548. [PMID: 28936222 PMCID: PMC5594104 DOI: 10.3389/fpls.2017.01548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/24/2017] [Indexed: 05/06/2023]
Abstract
Sinorhizobium fredii is a fast-growing rhizobial species that can establish a nitrogen-fixing symbiosis with a wide range of legume species including soybeans (Glycine max). In soybeans, this interaction shows a high level of specificity such that particular S. fredii strains nodulate only a limited set of plant genotypes. Here we report the identification of a dominant gene in soybeans that restricts nodulation with S. fredii USDA193. Genetic mapping in an F2 population revealed co-segregation of the underlying locus with the previously cloned Rfg1 gene. The Rfg1 allele encodes a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat class of plant resistance proteins that restricts nodulation by S. fredii strains USDA257 and USDA205, and an allelic variant of this gene also restricts nodulation by Bradyrhizobium japonicum USDA122. By means of complementation tests and CRISPR/Cas9-mediated gene knockouts, we demonstrate that the Rfg1 allele also is responsible for resistance to nodulation by S. fredii USDA193. Therefore, the Rfg1 allele likely provides broad-spectrum resistance to nodulation by many S. fredii and B. japonicum strains in soybeans.
Collapse
Affiliation(s)
- Yinglun Fan
- College of Agriculture, Liaocheng UniversityLiaocheng, China
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Shanhua Lyu
- College of Agriculture, Liaocheng UniversityLiaocheng, China
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Qi Wang
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
- *Correspondence: Hongyan Zhu,
| |
Collapse
|
24
|
Grote J, Krysciak D, Petersen K, Güllert S, Schmeisser C, Förstner KU, Krishnan HB, Schwalbe H, Kubatova N, Streit WR. The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234. Front Microbiol 2016; 7:1858. [PMID: 27917168 PMCID: PMC5114275 DOI: 10.3389/fmicb.2016.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/04/2016] [Indexed: 01/24/2023] Open
Abstract
Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades.
Collapse
Affiliation(s)
- Jessica Grote
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Dagmar Krysciak
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Simon Güllert
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg Würzburg, Germany
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Missouri Columbia, MO, USA
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Nina Kubatova
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| |
Collapse
|
25
|
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis. Int J Mol Sci 2016; 17:E755. [PMID: 27213334 PMCID: PMC4881576 DOI: 10.3390/ijms17050755] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.
Collapse
Affiliation(s)
- Francisco J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain.
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| |
Collapse
|
26
|
Jiao J, Wu LJ, Zhang B, Hu Y, Li Y, Zhang XX, Guo HJ, Liu LX, Chen WX, Zhang Z, Tian CF. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:352-61. [PMID: 26883490 DOI: 10.1094/mpmi-01-16-0019-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation.
Collapse
Affiliation(s)
- Jian Jiao
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Juan Wu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Biliang Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Hu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Li
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xing Xing Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Xue Liu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Ziding Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Abstract
Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research.
Collapse
|
28
|
Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T, Sato S, Okazaki S. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele. Appl Environ Microbiol 2015; 81:6710-7. [PMID: 26187957 PMCID: PMC4561682 DOI: 10.1128/aem.01942-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.
Collapse
Affiliation(s)
- Omar M Faruque
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiharu Fujii
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
29
|
Nelson MS, Sadowsky MJ. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. FRONTIERS IN PLANT SCIENCE 2015; 6:491. [PMID: 26191069 PMCID: PMC4486765 DOI: 10.3389/fpls.2015.00491] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/19/2015] [Indexed: 05/18/2023]
Abstract
The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity.
Collapse
Affiliation(s)
| | - Michael J. Sadowsky
- *Correspondence: Michael J. Sadowsky, BioTechnology Institute, Department of Soil, Water and Climate, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA,
| |
Collapse
|
30
|
Saeki K, Ronson CW. Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-662-44270-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proc Natl Acad Sci U S A 2014; 111:6509-14. [PMID: 24733893 DOI: 10.1073/pnas.1402243111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.
Collapse
|
32
|
Kim WS, Krishnan HB. A nopA deletion mutant of Sinorhizobium fredii USDA257, a soybean symbiont, is impaired in nodulation. Curr Microbiol 2014; 68:239-46. [PMID: 24121614 DOI: 10.1007/s00284-013-0469-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 11/26/2022]
Abstract
Sinorhizobium fredii USDA257 employs type III secretion system (T3SS) to deliver effector proteins into the host cells through pili. The nopA protein is the major component of USDA257 pili. The promoter region of USDA257 nopA possesses a well conserved tts box. Serial deletion analysis revealed that the tts box is absolutely essential for flavonoid induction of nopA. Deletion of nopA drastically lowered the number of nodules formed by USDA257 on cowpea and soybean cultivar Peking. In contrast to the parental strain, the USDA257 nopA mutant was able to form few nodules on soybean cultivars McCall and Williams 82. Light and transmission electron microscopy examination of these nodules revealed numerous starch grains both in the infected and uninfected cells.
Collapse
|
33
|
Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:114. [PMID: 24723933 PMCID: PMC3973906 DOI: 10.3389/fpls.2014.00114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 05/19/2023]
Abstract
Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.
Collapse
Affiliation(s)
- Anastasia P. Tampakaki
- *Correspondence: Anastasia P. Tampakaki, Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece e-mail:
| |
Collapse
|
34
|
Santiago-Rodriguez TM, Toranzos GA, Bayman P, Massey SE, Cano RJ. Sociomicrobiome of wood decay in a tropical rain forest: unraveling complexity. SPRINGERPLUS 2013; 2:435. [PMID: 24052931 PMCID: PMC3776085 DOI: 10.1186/2193-1801-2-435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/15/2013] [Indexed: 11/25/2022]
Abstract
Given that microbial interactions in nature are very complex, we propose that quorum-sensing, as well as quorum-quenching, phenazine and secondary metabolite production, resistance and toxin-antitoxin systems within a microbial community should all comprise the battery of processes involving the study of what we would define as the “sociomicrobiome”. In the present study the genes/molecules, subsystems and taxonomic breakup of the mentioned processes were identified in decaying tropical wood from the El Yunque rainforest in Puerto Rico, and soil using a shotgun metagenomic approach. The rapid decomposition of wood and litter in tropical regions suggests that processes in these settings are governed by unexplored microbes with the potential of being further studied and exploited for various purposes. Both ecosystems were characterized by the presence of specific genes/molecules, subsystems and microbes associated with the mentioned processes, although the average abundances for specific processes differed. Of the sociomicrobiomes studied, that from El Yunque was found to be the most complex. The approach considered in the present study could also be applied to study the sociomicrobiome of other ecosystems.
Collapse
|
35
|
Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K, Minamisawa K. The type III Secretion System of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl Environ Microbiol 2013; 79:1048-51. [PMID: 23204412 PMCID: PMC3568557 DOI: 10.1128/aem.03297-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022] Open
Abstract
The rhcJ and ttsI mutants of Bradyrhizobium japonicum USDA122 for the type III protein secretion system (T3SS) failed to secrete typical effector proteins and gained the ability to nodulate Rj2 soybean plants (Hardee), which are symbiotically incompatible with wild-type USDA122. This suggests that effectors secreted via the T3SS trigger incompatibility between these two partners.
Collapse
Affiliation(s)
- Takahiro Tsukui
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takakazu Kaneko
- Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Shin Okazaki
- Faculty of Agriculture, Tokyo University of Agricultural Technology, Tokyo, Japan
| | | | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
36
|
Crook MB, Lindsay DP, Biggs MB, Bentley JS, Price JC, Clement SC, Clement MJ, Long SR, Griffitts JS. Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1026-33. [PMID: 22746823 PMCID: PMC4406224 DOI: 10.1094/mpmi-02-12-0052-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites.
Collapse
Affiliation(s)
- Matthew B Crook
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3429-44. [PMID: 22213816 DOI: 10.1093/jxb/err430] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.
Collapse
Affiliation(s)
- Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Canberra, ACT 0200, Australia
| | | |
Collapse
|
38
|
Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M. The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel) 2012; 3:138-66. [PMID: 24704847 PMCID: PMC3899959 DOI: 10.3390/genes3010138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/16/2022] Open
Abstract
The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome.
Collapse
Affiliation(s)
- Michael Black
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | | | - Matthew Bellgard
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
39
|
Fotiadis CT, Dimou M, Georgakopoulos DG, Katinakis P, Tampakaki AP. Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum. FEMS Microbiol Lett 2012; 327:66-77. [PMID: 22112296 DOI: 10.1111/j.1574-6968.2011.02466.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2023] Open
Abstract
NopT1 and NopT2, putative type III effectors from the plant symbiotic bacterium Bradyrhizobium japonicum, are predicted to belong to a family of YopT/AvrPphB effectors, which are cysteine proteases. In the present study, we showed that both NopT1 and NopT2 indeed possess cysteine protease activity. When overexpressed in Escherichia coli, both NopT1 and NopT2 undergo autoproteolytic processing which is largely abolished in the presence of E-64, a papain family-specific inhibitor. Mutations of NopT1 disrupting either the catalytic triad or the putative autoproteolytic site reduce or markedly abolish the protease activity. Autocleavage likely occurs between residues K48 and M49, though another potential cleavage site is also possible. NopT1 also elicitis HR-like cell death when transiently expressed in tobacco plants and its cysteine protease activity is essential for this ability. In contrast, no macroscopic symptoms were observed for NopT2. Furthermore, mutational analysis provided evidence that NopT1 may undergo acylation inside plant cells and that this would be required for its capacity to elicit HR-like cell death in tobacco.
Collapse
Affiliation(s)
- Christos T Fotiadis
- Laboratory of General and Agricultural Microbiology, Department of Agricultural Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
40
|
Sugiyama A, Yazaki K. Root Exudates of Legume Plants and Their Involvement in Interactions with Soil Microbes. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Krishnan HB, Natarajan SS, Kim WS. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean. Appl Environ Microbiol 2011; 77:6240-8. [PMID: 21764962 PMCID: PMC3165413 DOI: 10.1128/aem.05366-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean roots, these two rhizobia secrete nodulation outer proteins (Nop) to the extracellular milieu through a type III secretion system. In spite of the fact that Nops are known to regulate legume nodulation in a host-specific manner, very little is known about the differences in the compositions of Nops and surface appendages elaborated by USDA191 and USDA257. In this study we compared the Nop profiles of USDA191 and USDA257 by one-dimensional (1D) and 2D gel electrophoresis and identified several of these proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-tandem MS (LC-MS/MS). Examination of the surface appendages elaborated by these two strains of soybean symbionts by transmission electron microscopy revealed distinct differences in their morphologies. Even though the flagella produced by USDA191 and USDA257 were similar in their morphologies, they differed in their flagellin composition. USDA257 pili resembled long thin filaments, while USDA191 pili were short, rod shaped, and much thinner than the flagella. 2D gel electrophoresis of pilus-like appendages of USDA191 and USDA257 followed by mass spectrometry resulted in the identification of several of the Nops along with some proteins previously undetected in these strains. Some of the newly identified proteins show homology to putative zinc protease and a LabA-like protein from Bradyrhizobium sp. ORS278, fimbrial type 4 assembly proteins from Ralstonia solanacearum, and the type III effector Hrp-dependent protein from Rhizobium leguminosarum bv. trifolii.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA ARS, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
42
|
Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. J Bacteriol 2011; 193:3733-9. [PMID: 21642459 DOI: 10.1128/jb.00437-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NopE1 is a type III-secreted protein of the symbiont Bradyrhizobium japonicum which is expressed in nodules. In vitro it exhibits self-cleavage in a duplicated domain of unknown function (DUF1521) but only in the presence of calcium. Here we show that either domain is self-sufficient for cleavage. An exchange of the aspartic acid residue at the cleavage site with asparagine prevented cleavage; however, cleavage was still observed with glutamic acid at the same position, indicating that a negative charge at the cleavage site is sufficient. Close to each cleavage site, an EF-hand-like motif is present. A replacement of one of the conserved aspartic acid residues with alanine prevented cleavage at the neighboring site. Except for EDTA, none of several protease inhibitors blocked cleavage, suggesting that a known protease-like mechanism is not involved in the reaction. In line with this, the reaction takes place within a broad pH and temperature range. Interestingly, magnesium, manganese, and several other divalent cations did not induce cleavage, indicating a highly specific calcium-binding site. Based on results obtained by blue-native gel electrophoresis, it is likely that the uncleaved protein forms a dimer and that the fragments of the cleaved protein oligomerize. A database search reveals that the DUF1521 domain is present in proteins encoded by Burkholderia phytofirmans PsNJ (a plant growth-promoting betaproteobacterium) and Vibrio coralliilyticus ATCC BAA450 (a pathogenic gammaproteobacterium). Obviously, this domain is more widespread in proteobacteria, and it might contribute to the interaction with hosts.
Collapse
|
43
|
Yang S, Tang F, Gao M, Krishnan HB, Zhu H. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc Natl Acad Sci U S A 2010; 107:18735-40. [PMID: 20937853 PMCID: PMC2973005 DOI: 10.1073/pnas.1011957107] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific recognition of bacterially derived Nod factors by the cognate host receptor(s). Here we describe the positional cloning of two soybean genes Rj2 and Rfg1 that restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respectively. We show that Rj2 and Rfg1 are allelic genes encoding a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) proteins. The involvement of host R genes in the control of genotype-specific infection and nodulation reveals a common recognition mechanism underlying symbiotic and pathogenic host-bacteria interactions and suggests the existence of their cognate avirulence genes derived from rhizobia. This study suggests that establishment of a root nodule symbiosis requires the evasion of plant immune responses triggered by rhizobial effectors.
Collapse
Affiliation(s)
- Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Fang Tang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
- College of Bioengineering, Chongqing University, Chongqing 400044, China; and
| | - Muqiang Gao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Hari B. Krishnan
- US Department of Agriculture–Agricultural Research Service and Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
44
|
Betts-Hampikian HJ, Fields KA. The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut. Front Microbiol 2010; 1:114. [PMID: 21738522 PMCID: PMC3125583 DOI: 10.3389/fmicb.2010.00114] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/22/2010] [Indexed: 12/22/2022] Open
Abstract
Present-day members of the Chlamydiaceae contain parasitic bacteria that have been co-evolving with their eukaryotic hosts over hundreds of millions of years. Likewise, a type III secretion system encoded within all genomes has been refined to complement the unique obligate intracellular niche colonized so successfully by Chlamydia spp. All this adaptation has occurred in the apparent absence of the horizontal gene transfer responsible for creating the wide range of diversity in other Gram-negative, type III-expressing bacteria. The result is a system that is, in many ways, uniquely chlamydial. A critical mass of information has been amassed that sheds significant light on how the chlamydial secretion system functions and contributes to an obligate intracellular lifestyle. Although the overall mechanism is certainly similar to homologous systems, an image has emerged where the chlamydial secretion system is essential for both survival and virulence. Numerous apparent differences, some subtle and some profound, differentiate chlamydial type III secretion from others. Herein, we provide a comprehensive review of the current state of knowledge regarding the Chlamydia type III secretion mechanism. We focus on the aspects that are distinctly chlamydial and comment on how this important system influences chlamydial pathogenesis. Gaining a grasp on this fascinating system has been challenging in the absence of a tractable genetic system. However, the surface of this tough nut has been scored and the future promises to be fruitful and revealing.
Collapse
|
45
|
Lorio JC, Kim WS, Krishnan AH, Krishnan HB. Disruption of the glycine cleavage system enables Sinorhizobium fredii USDA257 to form nitrogen-fixing nodules on agronomically improved North American soybean cultivars. Appl Environ Microbiol 2010; 76:4185-93. [PMID: 20453144 PMCID: PMC2897462 DOI: 10.1128/aem.00437-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022] Open
Abstract
The symbiosis between Sinorhizobium fredii USDA257 and soybean [Glycine max (L.) Merr.] exhibits a high degree of cultivar specificity. USDA257 nodulates primitive soybean cultivars but fails to nodulate agronomically improved cultivars such as McCall. In this study we provide evidence for the involvement of a new genetic locus that controls soybean cultivar specificity. This locus was identified in USDA257 by Tn5 transposon mutagenesis followed by nodulation screening on McCall soybean. We have cloned the region corresponding to the site of Tn5 insertion and found that it lies within a 1.5-kb EcoRI fragment. DNA sequence analysis of this fragment and an adjacent 4.4-kb region identified an operon made up of three open reading frames encoding proteins of deduced molecular masses of 41, 13, and 104 kDa, respectively. These proteins revealed significant amino acid homology to glycine cleavage (gcv) system T, H, and P proteins of Escherichia coli and other organisms. Southern blot analysis revealed the presence of similar sequences in diverse rhizobia. Measurement of beta-galactosidase activity of a USDA257 strain containing a transcriptional fusion of gcvT promoter sequences to the lacZ gene revealed that the USDA257 gcvTHP operon was inducible by glycine. Inactivation of either gcvT or gcvP of USDA257 enabled the mutant to nodulate several agronomically improved North American soybean cultivars. These nodules revealed anatomical features typical of determinate nodules, with numerous bacteroids within the infected cells. Unlike for the previously characterized soybean cultivar specificity locus nolBTUVW, inactivation of the gcv locus had no discernible effect on the secretion of nodulation outer proteins of USDA257.
Collapse
Affiliation(s)
- Julio C. Lorio
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| | - Won-Seok Kim
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| | - Ammulu H. Krishnan
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| | - Hari B. Krishnan
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
46
|
Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl Environ Microbiol 2010; 76:3758-61. [PMID: 20382805 DOI: 10.1128/aem.03122-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sinorhizobium fredii is a nitrogen-fixing legume symbiont that stimulates the formation of root nodules. S. fredii nodulation of roots is influenced by Nop proteins, which are secreted through a type III secretion system (T3SS). We demonstrate that S. fredii injects NopP into Vigna unguiculata nodules in a T3SS-dependent manner.
Collapse
|
47
|
Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:223-34. [PMID: 20064065 DOI: 10.1094/mpmi-23-2-0223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wenzel M, Friedrich L, Göttfert M, Zehner S. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:124-9. [PMID: 19958145 DOI: 10.1094/mpmi-23-1-0124] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The type III-secreted proteins NopE1 and NopE2 of Bradyrhizobium japonicum contain a repeated domain of unknown function (DUF1521), which is present in a few uncharacterized proteins. A nopE1/nopE2 double mutant strain exhibited higher nodulation efficiency on Vigna radiata KPS2 than the wild type or single nopE1 or nopE2 mutants. This indicates that both proteins are effectors that functionally overlap. To test translocation into the plant cell compartment during symbiosis, NopE1 and NopE2 were fused with adenylate cyclase (cya) as reporter. A fusion with the full-length proteins or N-terminal peptides resulted in increased cAMP levels in nodules, indicating translocation. Purified NopE1 exhibited self-cleavage in the presence of Ca(2+). Two identical cleavage sites (GD'PHVD) were identified inside the DUF1521 domains. The C-terminal cleavage site was analyzed by alanine scanning. Protein variants in which aspartate or proline next to the cleavage sites was substituted displayed no cleavage. A noncleavable protein was obtained by exchange of the aspartate residues preceding both cleavage sites. Complementation analysis with the noncleavable NopE1 variant did not restore wild-type phenotype on Vigna radiata KPS2, indicating a physiological role of NopE1 cleavage in effector function.
Collapse
Affiliation(s)
- Mandy Wenzel
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, D-01062 Dresden, Germany
| | | | | | | |
Collapse
|
49
|
López-Baena FJ, Monreal JA, Pérez-Montaño F, Guasch-Vidal B, Bellogín RA, Vinardell JM, Ollero FJ. The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in Williams soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1445-54. [PMID: 19810813 DOI: 10.1094/mpmi-22-11-1445] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sinorhizobium fredii HH103 secretes through the type III secretion system at least eight nodulation outer proteins (Nops), including the effector NopP. These proteins are necessary for an effective nodulation of soybean. In this work, we show that expression of the nopP gene depended on flavonoids and on the transcriptional regulators NodD1 and TtsI. Inactivation of nopP led to an increase in the symbiotic capacity of S. fredii HH103 to nodulate Williams soybean. In addition, we studied whether Nops affect the expression of the pathogenesis-related genes GmPR1, GmPR2, and GmPR3 in soybean roots and shoots. In the presence of S. fredii HH103, expression of pathogenesis-related (PR) gene PR1 was induced in soybean roots 4 days after inoculation and it increased 8 days after inoculation. The absence of Nops provoked a higher induction of PR1 in both soybean roots and shoots, suggesting that Nops function early, diminishing plant defense responses during rhizobial infection. However, the inactivation of nopP led to a decrease in PR1 expression. Therefore, the absence of NopP or that of the complete set of Nops seems to have opposite effects on the symbiotic performance and on the elicitation of soybean defense responses.
Collapse
|
50
|
Okazaki S, Zehner S, Hempel J, Lang K, Göttfert M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 2009; 295:88-95. [PMID: 19473255 DOI: 10.1111/j.1574-6968.2009.01593.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cloning and sequencing of a 47.1-kb chromosomal DNA region revealed the presence of a type III secretion system (T3SS) in Bradyrhizobium elkanii USDA61. The identified genes are likely to encode the transcriptional activator TtsI, core components of the secretion apparatus and secreted proteins. Several ORFs within the cluster are not conserved in other rhizobia. Nine tts box motifs, a promoter element of TtsI-regulated genes, were found; six of them upstream of annotated genes. For functional analyses, the rhcC2 and rhcJ genes were disrupted. These mutations had a cultivar-specific effect on nodulation. Vigna radiata cv. KPS1 developed nodules if infected with the mutant strains but not with the wild type. In contrast, V. radiata cv. CN36 was nodulated by all strains. Nodulation of rj(1) soybean depended on the T3SS. A comparison of the protein patterns from supernatants of the wild type and rhcJ mutant by two-dimensional gel electrophoresis revealed proteins that are secreted only in the wild-type background. These results show that B. elkanii encodes a functional T3SS that is involved in the interaction with host legumes.
Collapse
Affiliation(s)
- Shin Okazaki
- Institute of Genetics, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|