1
|
Lee B, Lee JI, Kwon SK, Ryu CM, Kim JF. A Marine Bacterium with Animal-Pathogen-Like Type III Secretion Elicits the Nonhost Hypersensitive Response in a Land Plant. THE PLANT PATHOLOGY JOURNAL 2023; 39:584-591. [PMID: 38081318 PMCID: PMC10721388 DOI: 10.5423/ppj.ft.09.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/17/2023]
Abstract
Active plant immune response involving programmed cell death called the hypersensitive response (HR) is elicited by microbial effectors delivered through the type III secretion system (T3SS). The marine bacterium Hahella chejuensis contains two T3SSs that are similar to those of animal pathogens, but it was able to elicit HR-like cell death in the land plant Nicotiana benthamiana. The cell death was comparable with the transcriptional patterns of H. chejuensis T3SS-1 genes, was mediated by SGT1, a general regulator of plant resistance, and was suppressed by AvrPto1, a type III-secreted effector of a plant pathogen that inhibits HR. Thus, type III-secreted effectors of a marine bacterium are capable of inducing the nonhost HR in a land plant it has never encountered before. This suggests that plants may have evolved to cope with a potential threat posed by alien pathogen effectors. Our work documents an exceptional case of nonhost HR and provides an expanded perspective for studying plant nonhost resistance.
Collapse
Affiliation(s)
- Boyoung Lee
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jeong-Im Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Microbiome Initiative, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
2
|
Wu J, van der Burgh AM, Bi G, Zhang L, Alfano JR, Martin GB, Joosten MHAJ. The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:75-85. [PMID: 28876174 DOI: 10.1094/mpmi-08-17-0203-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) are cell-surface receptors that are essential for detecting invading pathogens and subsequent activation of plant defense responses. RLPs lack a cytoplasmic kinase domain to trigger downstream signaling leading to host resistance. The RLK SOBIR1 constitutively interacts with the tomato RLP Cf-4, thereby providing Cf-4 with a kinase domain. SOBIR1 is required for Cf-4-mediated resistance to strains of the fungal tomato pathogen Cladosporium fulvum that secrete the effector Avr4. Upon perception of this effector by the Cf-4/SOBIR1 complex, the central regulatory RLK SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3a (SERK3a) is recruited to the complex and defense signaling is triggered. SOBIR1 is also required for RLP-mediated resistance to bacterial, fungal ,and oomycete pathogens, and we hypothesized that SOBIR1 is targeted by effectors of such pathogens to suppress host defense responses. In this study, we show that Pseudomonas syringae pv. tomato DC3000 effector AvrPto interacts with Arabidopsis SOBIR1 and its orthologs of tomato and Nicotiana benthamiana, independent of SOBIR1 kinase activity. Interestingly, AvrPto suppresses Arabidopsis SOBIR1-induced cell death in N. benthamiana. Furthermore, AvrPto compromises Avr4-triggered cell death in Cf-4-transgenic N. benthamiana, without affecting Cf-4/SOBIR1/SERK3a complex formation. Our study shows that the RLP coreceptor SOBIR1 is targeted by a bacterial effector, which results in compromised defense responses.
Collapse
Affiliation(s)
- Jinbin Wu
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aranka M van der Burgh
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guozhi Bi
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lisha Zhang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - James R Alfano
- 2 Center for Plant Science Innovation and
- 3 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Gregory B Martin
- 4 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 5 Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Matthieu H A J Joosten
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
3
|
Venkatesh J, Jahn M, Kang BC. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper. PLoS One 2016; 11:e0161545. [PMID: 27536870 PMCID: PMC4990186 DOI: 10.1371/journal.pone.0161545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| | - Molly Jahn
- University of Wisconsin, Madison, Wisconsin, WI 53706, United States of America
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| |
Collapse
|
4
|
Ruan L, Wang H, Cai G, Peng D, Zhou H, Zheng J, Zhu L, Wang X, Yu H, Li S, Geng C, Sun M. A two-domain protein triggers heat shock pathway and necrosis pathway both in model plant and nematode. Environ Microbiol 2015; 17:4547-65. [PMID: 26147248 DOI: 10.1111/1462-2920.12968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/24/2015] [Indexed: 11/30/2022]
Abstract
The entomopathogen Bacillus thuringiensis is equipped with multiple virulent factors. The genome sequence of B. thuringiensis YBT1520 revealed the presence of a two-domain protein named Nel which is composed of a necrosis-inducing phytophthora protein 1-like domain found in phytopathogens and a ricin B-like lectin domain. The merging of two distantly related domains is relatively rare. Nel induced necrosis and pathogen-triggered immunity (PTI) on model plants. The Nel also exhibited inhibition activity to nematode. Microscopic observation showed that the toxicity of Nel to nematodes targets the intestine. Quantitative proteomics revealed that Nel stimulated the host defence. The Nel thus possesses dual roles, as both toxin and elicitor. Remarkably, the Nel protein triggered a similar response, induction of the heat shock pathway and the necrosis pathway, in both model plants and nematodes. The unusual ability of Nel to function across kingdom suggests a highly conserved mechanism in eukaryotes that predates the divergence of plants and animal. It is also speculated that the two-domain protein is the result of horizontal gene transfer (HGT) between phytopathogens and entomopathogens. Our results provide an example that HGT occurs between members of different species or even genera with lower frequency are particularly important for evolution of new bacterial pathogen lineages with new virulence. Bacillus thuringiensis occupies the same ecological niches, plant and soil, as phytopathogens, providing the opportunity for gene exchange.
Collapse
Affiliation(s)
- Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huihui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghai Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinshui Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xixi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoquan Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Seng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ce Geng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Gill US, Lee S, Mysore KS. Host versus nonhost resistance: distinct wars with similar arsenals. PHYTOPATHOLOGY 2015; 105:580-7. [PMID: 25626072 DOI: 10.1094/phyto-11-14-0298-rvw] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants face several challenges by bacterial, fungal, oomycete, and viral pathogens during their life cycle. In order to defend against these biotic stresses, plants possess a dynamic, innate, natural immune system that efficiently detects potential pathogens and initiates a resistance response in the form of basal resistance and/or resistance (R)-gene-mediated defense, which is often associated with a hypersensitive response. Depending upon the nature of plant-pathogen interactions, plants generally have two main defense mechanisms, host resistance and nonhost resistance. Host resistance is generally controlled by single R genes and less durable compared with nonhost resistance. In contrast, nonhost resistance is believed to be a multi-gene trait and more durable. In this review, we describe the mechanisms of host and nonhost resistance against fungal and bacterial plant pathogens. In addition, we also attempt to compare host and nonhost resistance responses to identify similarities and differences, and their practical applications in crop improvement.
Collapse
Affiliation(s)
- Upinder S Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Seonghee Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| |
Collapse
|
6
|
Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z. Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 2014; 9:e113875. [PMID: 25437277 PMCID: PMC4250038 DOI: 10.1371/journal.pone.0113875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
AvrRxo1, a type III effector from Xanthomonas oryzae pv. oryzicola (Xoc) which causes bacterial leaf streak (BLS) in rice, can be recognised by non-host resistance protein Rxo1. It triggers a hypersensitive response (HR) in maize. Little is known regarding the virulence function of AvrRxo1. In this study, we determined that AvrRxo1 is able to suppress the HR caused by the non-host resistance recognition of Xanthomonas oryzae pv. oryzae (Xoo) by Nicotiana benthamiana. It is toxic, inducing cell death from transient expression in N. benthamiana, as well as in yeast. Among the four AvrRxo1 alleles from different Xoc strains, we concluded that the toxicity is abolished by a single amino acid substitution at residue 344 in two AvrRxo1 alleles. A series of truncations from the carboxyl terminus (C-terminus) indicate that the complete C-terminus of AvrRxo1 plays an essential role as a suppressor or cytotoxic protein. The C-terminus was also required for the avirulence function, but the last two residues were not necessary. The first 52 amino acids of N-terminus are unessential for toxicity. Point mutagenesis experiments indicate that the ATP/GTP binding site motif A is required for all three functions of AvrRxo1, and NLS is required for both the avirulence and the suppression of non-host resistance. The putative thiol protease site is only required for the cytotoxicity function. These results determine that AvrRxo1 plays a role in the complex interaction with host proteins after delivery into plant cells.
Collapse
Affiliation(s)
- Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Qingle Chang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Wenjie Feng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Baogang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Tao Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Ning Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Fangyin Yao
- Biotechnology Research Center, Shandong Academy of Agricultural Science, Jinan, Shandong, PR China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, Shandong, PR China
| |
Collapse
|
7
|
Byth-Illing HA, Bornman L. Heat shock, with recovery, promotes protection of Nicotiana tabacum during subsequent exposure to Ralstonia solanacearum. Cell Stress Chaperones 2014; 19:193-203. [PMID: 23943343 PMCID: PMC3933611 DOI: 10.1007/s12192-013-0445-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022] Open
Abstract
Host-pathogen interactions in plants are complex and potentially influenced by heat shock/stress (HS). Host HS proteins (HSPs) induced prior to bacterial exposure may facilitate the folding of newly synthesized defense proteins and promote incompatible host-pathogen interactions. We hypothesized that a non-lethal HS, with recovery, promotes protection of Nicotiana tabacum during subsequent exposure to avirulent soilborne necrotrophic pathogen Ralstonia solanacearum. The objective of this study included investigating the effects of HS with or without recovery on the outcome of bacterial exposure to a virulent and avirulent biovar of R. solanacearum in N. tabacum cell suspensions. This was assessed by quantifying host Hsp70/Hsc70 levels, mitochondrial electron (e (-)) transport activity as a marker of viability, and phosphatidylserine externalization and DNA fragmentation as markers of apoptosis. Our findings support the hypothesis that HS, with recovery, promotes protection of N. tabacum during subsequent exposure to R. solanacearum, suggesting a role for Hsp70/Hsc70 in the observed protection of e (-) transport, increased apoptosis, and DNA fragmentation.
Collapse
Affiliation(s)
- Heather-Anne Byth-Illing
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa,
| | | |
Collapse
|
8
|
Lee S, Yang DS, Uppalapati SR, Sumner LW, Mysore KS. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. BMC PLANT BIOLOGY 2013; 13:65. [PMID: 23597256 PMCID: PMC3648423 DOI: 10.1186/1471-2229-13-65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/13/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pseudomonas syringae pv. tabaci (Pstab) is the causal agent of wildfire disease in tobacco plants. Several pathovars of Pseudomonas syringae produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, Pstab does not produce COR but still actively suppresses early plant defense responses. It is not clear if Pstab produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis. RESULTS We found that the Pstab extracellular metabolite extracts (Pstab extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, P. syringae pv. tomato T1 (Pst T1), in Nicotiana benthamiana. We also found that the accumulation of nonhost pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), was increased in N. benthamiana plants upon treatment with Pstab extracts . The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (Pto/AvrPto and Cf-9/AvrCf-9) and ethanol was not delayed or suppressed by Pstab extracts. We performed metabolite profiling to investigate the extracellular metabolites from Pstab using UPLC-qTOF-MS and identified 49 extracellular metabolites from the Pstab supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that Pstab extracellular metabolites may interfere with SA-mediated defense pathways. CONCLUSIONS In this study, we found that Pstab extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen Pst T1 in N. benthamiana.
Collapse
Affiliation(s)
- Seonghee Lee
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
| | - Dong Sik Yang
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
| | | | - Lloyd W Sumner
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
| |
Collapse
|
9
|
Senthil-Kumar M, Mysore KS. Nonhost resistance against bacterial pathogens: retrospectives and prospects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:407-27. [PMID: 23725473 DOI: 10.1146/annurev-phyto-082712-102319] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonhost resistance is a broad-spectrum plant defense that provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Upon landing on the surface of a nonhost plant species, a potential bacterial pathogen initially encounters preformed and, later, induced plant defenses. One of the initial defense responses from the plant is pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Nonhost plants also have mechanisms to detect nonhost-pathogen effectors and can trigger a defense response referred to as effector-triggered immunity (ETI). This nonhost resistance response often results in a hypersensitive response (HR) at the infection site. This review provides an overview of these plant defense strategies. We enumerate plant genes that impart nonhost resistance and the bacterial counter-defense strategies. In addition, prospects for application of nonhost resistance to achieve broad-spectrum and durable resistance in crop plants are also discussed.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA.
| | | |
Collapse
|
10
|
Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PRJ. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. THE NEW PHYTOLOGIST 2011; 190:653-66. [PMID: 21348873 DOI: 10.1111/j.1469-8137.2011.03643.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. • The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. • PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. • CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.
Collapse
Affiliation(s)
- Eleanor M Gilroy
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Wang K, Uppalapati SR, Zhu X, Dinesh-Kumar SP, Mysore KS. SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2010; 11:597-611. [PMID: 20695999 PMCID: PMC6640506 DOI: 10.1111/j.1364-3703.2010.00631.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SGT1 (suppressor of G2 allele of Skp1), an interactor of SCF (Skp1-Cullin-F-box) ubiquitin ligase complexes that mediate protein degradation, plays an important role at both G1-S and G2-M cell cycle transitions in yeast, and is highly conserved throughout eukaryotes. Plant SGT1 is required for both resistance (R) gene-mediated disease resistance and nonhost resistance to certain pathogens. Using virus-induced gene silencing (VIGS) in Nicotiana benthamiana, we demonstrate that SGT1 positively regulates the process of cell death during both host and nonhost interactions with various pathovars of Pseudomonas syringae. Silencing of NbSGT1 in N. benthamiana plants delays the induction of hypersensitive response (HR)-mediated cell death against nonhost pathogens and the development of disease-associated cell death caused by the host pathogen P. syringae pv. tabaci. Our results further demonstrate that NbSGT1 is required for Erwinia carotovora- and Sclerotinia sclerotiorum-induced disease-associated cell death. Overexpression of NbSGT1 in N. benthamiana accelerates the development of HR during R gene-mediated disease resistance and nonhost resistance. Our data also indicate that SGT1 is required for pathogen-induced cell death, but is not always necessary for the restriction of bacterial multiplication in planta. Therefore, we conclude that SGT1 is an essential component affecting the process of cell death during both compatible and incompatible plant-pathogen interactions.
Collapse
Affiliation(s)
- Keri Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
12
|
Wangdi T, Uppalapati SR, Nagaraj S, Ryu CM, Bender CL, Mysore KS. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis. PLANT PHYSIOLOGY 2010; 152:281-92. [PMID: 19915014 PMCID: PMC2799363 DOI: 10.1104/pp.109.148106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/09/2009] [Indexed: 05/20/2023]
Abstract
Pseudomonas syringae pv tomato DC3000 (Pst DC3000), which causes disease in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), produces coronatine (COR), a non-host-specific phytotoxin. COR, which functions as a jasmonate mimic, is required for full virulence of Pst DC3000 and for the induction of chlorosis in host plants. Previous genetic screens based on insensitivity to COR and/or methyl jasmonate identified several potential targets for COR and methyl jasmonate. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to individually reduce the expression of over 4,000 genes. The silenced lines of N. benthamiana were then screened for altered responses to purified COR. Using this forward genetics approach, several genes were identified with altered responses to COR. These were designated as ALC (for altered COR response) genes. When silenced, one of the identified genes, ALC1, produced a hypersensitive/necrosis-like phenotype upon COR application in a Coronatine-Insensitive1 (COI1)-dependent manner. To understand the involvement of ALC1 during the Pst DC3000-host interaction, we used the nucleotide sequence of ALC1 and identified its ortholog in Arabidopsis (Thylakoid Formation1 [THF1]) and tomato (SlALC1). In pathogenicity assays performed on Arabidopsis thf1 mutant and SlALC1-silenced tomato plants, Pst DC3000 induced accelerated coalescing necrotic lesions. Furthermore, we showed that COR affects ALC1 localization in chloroplasts in a COI1-dependent manner. In conclusion, our results show that the virus-induced gene silencing-based forward genetic screen has the potential to identify new players in COR signaling and disease-associated necrotic cell death.
Collapse
|
13
|
Freeman BC, Beattie GA. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:857-67. [PMID: 19522568 DOI: 10.1094/mpmi-22-7-0857] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The physiological mechanisms by which plants limit the growth of bacterial pathogens during gene-for-gene resistance are poorly understood. We characterized early events in the Arabidopsis thaliana-Pseudomonas syringae pathosystem to identify physiological changes for which the kinetics are consistent with bacterial growth restriction. Using a safranine-O dye solution to detect vascular activity, we demonstrated that A. thaliana Col-0 resistance to P. syringae pv. tomato DC3000 cells expressing avrRpm1 involved virtually complete cessation of vascular water movement into the infection site within only 3 h postinoculation (hpi), under the conditions tested. This vascular restriction preceded or was simultaneous with precipitous decreases in photosynthesis, stomatal conductance, and leaf transpiration, with the latter two remaining at detectable levels. Microscopic plant cell death was detected as early as 2 hpi. Interestingly, suppression of bacterial growth during AvrRpm1-mediated resistance was eliminated by physically blocking leaf water loss through the stomata without altering plant cell death and was nearly eliminated by incubating plants at high relative humidity. The majority of the population growth benefit from blocking leaf water loss occurred early after inoculation, i.e., between 4 and 8 hpi. Collectively, these results support a model in which A. thaliana suppresses P. syringae growth during gene-for-gene resistance, at least in part, by coupling restricted vascular flow to the infection site with water loss through partially open stomata; that is, the plants effectively starve the invading bacteria for water.
Collapse
Affiliation(s)
- Brian C Freeman
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
14
|
da Cunha L, Sreerekha MV, Mackey D. Defense suppression by virulence effectors of bacterial phytopathogens. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:349-57. [PMID: 17625953 DOI: 10.1016/j.pbi.2007.04.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 05/16/2023]
Abstract
Phytopathogenic bacteria and plants are locked in molecular struggles that determine the outcome of an infection. Bacteria make effector molecules that can induce defenses if recognized by specific host resistance (R) proteins. In susceptible hosts, however, effectors frequently promote virulence by suppressing host defenses. Defense-inducing and defense-suppressing activities are often related, as virulence-associated host modifications can elicit R protein activation. Thus, understanding of how an effector elicits defenses can translate into understanding of how it promotes virulence and vice versa. To control host cell functions, such as defense gene expression and vesicle trafficking, effectors use various biochemical activities, including protein modification, transcriptional regulation, and hormone mimicry. Progress with individual effectors will lead to an integrated view of how the activities of a collection of effectors intersect with genetically variable host plants to regulate susceptibility and resistance.
Collapse
Affiliation(s)
- Luis da Cunha
- Department of Horticulture and Crop Science, Program in Plant Molecular Biology and Biotechnology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
15
|
Krzymowska M, Konopka-Postupolska D, Sobczak M, Macioszek V, Ellis BE, Hennig J. Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:253-64. [PMID: 17355437 DOI: 10.1111/j.1365-313x.2007.03046.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tobacco plants (Nicotiana tabacum cv. Xanthi-nc) infiltrated with either of two pathovars of Pseudomonas syringae- an avirulent strain of P. syringae pv. tabaci (Pst) or the non-host pathogen P. syringae pv. maculicola M2 (Psm) - developed a hypersensitive response (HR). There were considerable differences in HR phenotype, timing and sequence of cell dismantling between the two pathosystems. Following Psm infiltration, the first macroscopic signs were visible at 4.5 h post-infiltration (hpi). Simultaneously, increased plasma membrane permeability was observed, suggesting that the loss of cell membrane integrity initiates the macroscopic HR evoked by Psm. In contrast, after Pst treatment there was a distinct time lapse between the first signs of tissue collapse (9 hpi) and the occurrence of plasma membrane discontinuity (12 hpi). Ultrastructural studies of cells undergoing the HR triggered by Psm and Pst revealed distinct patterns of alterations in morphology of organelles. Moreover, while different forms of nuclear degeneration were observed in leaf zones infiltrated with Pst, we failed to detect any abnormalities in the nuclei of Psm-treated tissue. In addition, application of synthetic caspase inhibitors (Ac-DEVD-CHO, Ac-YVAD-CMK) abolished HR induced by Pst, but not Psm. Our observations suggest that different cell death mechanisms are executed in response to Psm and Pst. Interestingly, pre-inoculation with Pst, but not with Psm, induced a long-distance acquired resistance (LDAR) response, even though locally a typical set of defense responses, including acquired resistance, was activated locally in response to Psm. The failure of Psm to induce LDAR may be due to the rapid degeneration of bundle sheath cells resulting from Psm infection.
Collapse
Affiliation(s)
- Magdalena Krzymowska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
16
|
Rose LE, Michelmore RW, Langley CH. Natural variation in the Pto disease resistance gene within species of wild tomato (Lycopersicon). II. Population genetics of Pto. Genetics 2007; 175:1307-19. [PMID: 17179076 PMCID: PMC1840093 DOI: 10.1534/genetics.106.063602] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 12/08/2006] [Indexed: 11/18/2022] Open
Abstract
Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the host species Lycopersicon esculentum, the cultivated tomato, and the closely related L. pimpinellifolium is triggered by the physical interaction between the protein products of the host resistance (R) gene Pto and the pathogen avirulence genes AvrPto and AvrPtoB. Sequence variation at the Pto locus was surveyed in natural populations of seven species of Lycopersicon to test hypotheses of host-parasite coevolution and functional adaptation of the Pto gene. Pto shows significantly higher nonsynonymous polymorphism than 14 other non-R-gene loci in the same samples of Lycopersicon species, while showing no difference in synonymous polymorphism, suggesting that the maintenance of amino acid polymorphism at this locus is mediated by pathogen selection. Also, a larger proportion of ancestral variation is maintained at Pto as compared to these non-R-gene loci. The frequency spectrum of amino acid polymorphisms known to negatively affect Pto function is skewed toward low frequency compared to amino acid polymorphisms that do not affect function or silent polymorphisms. Therefore, the evolution of Pto appears to be influenced by a mixture of both purifying and balancing selection.
Collapse
Affiliation(s)
- Laura E Rose
- The Center for Population Biology, University of California, Davis, California 95616
| | | | | |
Collapse
|
17
|
Hann DR, Rathjen JP. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:607-18. [PMID: 17217460 DOI: 10.1111/j.1365-313x.2006.02981.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Conserved microbial molecules known as PAMPs (pathogen-associated molecular patterns) elicit defence responses in plants through extracellular receptor proteins. One important PAMP is the flagellin protein derived from motile bacteria. We show here that the solanaceous species Nicotiana benthamiana perceives the flagellin proteins of both pathogenic and non-host species of Pseudomonas syringae. The response to flagellin required a gene closely related to that encoding the Arabidopsis thaliana flagellin receptor that we designated NbFls2. In addition, silencing of NbFls2 led to increased growth of compatible, non-host and non-pathogenic strains of P. syringae. Thus, flagellin perception restricts growth of P. syringae strains on N. benthamiana. Pathogenic bacteria secrete effector proteins into the plant cell to enhance virulence. We tested the ability of several unrelated effectors to suppress PAMP-mediated defences. The effector proteins AvrPto and AvrPtoB, but not AvrRps4, suppressed all responses tested including the hypersensitive response induced by non-host flagellins and the oomycete elicitor INF1. Strikingly, transient expression of avrPto or avrPtoB stimulated the growth of non-pathogenic Agrobacterium tumefaciensin planta, suggesting that multiplication of this species is also restricted by PAMP perception. Unexpectedly, AvrPtoB but not AvrPto required the defence-associated genes Rar1, Sgt1 and Eds1 for suppression. This observation separates the respective mechanisms of the two effectors, and suggests that AvrPtoB may target the defence machinery directly for its suppressive effect.
Collapse
Affiliation(s)
- Dagmar R Hann
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
18
|
Senthil-Kumar M, Govind G, Kang L, Mysore KS, Udayakumar M. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. PLANTA 2007; 225:523-39. [PMID: 16924536 DOI: 10.1007/s00425-006-0367-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 07/21/2006] [Indexed: 05/07/2023]
Abstract
Determining the functional role of genes that are differentially regulated during a stress response is challenging. In this study, few water deficit-induced genes from peanut were characterized in Nicotiana benthamiana using virus-induced gene silencing (VIGS) and their relevance for stress adaptation was validated. Twenty-five cDNA clones from peanut water deficit stress-induced cDNA library that had more than 50% nucleotide similarity with N. benthamiana or tomato homologs were selected. VIGS in peanut is not yet feasible and therefore we characterized these 25 genes in N. benthamiana. Increased membrane damage was seen under water deficit stress in most of the silenced plants signifying that many of these stress-induced genes are important to confer drought tolerance. Among the genes tested, silencing by homolog of flavonol 3-O-glucosyltransferase (F3OGT), homolog of alcohol dehydrogenase, homologous to salt inducible protein, and homolog of heat shock protein 70 showed more visible wilting symptoms compared with the control plants during water deficit stress. Interestingly, down-regulation of two genes, homologous to aspartic proteinase 2, and homolog of Jumonji class of transcription factor showed relative drought tolerant phenotypes. F3OGT silenced plants showed more wilting symptoms, membrane damage and chlorophyll degradation than any other silenced plants during water deficit. Our results demonstrate that VIGS approach can be used to characterize and assess the functional relevance of water deficit stress-induced cDNAs in a heterologous species.
Collapse
Affiliation(s)
- M Senthil-Kumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560 065 Karnataka, India
| | | | | | | | | |
Collapse
|
19
|
Wang K, Kang L, Anand A, Lazarovits G, Mysore KS. Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. THE NEW PHYTOLOGIST 2007; 174:212-223. [PMID: 17335510 DOI: 10.1111/j.1469-8137.2007.01999.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
* Green fluorescent protein (GFP) labeling of bacteria has been used to study their infection of and localization in plants, but strong autofluorescence from leaves and the relatively weak green fluorescence of GFP-labeled bacteria restrict its broader application to investigations of plant-bacterial interactions. * A stable and broad-host-range plasmid vector (pDSK-GFPuv) that strongly expresses GFPuv protein was constructed not only for in vivo monitoring of bacterial infection, localization, activity, and movement at the cellular level under fluorescence microscopy, but also for monitoring bacterial disease development at the whole-plant level under long-wavelength ultraviolet (UV) light. * The presence of pDSK-GFPuv did not have significant impact on the in vitro or in planta growth and virulence of phytobacteria. A good correlation between bacterial cell number and fluorescence intensity was observed, which allowed us to rapidly estimate the bacterial population in plant leaf tissue. We demonstrated that GFPuv-expressing bacteria can be used to screen plants that are compromised for nonhost disease resistance and Agrobacterium attachment. * The use of GFPuv-labeled bacteria has a wide range of applications in host-bacterial interaction studies and bacterial ecology-related research.
Collapse
Affiliation(s)
- Keri Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Li Kang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - George Lazarovits
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
20
|
Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. THE NEW PHYTOLOGIST 2007; 176:782-791. [PMID: 17997764 DOI: 10.1111/j.1469-8137.2007.02225.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Virus-induced gene silencing (VIGS) is a rapid and robust method for determining and studying the function of plant genes or expressed sequence tags (ESTs). However, only a few plant species are amenable to VIGS. There is a need for a systematic study to identify VIGS-efficient plant species and to determine the extent of homology required between the heterologous genes and their endogenous orthologs for silencing. Two approaches were used. First, the extent of phytoene desaturase (PDS) gene silencing was studied in various Solanaceous plant species using Nicotiana benthamiana NbPDS sequences. In the second approach, PDS sequences from a wide range of plant species were used to silence the PDS gene in N. benthamiana. The results showed that tobacco rattle virus (TRV)-mediated VIGS can be performed in a wide range of Solanaceous plant species and that heterologous gene sequences from far-related plant species can be used to silence their respective orthologs in the VIGS-efficient plant N. benthamiana. A correlation was not always found between gene silencing efficiency and percentage homology of the heterologous gene sequence with the endogenous gene sequence. It was concluded that a 21-nucleotide stretch of 100% identity between the heterologous and endogenous gene sequences is not absolutely required for gene silencing.
Collapse
Affiliation(s)
- M Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pky, Ardmore, OK 73401, USA
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India
| | - R Hema
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India
| | - Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pky, Ardmore, OK 73401, USA
| | - Li Kang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pky, Ardmore, OK 73401, USA
| | - M Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pky, Ardmore, OK 73401, USA
| |
Collapse
|
21
|
Anand A, Vaghchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS. Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:41-52. [PMID: 17249421 DOI: 10.1094/mpmi-20-0041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches.
Collapse
Affiliation(s)
- Ajith Anand
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Anderson JC, Pascuzzi PE, Xiao F, Sessa G, Martin GB. Host-mediated phosphorylation of type III effector AvrPto promotes Pseudomonas virulence and avirulence in tomato. THE PLANT CELL 2006; 18:502-14. [PMID: 16399801 PMCID: PMC1356555 DOI: 10.1105/tpc.105.036590] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/29/2005] [Accepted: 12/12/2005] [Indexed: 05/06/2023]
Abstract
The AvrPto protein from Pseudomonas syringae pv tomato is delivered into plant cells by the bacterial type III secretion system, where it either promotes host susceptibility or, in tomato plants expressing the Pto kinase, elicits disease resistance. Using two-dimensional gel electrophoresis, we obtained evidence that AvrPto is phosphorylated when expressed in plant leaves. In vitro phosphorylation of AvrPto by plant extracts occurs independently of Pto and is due to a kinase activity that is conserved in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), and Arabidopsis thaliana. Three Ser residues clustered in the C-terminal 18 amino acids of AvrPto were identified in vitro as putative phosphorylation sites, and one site at S149 was directly confirmed as an in vivo phosphorylation site by mass spectrometry. Substitution of Ala for S149 significantly decreased the ability of AvrPto to enhance disease symptoms and promote growth of P. s. tomato in susceptible tomato leaves. In addition, S149A significantly decreased the avirulence activity of AvrPto in resistant tomato plants. Our observations support a model in which AvrPto has evolved to mimic a substrate of a highly conserved plant kinase to enhance its virulence activity. Furthermore, residues of AvrPto that promote virulence are also monitored by plant defenses.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | |
Collapse
|
23
|
Oh HS, Collmer A. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:348-59. [PMID: 16212612 DOI: 10.1111/j.1365-313x.2005.02529.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Basal resistance in plants is induced by flagellin and several other common bacterial molecules and is implicated in the immunity of plants to most bacteria and other microbes. However, basal resistance can be suppressed by effector proteins that are injected by the type III secretion system (TTSS) of pathogens such as Pseudomonas syringae. This study demonstrates that basal resistance in the leaves of Nicotiana benthamiana is accompanied by reduced vascular flow into minor veins. Reduced vascular flow was assayed by feeding leaves, via freshly excised petioles, with 1% (weight in volume, w/v) neutral red (NR) and then observing differential staining of minor veins or altered levels of extractable dye in excised leaf samples. The reduced vascular staining was localized to tissues expressing basal resistance and was observable when resistance was induced by either the non-pathogen Pseudomonas fluorescens, a TTSS-deficient mutant of P. syringae pv. tabaci, or flg22 (a flagellin-derived peptide elicitor of basal resistance). Nicotiana benthamiana leaf areas expressing basal resistance no longer elicited the hypersensitive response when challenge inoculated with P. syringae pv. tomato DC3000. The reduced vascular staining effect was suppressed by wild-type P. syringae pv. tabaci and P. fluorescens heterologously expressing a P. syringae TTSS and AvrPto1(PtoJL1065). TTSS-proficient P. fluorescens was used to test the ability of several P. syringae pv. tomato DC3000 effectors for their ability to suppress the basal resistance-associated reduced vascular staining effect. AvrE(PtoDC3000), HopM1(PtoDC3000) (formerly known as HopPtoM), HopF2(PtoDC3000) (HopPtoF) and HopG1(PtoDC3000) (HopPtoG) suppressed basal resistance by this test, whereas HopC1(PtoDC3000) (HopPtoC) did not. In summary, basal resistance locally alters vascular function and the vascular dye uptake assay should be a useful tool for characterizing effectors that suppress basal resistance.
Collapse
Affiliation(s)
- Hye-Sook Oh
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
24
|
Nomura K, Melotto M, He SY. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:361-8. [PMID: 15936244 DOI: 10.1016/j.pbi.2005.05.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/16/2005] [Indexed: 05/02/2023]
Abstract
Despite impressive advances in the study of plant resistance to pathogens, little is known about the molecular basis of plant susceptibility to virulent pathogens. Recent progress in susceptible plant-Pseudomonas syringae interactions has provided a glimpse into the battles fought between plants and bacterial pathogens. A key step for pathogenesis appears to be the suppression of host defenses. Suppression of host defenses, including basal defense, gene-for-gene resistance and nonhost resistance, is a key step for pathogenesis. Defense suppression is mediated by bacterial effector proteins, which are secreted through the type III secretion system, and by coronatine, a bacterial toxin that structurally and functionally mimics methyl jasmonate, a plant defense signaling molecule.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
25
|
Nürnberger T, Lipka V. Non-host resistance in plants: new insights into an old phenomenon. MOLECULAR PLANT PATHOLOGY 2005; 6:335-45. [PMID: 20565662 DOI: 10.1111/j.1364-3703.2005.00279.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Resistance of an entire plant species to all isolates of a microbial species is referred to as non-host or species resistance. An interplay of both constitutive barriers and inducible reactions comprises the basis for this most durable form of plant disease resistance. Activation of inducible plant defence responses is probably brought about by the recognition of invariant pathogen-associated molecular patterns (PAMP) that are characteristic of whole classes of microbial organisms. PAMP perception systems and PAMP-induced signalling cascades partially resemble those known to mediate activation of innate immune responses in animals, suggesting an evolutionarily ancient molecular concept of non-self recognition and immunity in eukaryotes. Genetic dissection has recently provided clues for SNARE-complex-mediated exocytosis and directed vesicle trafficking in executing plant non-host resistance. Recent functional analysis of bacterial effector proteins indicates that establishment of infection in susceptible plants is associated with suppression of plant species resistance.
Collapse
Affiliation(s)
- Thorsten Nürnberger
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | | |
Collapse
|