1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
El-Esawi MA, Ali HM, El-Ballat EM. AtWRKY30 transcription factor mitigates chromium and salt toxicity and induces resistance against bacterial leaf blight and stripe rust in wheat. PHYSIOLOGIA PLANTARUM 2025; 177:e70243. [PMID: 40302154 DOI: 10.1111/ppl.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 05/01/2025]
Abstract
Chromium (Cr) and salt stresses restrict wheat growth and yield globally. Wheat crops are also adversely affected by bacterial leaf blight and stripe rust caused by Pseudomonas syringae pv. syringae (Pss) and Puccinia striiformis f. sp. tritici (Pst), respectively. WRKY transcription factors revealed great potential in elevating crop resistance to environmental factors. This study assessed the roles of Arabidopsis WRKY30 (AtWRKY30) in regulating wheat tolerance to Cr toxicity, salt stress, bacterial leaf blight and stripe rust. Wild-type and AtWRKY30-overexpressing wheat plants were exposed to non-stressful conditions, Cr toxicity (0.5 mM K2Cr2O7), salt stress (150 mM NaCl), and pathogen infections (Pss or Pst). The results indicated that Cr and salt stresses restricted the growth and reduced the level of chlorophyll, gas exchange rates and potassium content in wheat plants. However, under Cr and salt toxicity, AtWRKY30 overexpression in wheat significantly reduced the levels of oxidative stress biomarkers and minerals (Cr, sodium, and chloride), augmented the growth and yield components, and enhanced the levels of chlorophyll, potassium, gas exchange, osmoprotectants, enzymatic antioxidants, redox components, and expression of stress-related genes compared to wild-type plants. AtWRKY30 overexpression also significantly reduced bacterial leaf blight and stripe rust symptoms in wheat plants infected with Pss and Pst, respectively. Overall, this research demonstrated the effective roles of AtWRKY30 in enhancing wheat tolerance to Cr toxicity, salinity, bacterial leaf blight and stripe rust, indicating its general effect on stress tolerance and redox regulation. Hence, AtWRKY30 can be employed as a promising candidate gene to further boost crop stress tolerance.
Collapse
Affiliation(s)
- Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Nutrition and Dietetics, Ahlia University, Manama, Bahrain
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-, Saudi Arabia
| | - Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Liu W, Zhang W, Cheng H, Ding Y, Yao B, Shangguan Z, Wei G, Chen J. Rhizobia cystathionine γ-lyase-derived H2S delays nodule senescence in soybean. PLANT PHYSIOLOGY 2024; 196:2232-2250. [PMID: 39133896 DOI: 10.1093/plphys/kiae411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/11/2024] [Indexed: 12/14/2024]
Abstract
Hydrogen sulfide (H2S) is required for optimal establishment of soybean (Glycine max)-Sinorhizobium fredii symbiotic interaction, yet its role in regulating the nitrogen fixation-senescence transition remains poorly understood. A S. fredii cystathionine γ-lyase (CSE) mutant deficient in H2S synthesis showed early nodule senescence characterized by reduced nitrogenase activity, structural changes in nodule cells, and accelerated bacteroid death. In parallel, the CSE mutant facilitated the generation of reactive oxygen species (ROS) and elicited antioxidant responses. We observed that H2S-mediated persulfidation of cysteine C31/C80 in ascorbate peroxidase (APX) and C32 in APX2-modulated enzyme activity, thereby participating in hydrogen peroxide (H2O2) detoxification and delaying nodule senescence. Comparative transcriptomic analysis revealed a significant upregulation of GmMYB128, an MYB transcription factor (TF), in the CSE mutant nodules. Functional analysis through overexpression and RNAi lines of GmMYB128 demonstrated its role as a positive regulator in nodule senescence. MYB128-OE inoculated with the CSE mutant strain exhibited a reduction in nitrogenase activity and a significant increase in DD15 expression, both of which were mitigated by NaHS addition. Changes at the protein level encompassed the activation of plant defenses alongside turnover in carbohydrates and amino acids. Our results suggest that H2S plays an important role in maintaining efficient symbiosis and preventing premature senescence of soybean nodules.
Collapse
Affiliation(s)
- Wuyu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Weiqin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Huaping Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Yuxin Ding
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Baihui Yao
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Juan Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| |
Collapse
|
4
|
Zeng S, Wang S, Lin Z, Jin H, Li H, Yu H, Li J, Yu L, Luo L. Functions of the Sinorhizobium meliloti LsrB Substrate-Binding Domain in Oxidized Glutathione Resistance, Alfalfa Nodulation Symbiosis, and Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23908-23916. [PMID: 39418129 DOI: 10.1021/acs.jafc.4c07925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
To successfully colonize legume root nodules, rhizobia must effectively evade host-generated reactive oxygen species (ROS). LsrB, a redox regulator from Sinorhizobium meliloti, is essential for symbiosis with alfalfa (Medicago sativa). The three cysteine residues in LsrB's substrate domain play distinct roles in activating downstream redox genes. The study found that LsrB's substrate-binding domain, dependent on the cysteine residue Cys146, is involved in oxidized glutathione (GSSG) resistance and alfalfa nodulation symbiosis. LsrB homologues from other rhizobia, with Cys172/Cys238 or Cys146, enhance GSSG resistance and complement lsrB mutant's symbiotic nodulation. Substituting amino acids in Azorhizobium caulinodans LsrB with Cys restores lsrB mutant phenotypes. The lsrB deletion mutant shows increased sensitivity to NCR247, suggesting an interaction with host plant-derived NCRs in alfalfa nodules. Our findings reveal that the key cysteine residue in the LsrB's substrate domain is vital for rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Shuang Zeng
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Sunjun Wang
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhiyin Lin
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huibo Jin
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hongbo Li
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huilin Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaze Li
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Tsyganova AV, Gorshkov AP, Vorobiev MG, Tikhonovich IA, Brewin NJ, Tsyganov VE. Dynamics of Hydrogen Peroxide Accumulation During Tip Growth of Infection Thread in Nodules and Cell Differentiation in Pea ( Pisum sativum L.) Symbiotic Nodules. PLANTS (BASEL, SWITZERLAND) 2024; 13:2923. [PMID: 39458872 PMCID: PMC11510766 DOI: 10.3390/plants13202923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium-legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, H2O2 has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence. In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant nodules blocked at different stages of the infection process was analyzed using a cytochemical reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule zones were determined in order to investigate the relationship of H2O2 localization and distribution with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in different zones of the indeterminate nodule have been partially confirmed by comparative analysis on mutant genotypes.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Maxim G. Vorobiev
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Igor A. Tikhonovich
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | | | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| |
Collapse
|
6
|
Chevriau J, De Palma GZ, Jozefkowicz C, Vitali V, Canessa Fortuna A, Ayub N, Soto G, Bienert GP, Zeida A, Alleva K. Permeation mechanisms of hydrogen peroxide and water through Plasma Membrane Intrinsic Protein aquaporins. Biochem J 2024; 481:1329-1347. [PMID: 39136178 DOI: 10.1042/bcj20240310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
Hydrogen peroxide (H2O2) transport by aquaporins (AQP) is a critical feature for cellular redox signaling. However, the H2O2 permeation mechanism through these channels remains poorly understood. Through functional assays, two Plasma membrane Intrinsic Protein (PIP) AQP from Medicago truncatula, MtPIP2;2 and MtPIP2;3 have been identified as pH-gated channels capable of facilitating the permeation of both water (H2O) and H2O2. Employing a combination of unbiased and enhanced sampling molecular dynamics simulations, we investigated the key barriers and translocation mechanisms governing H2O2 permeation through these AQP in both open and closed conformational states. Our findings reveal that both H2O and H2O2 encounter their primary permeation barrier within the selectivity filter (SF) region of MtPIP2;3. In addition to the SF barrier, a second energetic barrier at the NPA (asparagine-proline-alanine) region that is more restrictive for the passage of H2O2 than for H2O, was found. This behavior can be attributed to a dissimilar geometric arrangement and hydrogen bonding profile between both molecules in this area. Collectively, these findings suggest mechanistic heterogeneity in H2O and H2O2 permeation through PIPs.
Collapse
Affiliation(s)
- Jonathan Chevriau
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
| | - Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Victoria Vitali
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Canessa Fortuna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Hurlingham, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Gerd Patrick Bienert
- Crop Physiology, TUM School of Life Sciences, Technical University of Munich, Alte Akademie 12, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, 85354 Freising, Germany
| | - Ari Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (Ceinbio), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Karina Alleva
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
de Carvalho-Niebel F, Fournier J, Becker A, Marín Arancibia M. Cellular insights into legume root infection by rhizobia. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102597. [PMID: 39067084 DOI: 10.1016/j.pbi.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.
Collapse
Affiliation(s)
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032, Marburg, Germany; Department of Biology, Philipps-Universität Marburg, D-35032, Marburg, Germany
| | | |
Collapse
|
8
|
Li Y, Liu Q, Zhang DX, Zhang ZY, Xu A, Jiang YL, Chen ZC. Metal nutrition and transport in the process of symbiotic nitrogen fixation. PLANT COMMUNICATIONS 2024; 5:100829. [PMID: 38303509 PMCID: PMC11009365 DOI: 10.1016/j.xplc.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) facilitated by the interaction between legumes and rhizobia is a well-documented and eco-friendly alternative to chemical nitrogen fertilizers. Host plants obtain fixed nitrogen from rhizobia by providing carbon and mineral nutrients. These mineral nutrients, which are mostly in the form of metal ions, are implicated in various stages of the SNF process. This review describes the functional roles played by metal ions in nodule formation and nitrogen fixation and specifically addresses their transport mechanisms and associated transporters within root nodules. Future research directions and potential strategies for enhancing SNF efficiency are also discussed.
Collapse
Affiliation(s)
- Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuo-Yan Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Long Jiang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Kaziuk FD, Furlanetto ALDDM, Dos Santos ALW, Floh EIS, Donatti L, Merlin Rocha ME, Fortes F, Martinez GR, Cadena SMSC. The metabolic response of Araucaria angustifolia embryogenic cells to heat stress is associated with their maturation potential. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1010-1027. [PMID: 37743049 DOI: 10.1071/fp22272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
Araucaria angustifolia is a critically endangered species and its distribution can be affected by an increase in temperature. In this study, we evaluated the effects of heat stress (30°C) on Araucaria angustifolia cell lines responsive (SE1) and non-responsive (SE6) to the development of somatic embryos. The viability of both cell lines was reduced by heat stress and mitochondria were the organelles most affected. Heat stress for 24h increased the reactive oxygen species (ROS) levels in SE1 cells, followed by a reduction at 48 and 72h. In SE6 cells, an increase occurred after 24 and 48h of stress, returning to control levels at 72h. H2 O2 levels were increased after 24h for both SE1 and SE6 cells, being higher for SE6. Interestingly, at 48 and 72h, H2 O2 levels decreased in SE1 cells, while in SE6, the values returned to the control levels. The respiration of SE6 cells in the presence of oxidisable substrates was inhibited by heat stress, in agreement with the high lipid peroxidation levels. The AaSERK1 gene was identified in both cultures, with greater expression in the SE1 line. Heat stress for 24 and 48h increased gene expression only in this cell line. The activity of peroxidase, superoxide dismutase and enzymes of the glutathione/ascorbate cycle was increased in both cell lines subjected to heat stress. Catalase activity was increased only in SE6 cells at 72h of exposure. These results show that responsive SE1 cells can modulate ROS levels more efficiently than SE6 when these cells are stressed by heat. This ability may be related to the maturation capacity of these cells.
Collapse
Affiliation(s)
- Fernando Diego Kaziuk
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | - Lucelia Donatti
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Eliane Merlin Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Fabiane Fortes
- Department of Biology, State University of Paraná, União da Vitória, Paraná, Brazil
| | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
10
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
11
|
Hu Y, Zhang H, Gu B, Zhang J. The transcription factor VaMYC2 from Chinese wild Vitis amurensis enhances cold tolerance of grape (V. vinifera) by up-regulating VaCBF1 and VaP5CS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:218-229. [PMID: 36272189 DOI: 10.1016/j.plaphy.2022.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cultivated grapes, one of the most important fruit crops in the world, are sensitive to low temperature. Since Chinese wild grape Vitis amurensis is highly tolerant to cold, it is imperative to study and utilize its cold-tolerance genes for molecular breeding. Here, a VaMYC2 gene from V. amurensis was cloned, and its function was investigated by expressing VaMYC2 in the cold-sensitive V. vinifera cultivar 'Thompson Seedless'. The expression of VaMYC2 could be induced by cold stress, methyl jasmonate and ethylene treatment, but was inhibited by abscisic acid in leaves of V. amurensis. When transgenic grape lines expressing VaMYC2 were subjected to cold stress (-1 °C) for 41 h, the transgenic lines showed less freezing injury and lower electrolyte leakage and malondialdehyde content, but higher contents of soluble sugars, soluble proteins and proline, and antioxidant enzyme activities compared with wild-type. Moreover, the expression of some cold-tolerance related genes increased in transgenic lines. Besides, the interactions of VaMYC2 with VaJAZ1 and VaJAZ7B were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Yeast one-hybrid and dual luciferase assays showed that VaMYC2 can bind to the promoters of VaCBF1 and VaP5CS and activate their expressions. In conclusion, expression of VaMYC2 in V. vinifera enhances cold tolerance of transgenic grapes which is attributed to enhanced accumulation of osmotic regulatory substances, cell membrane stability, antioxidant enzyme activity, and expression of cold tolerance-related genes. Also, VaMYC2 interacts with VaJAZ1 and VaJAZ7, and activates the expression of VaCBF1 and VaP5CS to mediate cold tolerance in grapes.
Collapse
Affiliation(s)
- Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Minguillón S, Matamoros MA, Duanmu D, Becana M. Signaling by reactive molecules and antioxidants in legume nodules. THE NEW PHYTOLOGIST 2022; 236:815-832. [PMID: 35975700 PMCID: PMC9826421 DOI: 10.1111/nph.18434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Legume nodules are symbiotic structures formed as a result of the interaction with rhizobia. Nodules fix atmospheric nitrogen into ammonia that is assimilated by the plant and this process requires strict metabolic regulation and signaling. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved as signal molecules at all stages of symbiosis, from rhizobial infection to nodule senescence. Also, reactive sulfur species (RSS) are emerging as important signals for an efficient symbiosis. Homeostasis of reactive molecules is mainly accomplished by antioxidant enzymes and metabolites and is essential to allow redox signaling while preventing oxidative damage. Here, we examine the metabolic pathways of reactive molecules and antioxidants with an emphasis on their functions in signaling and protection of symbiosis. In addition to providing an update of recent findings while paying tribute to original studies, we identify several key questions. These include the need of new methodologies to detect and quantify ROS, RNS, and RSS, avoiding potential artifacts due to their short lifetimes and tissue manipulation; the regulation of redox-active proteins by post-translational modification; the production and exchange of reactive molecules in plastids, peroxisomes, nuclei, and bacteroids; and the unknown but expected crosstalk between ROS, RNS, and RSS in nodules.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Manuel A. Matamoros
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Manuel Becana
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| |
Collapse
|
13
|
Zhang L, Li N, Wang Y, Zheng W, Shan D, Yu L, Luo L. Sinorhizobium meliloti ohrR genes affect symbiotic performance with alfalfa (Medicago sativa). ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:595-603. [PMID: 35510290 DOI: 10.1111/1758-2229.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sinorhizobium meliloti infects the host plant alfalfa to induce formation of nitrogen-fixation root nodules, which inevitably elicit reactive oxygen species (ROS) bursts and organic peroxide generation. The MarR family regulator OhrR regulates the expression of chloroperoxidase and organic hydrogen resistance protein, which scavenge organic peroxides in free-living S. meliloti cells. The single mutant of ohrR genes SMc01945 (ohrR1) and SMc00098 (ohrR2) lacked symbiotic phenotypes. In this work, we identified the novel ohrR gene SMa2020 (ohrR3) and determined that ohrR genes are important for rhizobial infection, nodulation and nitrogen fixation with alfalfa. By analysing the phenotypes of the single, double and triple deletion mutants of ohrR genes, we demonstrate that ohrR1 and ohrR3 slightly affect rhizobial growth, but ohrR2 and ohrR3 influence cellular resistance to the organic peroxide, tert-butyl hydroperoxide. Deletion of ohrR1 and ohrR3 negatively affected infection thread formation and nodulation, and consequently, plant growth. Correspondingly, the expression of the ROS detoxification genes katA and sodB as well as that of the nitrogenase gene nifH was downregulated in bacteroids of the double and triple deletion mutants, which may underlie the symbiotic defects of these mutants. These findings demonstrate that OhrR proteins play a role in the S. meliloti-alfalfa symbiosis.
Collapse
Affiliation(s)
- Lanya Zhang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ningning Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yawen Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenjia Zheng
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dandan Shan
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
14
|
Martini MC, Vacca C, Torres Tejerizo GA, Draghi WO, Pistorio M, Lozano MJ, Lagares A, Del Papa MF. ubiF is involved in acid stress tolerance and symbiotic competitiveness in Rhizobium favelukesii LPU83. Braz J Microbiol 2022; 53:1633-1643. [PMID: 35704174 DOI: 10.1007/s42770-022-00780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.
Collapse
Affiliation(s)
- María Carla Martini
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Gonzalo A Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina.
| |
Collapse
|
15
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
16
|
Morgun VV, Kots SY, Mamenko TP, Rybachenko LI, Pukhtaievych PP. Regulation of superoxide dismutase activity in soybean plants by inoculating seeds with rhizobia containing nanoparticles of metal carboxylates under conditions of different water supply. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Soybean is one of the most profitable advanced crops in agricultural production in Ukraine and the world as a whole. Therefore, studies of means of regulation and increase in the adaptive capacity of soybeans in symbiosis with nodule bacteria under the action of unfavourable environmental factors are relevant and should be aimed at the use of complex bacterial compositions involving modern nanotechnological approaches. Nanocarboxylates of ferrum, molybdenum and germanium metals were used as components of rhizobia inoculation suspension for soybean seed treatment to study the effectiveness of their complex effect on the regulation of the activity of the key antioxidant enzyme superoxide dismutase in plants under drought. Various symbiotic systems were used, which included soybean plants and inoculation suspensions based on the active, virulent Tn5-mutant Bradyrhizobium japonicum B1-20 by adding nanoparticles of ferrum, germanium and molybdenum carboxylates to the culture medium in a ratio of 1: 1000. Citric acid was the chelator. A model drought lasting 14 days was created during the period of active fixation of atmospheric molecular nitrogen by root nodules of soybeans in the budding and flowering stages, by means of controlled watering of plants to 30% of the total moisture content. In the stage of bean formation, watering of plants was resumed to the optimal level – 60% of the total moisture content. The control was soybean plants, the seeds of which were inoculated with a suspension of rhizobia without the addition of chelated metals. The following research methods were used in the work – microbiological, physiological and biochemical. According to the results, it was found that when nanoparticles of carboxylates of ferrum, molybdenum and germanium were added to the inoculation suspension of rhizobia, there was an increase in superoxide dismutase activity in root nodules and a decrease in soybean leaves under optimal water supply conditions of plants. This indicates the initial changes in the activity of the antioxidant enzyme in these symbiotic systems, induced by the influence of chelated metals in combination with the rhizobia of the active Tn5-mutant B. japonicum B1-20. Prolonged drought induced an increase in the overall level of superoxide dismutase activity in soybean nodules and leaves, compared to plants grown under optimal watering conditions. The symbiotic system formed by soybeans and B. japonicum with molybdenum carboxylate nanoparticles was the most sensitive to long-term drought exposure, compared to two other soybean-rhizobial symbioses using ferrum and germanium nanocarboxylates. This was manifested in the unstable reaction of the enzyme to the action of drought – suppression or intensification of the level of its activity in the root nodules and leaves of soybeans inoculated with rhizobia containing molybdenum carboxylate nanoparticles. In symbiotic systems with the participation of germanium and ferrum nanocarboxylates, slight changes were revealed in superoxide dismutase activity in root nodules and leaves of plants during drought and restoration of enzyme activity to the level of plants with optimal watering after water stress. It is concluded that the addition to the culture medium of rhizobia Tn5-mutant B1-20 of nanocarboxylates of germanium or ferrum is an effective means of regulating the activity of the antioxidant enzyme superoxide dismutase in soybean root nodules and leaves, which can contribute to an increase in the protective properties and adaptation of plants to the action of dehydration.
Collapse
|
17
|
Castro-Rodríguez R, Abreu I, Reguera M, Novoa-Aponte L, Mijovilovich A, Escudero V, Jiménez-Pastor FJ, Abadía J, Wen J, Mysore KS, Álvarez-Fernández A, Küpper H, Imperial J, González-Guerrero M. The Medicago truncatula Yellow Stripe1-Like3 gene is involved in vascular delivery of transition metals to root nodules. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7257-7269. [PMID: 32841350 DOI: 10.1093/jxb/eraa390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Česke Budějovice, Czech Republic
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Francisco J Jiménez-Pastor
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | - Javier Abadía
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | | | | | - Ana Álvarez-Fernández
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Česke Budějovice, Czech Republic
- University of South Bohemia, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Serrano, 115 bis, 28006 Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Escudero V, Abreu I, Tejada-Jiménez M, Rosa-Núñez E, Quintana J, Prieto RI, Larue C, Wen J, Villanova J, Mysore KS, Argüello JM, Castillo-Michel H, Imperial J, González-Guerrero M. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. THE NEW PHYTOLOGIST 2020; 228:194-209. [PMID: 32367515 DOI: 10.1111/nph.16642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Julia Quintana
- Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Camille Larue
- EcoLab, CNRS, Université de Toulouse, Toulouse, 31326, France
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Julie Villanova
- ID16 Beamline. European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
19
|
Si Z, Guan N, Zhou Y, Mei L, Li Y, Li Y. A Methionine Sulfoxide Reductase B Is Required for the Establishment of Astragalus sinicus-Mesorhizobium Symbiosis. PLANT & CELL PHYSIOLOGY 2020; 61:1631-1645. [PMID: 32618998 DOI: 10.1093/pcp/pcaa085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Methionine sulfoxide reductase B (MsrB) is involved in oxidative stress or defense responses in plants. However, little is known about its role in legume-rhizobium symbiosis. In this study, an MsrB gene was identified from Astragalus sinicus and its function in symbiosis was characterized. AsMsrB was induced under phosphorus starvation and displayed different expression patterns under symbiotic and nonsymbiotic conditions. Hydrogen peroxide or methyl viologen treatment enhanced the transcript level of AsMsrB in roots and nodules. Subcellular localization showed that AsMsrB was localized in the cytoplasm of onion epidermal cells and co-localized with rhizobia in nodules. Plants with AsMsrB-RNAi hairy roots exhibited significant decreases in nodule number, nodule nitrogenase activity and fresh weight of the aerial part, as well as an abnormal nodule and symbiosome development. Statistical analysis of infection events showed that plants with AsMsrB-RNAi hairy roots had significant decreases in the number of root hair curling events, infection threads and nodule primordia compared with the control. The content of hydrogen peroxide increased in AsMsrB-RNAi roots but decreased in AsMsrB overexpression roots at the early stage of infection. The transcriptome analysis showed synergistic modulations of the expression of genes involved in reactive oxygen species generation and scavenging, defense and pathogenesis and early nodulation. In addition, a candidate protein interacting with AsMsrB was identified and confirmed by bimolecular fluorescence complementation. Taken together, our results indicate that AsMsrB plays an essential role in nodule development and symbiotic nitrogen fixation by affecting the redox homeostasis in roots and nodules.
Collapse
Affiliation(s)
- Zaiyong Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes (Basel) 2020; 11:genes11030335. [PMID: 32245101 PMCID: PMC7141136 DOI: 10.3390/genes11030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in several bacteria; however, to the best of our knowledge, none have investigated this process in A. caulinodans. In this study, we identified and characterised the organic hydroperoxide resistance gene ohr (AZC_2977) and its regulator ohrR (AZC_3555) in A. caulinodans ORS571. Hypersensitivity to organic hydroperoxide was observed in an ohr mutant. While using a lacZ-based reporter system, we revealed that OhrR repressed the expression of ohr. Moreover, electrophoretic mobility shift assays demonstrated that OhrR regulated ohr by direct binding to its promoter region. We showed that this binding was prevented by OhrR oxidation under aerobic conditions, which promoted OhrR dimerization and the activation of ohr. Furthermore, we showed that one of the two conserved cysteine residues in OhrR, Cys11, was critical for the sensitivity to organic hydroperoxides. Plant assays revealed that the inactivation of Ohr decreased the number of stem nodules and nitrogenase activity. Our data demonstrated that Ohr and OhrR are required for protecting A. caulinodans from organic hydroperoxide stress and play an important role in the interaction of the bacterium with plants. The results that were obtained in our study suggested that a thiol-based switch in A. caulinodans might sense host organic peroxide signals and enhance symbiosis.
Collapse
|
21
|
Xia F, Cheng H, Chen L, Zhu H, Mao P, Wang M. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC PLANT BIOLOGY 2020; 20:104. [PMID: 32138669 PMCID: PMC7059392 DOI: 10.1186/s12870-020-2321-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/28/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of vigor caused by seed aging adversely affects agricultural production under natural conditions. However, priming is an economical and effective method for improving the vigor of aged seeds. The objective of this study was to test the effectiveness of exogenous ascorbic acid (ASC) and glutathione (GSH) priming in the repairing of aged oat (Avena sativa) seeds, and to test the hypothesis that structural and functional systems in mitochondria were involved in this process. RESULTS Oat seeds were artificially aged for 20 days at 45 °C, and were primed with solutions (1 mmol L- 1) of ASC, GSH, or ASC + GSH at 20 °C for 0.5 h before or after their aging. Seed germination, antioxidant enzymes in the ASC-GSH cycle, cytochrome c oxidase (COX) and mitochondrial malate dehydrogenase (MDH) activities, and the mitochondrial ultrastructures of the embryonic root cells were markedly improved in aged oat seeds through post-priming with ASC, GSH, or ASC + GSH, while their malondialdehyde and H2O2 contents decreased significantly (P < 0.05). CONCLUSION Our results suggested that priming with ASC, GSH, or ASC + GSH after aging could effectively alleviate aging damage in oat seeds, and that the role of ASC was more effective than GSH, but positive effects of post-priming with ASC and GSH were not superior to post-priming with ASC in repairing aging damage of aged oat seeds. However, pre-priming with ASC, GSH, or ASC + GSH was not effective in oat seeds, suggesting that pre-priming with ASC, GSH, or ASC + GSH could not inhibit the occurrence of aging damage in oat seeds.
Collapse
Affiliation(s)
- Fangshan Xia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 China
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Hang Cheng
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Lingling Chen
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Huisen Zhu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 China
| | - Peisheng Mao
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Mingya Wang
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| |
Collapse
|
22
|
Sozoniuk M, Nowak M, Dudziak K, Bulak P, Leśniowska-Nowak J, Kowalczyk K. Antioxidative system response of pedunculate oak ( Quercus robur L.) seedlings to Cd exposure. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1377-1384. [PMID: 31736541 PMCID: PMC6825056 DOI: 10.1007/s12298-019-00712-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/18/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The use of pedunculate oak (Quercus robur L.), along with other tree species, for the afforestation of heavy metal contaminated lands is an attractive prospect. Little, however, is known of Q. robur tolerance and its antioxidative system response to heavy metal exposure. The main objective of the study was to determine the cadmium-induced changes in antioxidative system of pedunculate oak in an attempt to identify molecular mechanisms underlying Cd tolerance. This may be of great importance in respect of using Q. robur for phytoremediation purposes. As the response of the antioxidative system to heavy metal contamination can vary within species, the research was conducted on oak seedlings from two different regions of origin. Differences in antioxidative system response of seedlings derived from tested regions of origin were noticed both at the transcript and enzyme activity levels. The obtained results indicate that ascorbate peroxidase (APX; EC 1.11.1.11) and superoxide dismutase (SOD; EC 1.15.1.1) play a first barrier role in oak seedlings response to the oxidative stress caused by Cd exposure. Catalase (CAT; EC 1.11.1.6) is involved in reducing the negative effects of prolonged Cd treatment.
Collapse
Affiliation(s)
- Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 St., 20-950 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 St., 20-950 Lublin, Poland
| | - Karolina Dudziak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 St., 20-950 Lublin, Poland
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1 St., 20-093, Lublin, Poland
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4 St., 20-290 Lublin, Poland
| | - Justyna Leśniowska-Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 St., 20-950 Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 St., 20-950 Lublin, Poland
| |
Collapse
|
23
|
Schwember AR, Schulze J, Del Pozo A, Cabeza RA. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. PLANTS (BASEL, SWITZERLAND) 2019; 8:E333. [PMID: 31489914 PMCID: PMC6784058 DOI: 10.3390/plants8090333] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.
Collapse
Affiliation(s)
- Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 306-22, Chile.
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| | - Ricardo A Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| |
Collapse
|
24
|
Sakamoto K, Ogiwara N, Kaji T, Sugimoto Y, Ueno M, Sonoda M, Matsui A, Ishida J, Tanaka M, Totoki Y, Shinozaki K, Seki M. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. JOURNAL OF PLANT RESEARCH 2019; 132:541-568. [PMID: 31165947 DOI: 10.1007/s10265-019-01117-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/25/2019] [Indexed: 05/11/2023]
Abstract
Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to affect the activity of and colonization by the other, and their interactions can be detected within host plants. Here, we report the transcription profiles of genes differentially expressed in soybean roots in the presence of rhizobial, AM, or rhizobial-AM dual symbiosis, compared with those in control (uninoculated) roots. Following inoculation, soybean plants were grown in a glasshouse for 6 weeks; thereafter their root transcriptomes were analyzed using an oligo DNA microarray. Among the four treatments, the root nodule number and host plant growth were highest in plants with dual symbiosis. We observed that the expression of 187, 441, and 548 host genes was up-regulated and 119, 1,439, and 1,298 host genes were down-regulated during rhizobial, AM, and dual symbiosis, respectively. The expression of 34 host genes was up-regulated in each of the three symbioses. These 34 genes encoded several membrane transporters, type 1 metallothionein, and transcription factors in the MYB and bHLH families. We identified 56 host genes that were specifically up-regulated during dual symbiosis. These genes encoded several nodulin proteins, phenylpropanoid metabolism-related proteins, and carbonic anhydrase. The nodulin genes up-regulated by the AM fungal colonization probably led to the observed increases in root nodule number and host plant growth. Some other nodulin genes were down-regulated specifically during AM symbiosis. Based on the results above, we suggest that the contribution of AM fungal colonization is crucial to biological N2-fixation and host growth in soybean with rhizobial-AM dual symbiosis.
Collapse
Affiliation(s)
- Kazunori Sakamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| | - Natsuko Ogiwara
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Tomomitsu Kaji
- JA ZEN-NOH Research and Development Center, 4-18-1 Higashiyawata, Hiratsuka, Kanagawa, 254-0016, Japan
| | - Yurie Sugimoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Mitsuru Ueno
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Masatoshi Sonoda
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
25
|
Yu L, Huang L, Zeng S, Tang G, Wang S, Li N, Yan J, Luo L. Reactive oxygen species accumulation patterns of alfalfa root nodules identified using an optimized method. Acta Biochim Biophys Sin (Shanghai) 2019; 51:448-451. [PMID: 30977514 DOI: 10.1093/abbs/gmz008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 01/09/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Leqi Huang
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shuang Zeng
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Guirong Tang
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Sunjun Wang
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ningning Li
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junhui Yan
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
26
|
Chou M, Sun Y, Yang J, Wang Y, Li Y, Yuan G, Zhang D, Wang J, Wei G. Comprehensive analysis of phenotype, microstructure and global transcriptional profiling to unravel the effect of excess copper on the symbiosis between nitrogen-fixing bacteria and Medicago lupulina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1346-1357. [PMID: 30625663 DOI: 10.1016/j.scitotenv.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. However, knowledge of the molecular mechanisms, especially the microstructure and global transcriptional profiling, of the symbiosis process under heavy metal contamination is limited. In this study, a heavy metal-tolerant legume, Medicago lupulina, was treated with different concentrations of copper (Cu). The results showed that the early infection process was inhibited and the nodule ultrastructure was changed under 200 mg kg-1 Cu stress. Most infection threads (ITs) were prevented from entering the nodule cells, and few rhizobia were released into the host cells, in which thickening of the plant cell wall and IT wall was observed, demonstrating that rhizobial invasion was inhibited under Cu stress. RNA-seq analysis indicated that a strong shift in gene expression occurred (3257 differentially expressed genes, DEGs). The most pronounced effect was the upregulation of a set of 71 of 73 DEGs for nodule-specific cysteine-rich peptides, which have been shown to control the terminal differentiation of rhizobia in the nodules and to have antimicrobial activity. Various genes for metal transport, chelation binding and antioxidant defence were regulated. In particular, the DEGs for Cu trafficking and detoxification were induced during nodule formation. The DEGs for ethylene (ET) biosynthesis and signalling were also differentially expressed during nodulation, suggesting that the inhibition of nodulation by Cu occurred partially through ET signalling. Furthermore, the genes related to the cell wall were mostly upregulated and most likely involved in cell wall thickening. These findings provide an integrated understanding of the effects of Cu on legume nodule symbiosis at the molecular and phenotypic levels.
Collapse
Affiliation(s)
- Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yujie Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Guijie Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jiamei Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
27
|
Araniti F, Costas-Gil A, Cabeiras-Freijanes L, Lupini A, Sunseri F, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM. Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction. PLoS One 2018; 13:e0208802. [PMID: 30586368 PMCID: PMC6306208 DOI: 10.1371/journal.pone.0208802] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022] Open
Abstract
Phytotoxic potential of rosmarinic acid (RA), a caffeic acid ester largely found in aromatic species, was evaluated on Arabidopsis through metabolomic and microscopic approaches. In-vitro bioassays pointed out that RA affected root growth and morphology, causing ROS burst, ROS scavengers activity inhibition and consequently, an alteration on cells organization and ultrastructure. In particular, RA-treatment (175 μM) caused strong vacuolization, alteration of mitochondria structure and function and a consistent ROS-induced reduction of their transmembrane potential (ΔΨm). These data suggested a cell energy deficit also confirmed by the metabolomic analysis, which highlighted a strong alteration of both TCA cycle and amino acids metabolism. Moreover, the increase in H2O2 and O2- contents suggested that RA-treated meristems underwent oxidative stress, resulting in apoptotic bodies and necrotic cells. Taken together, these results suggest that RA inhibits two of the main ROS scavengers causing high ROS accumulation, responsible of the alterations on mitochondrial ultrastructure and activity through ΔΨm dissipation, TCA-cycle alteration, cell starvation and consequently cell death on Arabidopsis seedlings. All these effects resulted in a strong inhibition on root growth and development, which convert RA in a promising molecule to be explored for further use in weed management.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Feo di Vito, Reggio Calabria, Italy
| | - Aitana Costas-Gil
- Department of Plant Biology and Soil Science. University of Vigo. Campus Lagoas-Marcosende, Vigo, Spain
| | - Luz Cabeiras-Freijanes
- Department of Plant Biology and Soil Science. University of Vigo. Campus Lagoas-Marcosende, Vigo, Spain
- CÍTACA. Agri-Food Research and Transfer Cluster, Campus da Auga. University of Vigo, Ourense, Spain
| | - Antonio Lupini
- Department AGRARIA, University Mediterranea of Reggio Calabria, Feo di Vito, Reggio Calabria, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, Feo di Vito, Reggio Calabria, Italy
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science. University of Vigo. Campus Lagoas-Marcosende, Vigo, Spain
- CÍTACA. Agri-Food Research and Transfer Cluster, Campus da Auga. University of Vigo, Ourense, Spain
| | - Maria Rosa Abenavoli
- Department AGRARIA, University Mediterranea of Reggio Calabria, Feo di Vito, Reggio Calabria, Italy
| | - Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science. University of Vigo. Campus Lagoas-Marcosende, Vigo, Spain
- CÍTACA. Agri-Food Research and Transfer Cluster, Campus da Auga. University of Vigo, Ourense, Spain
| |
Collapse
|
28
|
Senovilla M, Castro-Rodríguez R, Abreu I, Escudero V, Kryvoruchko I, Udvardi MK, Imperial J, González-Guerrero M. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2018; 218:696-709. [PMID: 29349810 DOI: 10.1111/nph.14992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Igor Kryvoruchko
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano, 115 bis, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
29
|
Chromium(VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8031213. [PMID: 29662899 PMCID: PMC5832134 DOI: 10.1155/2018/8031213] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/31/2017] [Indexed: 11/18/2022]
Abstract
Most legume species have the ability to establish a symbiotic relationship with soil nitrogen-fixing rhizobacteria that promote plant growth and productivity. There is an increasing evidence of reactive oxygen species (ROS) important role in formation of legume-rhizobium symbiosis and nodule functioning. Environmental pollutants such as chromium compounds can cause damage to rhizobia, legumes, and their symbiosis. In plants, toxic effects of chromium(VI) compounds are associated with the increased production of ROS and oxidative stress development as well as with inhibition of pigment synthesis and modification of virtually all cellular components. These metabolic changes result in inhibition of seed germination and seedling development as well as reduction of plant biomass and crop yield. However, if plants establish symbiosis with rhizobia, heavy metals are accumulated preferentially in nodules decreasing the toxicity of metals to the host plant. This review summarizes data on toxic effects of chromium on legume plants and legume-rhizobium symbiosis. In addition, we discussed the role of oxidative stress in both chromium toxicity and formation of rhizobial symbiosis and use of nodule bacteria for minimizing toxic effects of chromium on plants.
Collapse
|
30
|
Tang G, Xing S, Wang S, Yu L, Li X, Staehelin C, Yang M, Luo L. Regulation of cysteine residues in LsrB proteins fromSinorhizobium melilotiunder free-living and symbiotic oxidative stress. Environ Microbiol 2017; 19:5130-5145. [DOI: 10.1111/1462-2920.13992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Guirong Tang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences; Plant Science Center, Shanghai University; Shanghai 200444 China
- School of Communication & Information Engineering; Shanghai University; Shanghai 200444 China
| | - Shenghui Xing
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences; Plant Science Center, Shanghai University; Shanghai 200444 China
| | - Sunjun Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences; Plant Science Center, Shanghai University; Shanghai 200444 China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences; Plant Science Center, Shanghai University; Shanghai 200444 China
| | - Xuan Li
- Key Laboratory of Synthetic Biology; CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Bioresources, School of Life Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Menghua Yang
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology; Zhejiang A&F University; Zhejiang Lin'an 311300 China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences; Plant Science Center, Shanghai University; Shanghai 200444 China
| |
Collapse
|
31
|
Hood G, Ramachandran V, East AK, Downie JA, Poole PS. Manganese transport is essential for N 2 -fixation by Rhizobium leguminosarum in bacteroids from galegoid but not phaseoloid nodules. Environ Microbiol 2017; 19:2715-2726. [PMID: 28447383 PMCID: PMC5575495 DOI: 10.1111/1462-2920.13773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Rhizobium leguminosarum has two high-affinity Mn2+ transport systems encoded by sitABCD and mntH. In symbiosis, sitABCD and mntH were expressed throughout nodules and also strongly induced in Mn2+ -limited cultures of free-living cells. Growth of a sitA mntH double mutant was severely reduced under Mn2+ limitation and sitA and mntH single mutants were more sensitive to oxidative stress. The double sitA mntH mutant of R. leguminosarum was unable to fix nitrogen (Fix- ) with legumes belonging to the galegoid clade (Pisum sativum, Vicia faba and Vicia hirsuta). The presence of infection thread-like structures and sparsely-packed plant cells in nodules suggest that bacteroid development was blocked, either at a late stage of infection thread progression or during bacteroid-release. In contrast, a double sitA mntH mutant was Fix+ on common bean (Phaseoli vulgaris), a member of the phaseoloid clade of legumes, indicating a host-specific symbiotic requirement for Mn2+ transport.
Collapse
Affiliation(s)
- Graham Hood
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Vinoy Ramachandran
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Alison K. East
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - J. Allan Downie
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philip S. Poole
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
32
|
Tang G, Wang S, Lu D, Huang L, Li N, Luo L. Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress. Microbiol Res 2017; 198:1-7. [DOI: 10.1016/j.micres.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
|
33
|
Dupuy P, Gourion B, Sauviac L, Bruand C. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. MICROBIOLOGY-SGM 2017; 163:333-342. [PMID: 27902438 DOI: 10.1099/mic.0.000400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double-strand breaks (DSBs). In particular, the reactive oxygen species (ROS) and the reactive nitrogen species (RNS) produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSBs. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, an S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis or that DSBs are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.
Collapse
Affiliation(s)
- Pierre Dupuy
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
34
|
Pinto-Carbó M, Sieber S, Dessein S, Wicker T, Verstraete B, Gademann K, Eberl L, Carlier A. Evidence of horizontal gene transfer between obligate leaf nodule symbionts. THE ISME JOURNAL 2016; 10:2092-105. [PMID: 26978165 PMCID: PMC4989318 DOI: 10.1038/ismej.2016.27] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 01/06/2023]
Abstract
Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants.
Collapse
Affiliation(s)
- Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Steven Dessein
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
- Botanic Garden, Meise, Belgium
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
- Botanic Garden, Meise, Belgium
| | - Karl Gademann
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurelien Carlier
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Laboratory of Microbiology, Ghent University, 9000 Belgium, Switzerland
| |
Collapse
|
35
|
Ormeño-Orrillo E, Gomes DF, Del Cerro P, Vasconcelos ATR, Canchaya C, Almeida LGP, Mercante FM, Ollero FJ, Megías M, Hungria M. Genome of Rhizobium leucaenae strains CFN 299(T) and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics 2016; 17:534. [PMID: 27485828 PMCID: PMC4971678 DOI: 10.1186/s12864-016-2859-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
Background Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici “group” are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian “Cerrados” soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299T and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. Results The genomes of R. leucaenae strains CFN 299T and CPAO 29.8 were estimated at 6.7–6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency. Types I, II, IV-pili, IV and V secretion systems were present in both strains and might help soil and host colonization as well as the symbiotic performance under stressful conditions. The symbiotic plasmid of CPAO 29.8 is highly similar to already described tropici pSyms, including five copies of nodD and three of nodA genes. R. leucaenae CFN 299T is capable of synthesizing Nod factors in the absence of flavonoids when submitted to osmotic stress, indicating that under abiotic stress the regulation of nod genes might be different. Conclusion A detailed study of the genes putatively related to stress tolerance in R. leucaenae highlighted an intricate pattern comprising a variety of mechanisms that are probably orchestrated to tolerate the stressful conditions to which the strains are submitted on a daily basis. The capacity to synthesize Nod factors under abiotic stress might follow the same regulatory pathways as in CIAT 899T and may help both to improve bacterial survival and to expand host range to guarantee the perpetuation of the symbiosis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2859-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Douglas Fabiano Gomes
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil.,CAPES, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Federal District, Brazil
| | - Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal, 41012, Sevilla, Spain
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório Nacional de Computação Científica (LNCC), Labinfo, Rua Getúlio Vargas 333, 25651-071, Petrópolis, Rio de Janeiro, Brazil
| | - Carlos Canchaya
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310, Vigo, Spain
| | - Luiz Gonzaga Paula Almeida
- Laboratório Nacional de Computação Científica (LNCC), Labinfo, Rua Getúlio Vargas 333, 25651-071, Petrópolis, Rio de Janeiro, Brazil
| | | | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal, 41012, Sevilla, Spain
| | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal, 41012, Sevilla, Spain
| | | |
Collapse
|
36
|
Montiel J, Arthikala MK, Cárdenas L, Quinto C. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation. Int J Mol Sci 2016; 17:E680. [PMID: 27213330 PMCID: PMC4881506 DOI: 10.3390/ijms17050680] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Jesús Montiel
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Manoj-Kumar Arthikala
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, Blvd. UNAM 2011, León 37684, Guanajuato, Mexico.
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca 62271, Morelos, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca 62271, Morelos, Mexico.
| |
Collapse
|
37
|
Vuleta A, Manitašević Jovanović S, Tucić B. Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:166-173. [PMID: 26841194 DOI: 10.1016/j.plaphy.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
High solar radiation has been recognized as one of the main causes of the overproduction of reactive oxygen species (ROS) and oxidative stress in plants. To remove the excess of ROS, plants use different antioxidants and tune their activity and/or isoform number as required for given light conditions. In this study, the adaptiveness of light-induced variation in the activities and isoform patterns of key enzymatic antioxidants SOD, APX and CAT was tested in leaves of Iris pumila clonal plants from two natural populations inhabiting a sun exposed dune site and a forest understory, using a reciprocal-transplant experiment. At the exposed habitat, the mean enzymatic activity of total SODs was significantly greater than that in the shaded one, while the amount of the mitochondrial MnSOD was notably higher compared to the plastidic Cu/ZnSOD. However, the number of Cu/ZnSOD isoforms was greater in the forest understory relative to the exposed site (three vs. two, respectively). An inverse relationship recorded between the quantities of MnSOD and Cu/ZnSOD in alternative light habitats might indicate that the two enzymes compensate each other in maintaining intracellular ROS and redox balance. The adaptive population differentiation in APX activity was exclusively recorded in the open habitat, which indicated that the synergistic effect of high light and temperature stress could be the principal selective factor, rather than high light alone. The enzymatic activity of CAT was similar between the two populations, implicating APX as the primary H2O2 scavenger in the I. pumila leaves exposed to high light intensity.
Collapse
Affiliation(s)
- Ana Vuleta
- Department of Evolutionary Biology, Institute for Biological Research Siniša Stanković, University of Belgrade, Serbia.
| | - Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research Siniša Stanković, University of Belgrade, Serbia
| | - Branka Tucić
- Department of Evolutionary Biology, Institute for Biological Research Siniša Stanković, University of Belgrade, Serbia
| |
Collapse
|
38
|
Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. PLANTA 2016; 243:251-262. [PMID: 26403286 DOI: 10.1007/s00425-015-2407-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.
Collapse
Affiliation(s)
- Simone Belmondo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Cristina Calcagno
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Andrea Genre
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Alain Puppo
- Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- CNSR, UMR 7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nicolas Pauly
- Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- CNSR, UMR 7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Luisa Lanfranco
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
| |
Collapse
|
39
|
Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:454. [PMID: 27092165 PMCID: PMC4824774 DOI: 10.3389/fpls.2016.00454] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 05/07/2023]
Abstract
The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process.
Collapse
|
40
|
Gambino M, Cappitelli F. Mini-review: Biofilm responses to oxidative stress. BIOFOULING 2016; 32:167-178. [PMID: 26901587 DOI: 10.1080/08927014.2015.1134515] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.
Collapse
Affiliation(s)
- Michela Gambino
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| | - Francesca Cappitelli
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
41
|
Ascorbic acid production in root, nodule and Enterobacter spp. (Gammaproteobacteria) isolated from root nodule of the legume Abrus precatorius L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
MtROP8 is involved in root hair development and the establishment of symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Arthikala MK, Sánchez-López R, Nava N, Santana O, Cárdenas L, Quinto C. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. THE NEW PHYTOLOGIST 2014; 202:886-900. [PMID: 24571730 DOI: 10.1111/nph.12714] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/07/2014] [Indexed: 05/19/2023]
Abstract
The reactive oxygen species (ROS) generated by respiratory burst oxidative homologs (Rbohs) are involved in numerous plant cell signaling processes, and have critical roles in the symbiosis between legumes and nitrogen-fixing bacteria. Previously, down-regulation of RbohB in Phaseolus vulgaris was shown to suppress ROS production and abolish Rhizobium infection thread (IT) progression, but also to enhance arbuscular mycorrhizal fungal (AMF) colonization. Thus, Rbohs function both as positive and negative regulators. Here, we assessed the effect of enhancing ROS concentrations, by overexpressing PvRbohB, on the P. vulgaris--rhizobia and P. vulgaris--AMF symbioses. We estimated superoxide concentrations in hairy roots overexpressing PvRbohB, determined the status of early and late events of both Rhizobium and AMF interactions in symbiont-inoculated roots, and analyzed the nodule ultrastructure of transgenic plants overexpressing PvRbohB. Overexpression of PvRbohB significantly enhanced ROS production, the formation of ITs, nodule biomass, and nitrogen-fixing activity, and increased the density of symbiosomes in nodules, and the density and size of bacteroides in symbiosomes. Furthermore, PvCAT, early nodulin, PvSS1, and PvGOGAT transcript abundances were elevated in these nodules. By contrast, mycorrhizal colonization was reduced in roots that overexpressed RbohB. Overexpression of PvRbohB augmented nodule efficiency by enhancing nitrogen fixation and delaying nodule senescence, but impaired AMF colonization.
Collapse
MESH Headings
- Biomass
- Cloning, Molecular
- Colony Count, Microbial
- Down-Regulation/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Models, Biological
- Mycorrhizae/growth & development
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitrogen Fixation/genetics
- Phaseolus/enzymology
- Phaseolus/genetics
- Phaseolus/microbiology
- Phaseolus/ultrastructure
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Rhizobium/physiology
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
- Symbiosis/genetics
Collapse
Affiliation(s)
- Manoj-Kumar Arthikala
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Olivia Santana
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| |
Collapse
|
44
|
Sujkowska-Rybkowska M, Borucki W. Localization of hydrogen peroxide accumulation and diamine oxidase activity in pea root nodules under aluminum stress. Micron 2014; 57:13-22. [PMID: 24246127 DOI: 10.1016/j.micron.2013.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 11/18/2022]
Abstract
Aluminum (Al) is one of the environmental stressors that induces formation of reactive oxygen species (ROS) in plants. Hydrogen peroxide (H2O2) and H2O2-generated apoplast diamine oxidase (DAO) activity were detected cytochemically via transmission electron microscopy (TEM), in pea (Pisum sativum L.) root nodules exposed to high (50 μM AlCl3, for 2 and 24h) Al stress. The nodules were shown to respond to Al stress by disturbances in infection thread (IT) growth, bacteria endocytosis, premature degeneration of bacteroidal tissue and generation of H2O2 in nodule apoplast. Large amounts of peroxide were found at the same sites as high DAO activity under Al stress, suggesting that DAO is a major source of Al-induced peroxide accumulation in the nodules. Peroxide distribution and DAO activity in the nodules of both control plants and Al-treated ones were typically found in the plant cell walls, intercellular spaces and infection threads. However, 2 h Al treatment increased DAO activity and peroxide accumulation in the nodule apoplast and bacteria within threads. A prolonged Al treatment (24 h) increased the H2O2 content and DAO activity in the nodule apoplast, especially in the thread walls, matrix and bacteria within infection threads. In addition to ITs, prematurely degenerated bacteroids, which occurred in response to Al, were associated with intense staining for H2O2 and DAO activity. These results suggest the involvement of DAO in the production of a large amount of H2O2 in the nodule apoplast under Al stress. The role of reactive oxygen species in pea-Rhizobium symbiosis under Al stress is discussed.
Collapse
Affiliation(s)
| | - Wojciech Borucki
- Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
45
|
Hamdoun S, Liu Z, Gill M, Yao N, Lu H. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. PLoS One 2013; 8:e83219. [PMID: 24349466 PMCID: PMC3859648 DOI: 10.1371/journal.pone.0083219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022] Open
Abstract
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Bianucci E, Furlan A, Rivadeneira J, Sobrino-Plata J, Carpena-Ruiz RO, Tordable MDC, Fabra A, Hernández LE, Castro S. Influence of cadmium on the symbiotic interaction established between peanut (Arachis hypogaea L.) and sensitive or tolerant bradyrhizobial strains. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 130:126-134. [PMID: 24076512 DOI: 10.1016/j.jenvman.2013.08.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/24/2013] [Accepted: 08/30/2013] [Indexed: 05/28/2023]
Abstract
Heavy metals in soil are known to affect rhizobia-legume interaction reducing not only rhizobia viability, but also nitrogen fixation. In this work, we have compared the response of the symbiotic interaction established between the peanut (Arachis hypogaea L.) and a sensitive (Bradyrhizobium sp. SEMIA6144) or a tolerant (Bradyrhizobium sp. NLH25) strain to Cd under exposure to this metal. The addition of 10 μM Cd reduced nodulation and nitrogen content in both symbiotic associations, being the interaction established with the sensitive strain more affected than that with the tolerant one. Plants inoculated with the sensitive strain accumulated more Cd than those inoculated with the tolerant strain. Nodules showed an increase in reactive oxygen species (ROS) production when exposed to Cd. The histological structure of the nodules exposed to Cd revealed a deposit of unknown material on the cortex and a significant reduction in the infection zone diameter in both strains, and a greater number of uninfected cells in those nodules occupied by the sensitive strain. In conclusion, Cd negatively impacts on peanut-bradyrhizobia interaction, irrespective of the tolerance of the strains to this metal. However, the inoculation of peanut with Bradyrhizobium sp. NLH25 results in a better symbiotic interaction suggesting that the tolerance observed in this strain could limit Cd accumulation by the plant.
Collapse
Affiliation(s)
- Eliana Bianucci
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J Bacteriol 2013; 195:5362-9. [PMID: 24078609 DOI: 10.1128/jb.00681-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sinorhizobium meliloti requires exopolysaccharides in order to form a successful nitrogen-fixing symbiosis with Medicago species. Additionally, during early stages of symbiosis, S. meliloti is presented with an oxidative burst that must be overcome. Levels of production of the exopolysaccharides succinoglycan (EPS-I) and galactoglucan (EPS-II) were found to correlate positively with survival in hydrogen peroxide (H2O2). H2O2 damage is dependent on the presence of iron and is mitigated when EPS-I and EPS-II mutants are cocultured with cells expressing either exopolysaccharide. Purified EPS-I is able to decrease in vitro levels of H2O2, and this activity is specific to the symbiotically active low-molecular-weight form of EPS-I. This suggests a potential protective function of exopolysaccharides against H2O2 during early symbiosis.
Collapse
|
48
|
Frendo P, Matamoros MA, Alloing G, Becana M. Thiol-based redox signaling in the nitrogen-fixing symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:376. [PMID: 24133498 PMCID: PMC3783977 DOI: 10.3389/fpls.2013.00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N 2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS) so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed us to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, that their spatio-temporally distribution is correlated with the corresponding (homo)glutathione synthetase activities, and that they are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
| | - Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Manuel Becana, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain e-mail:
| |
Collapse
|
49
|
Górska-Czekaj M, Borucki W. A correlative study of hydrogen peroxide accumulation after mercury or copper treatment observed in root nodules of Medicago truncatula under light, confocal and electron microscopy. Micron 2013; 52-53:24-32. [DOI: 10.1016/j.micron.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
|
50
|
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R. Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 2013; 18:2202-19. [PMID: 23249379 DOI: 10.1089/ars.2012.5136] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE During the Legume-Rhizobium symbiosis, hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) appear to play an important signaling role in the establishment and the functioning of this interaction. Modifications of the levels of these reactive species in both partners impair either the development of the nodules (new root organs formed on the interaction) or their N(2)-fixing activity. RECENT ADVANCES NADPH oxidases (Noxs) have been recently described as major sources of H(2)O(2) production, via superoxide anion dismutation, during symbiosis. Nitrate reductases (NR) and electron transfer chains from both partners were found to significantly contribute to NO production in N(2)-fixing nodules. Both S-sulfenylated and S-nitrosylated proteins have been detected during early interaction and in functioning nodules, linking reactive oxygen species (ROS)/NO production to redox-based protein regulation. NO was also found to play a metabolic role in nodule energy metabolism. CRITICAL ISSUES H(2)O(2) may control the infection process and the subsequent bacterial differentiation into the symbiotic form. NO is required for an optimal establishment of symbiosis and appears to be a key player in nodule senescence. FUTURE DIRECTIONS A challenging question is to define more precisely when and where reactive species are generated and to develop adapted tools to detect their production in vivo. To investigate the role of Noxs and NRs in the production of H(2)O(2) and NO, respectively, the use of mutants under the control of organ-specific promoters will be of crucial interest. The balance between ROS and NO production appears to be a key point to understand the redox regulation of symbiosis.
Collapse
Affiliation(s)
- Alain Puppo
- Institut Sophia Agrobiotech, TGU INRA 1355-CNRS 7254, Université de Nice-Sophia Antipolis, Sophia-Antipolis, France.
| | | | | | | | | |
Collapse
|