1
|
Espinoza-Lozano L, Sumba M, Cañada-Bautista MG, Quito-Avila DF. Occurrence, Distribution, and Population Structure of Schlumbergera Virus X in Dragon Fruit in Ecuador. PLANT DISEASE 2024; 108:587-591. [PMID: 37743588 DOI: 10.1094/pdis-03-23-0445-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The occurrence of Schlumbergera virus X (SchVX) in commercial dragon fruit fields in three provinces of Ecuador has been identified in this study. The virus was found in symptomatic and asymptomatic cladodes of the two major species (Hylocereus undatus and H. megalanthus) cultivated in the country. Symptoms in H. undatus included irregular and ring-shaped chlorotic spots that coalesce into large chlorotic patches along the cladodes, whereas small chlorotic spot symptoms on the cladodes were observed in H. megalanthus. Phylogenetic inferences based on 27 partial nucleotide sequences of the RNA-dependent RNA polymerase (RdRp) and three whole genome comparisons showed that Ecuadorean isolates from H. undatus and H. megalanthus share a most recent ancestor with isolates from Spain and Portugal. In addition, an SchVX isolate with a distinct genomic lineage was found in symptomatic H. polyrhizus plants from a single location, suggesting two independent virus introductions into the country.
Collapse
Affiliation(s)
- Lisbeth Espinoza-Lozano
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Martha Sumba
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Maria G Cañada-Bautista
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| |
Collapse
|
2
|
Koloniuk I, Fránová J, Přibylová J, Sarkisova T, Špak J, Tan JL, Zemek R, Čmejla R, Rejlová M, Valentová L, Sedlák J, Holub J, Skalík J, Blystad DR, Sapkota B, Hamborg Z. Molecular Characterization of a Novel Enamovirus Infecting Raspberry. Viruses 2023; 15:2281. [PMID: 38140523 PMCID: PMC10747458 DOI: 10.3390/v15122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes. Analysis of nearly complete genomes from 14 RaEV1 isolates highlighted regions of variance, particularly marked by indel events. The evidence from phylogenetic and sequence analyses supports the classification of RaEV1 as a distinct species within the Enamovirus genus. Among the 289 plant and 168 invertebrate samples analyzed, RaEV1 was detected in 10.4% and 0.4%, respectively. Most detections occurred in plants that were also infected with other common raspberry viruses. The virus was present in both commercial and wild raspberries, indicating the potential of wild plants to act as viral reservoirs. Experiments involving aphids as potential vectors demonstrated their ability to acquire RaEV1 but not to successfully transmit it to plants.
Collapse
Affiliation(s)
- Igor Koloniuk
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.F.); (J.P.); (T.S.); (J.Š.)
| | - Jana Fránová
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.F.); (J.P.); (T.S.); (J.Š.)
| | - Jaroslava Přibylová
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.F.); (J.P.); (T.S.); (J.Š.)
| | - Tatiana Sarkisova
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.F.); (J.P.); (T.S.); (J.Š.)
| | - Josef Špak
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.F.); (J.P.); (T.S.); (J.Š.)
| | - Jiunn Luh Tan
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.L.T.); (R.Z.)
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Rostislav Zemek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (J.L.T.); (R.Z.)
| | - Radek Čmejla
- Research and Breeding Institute of Pomology Holovousy Ltd., 508 01 Horice, Czech Republic; (R.Č.); (M.R.); (L.V.); (J.S.)
| | - Martina Rejlová
- Research and Breeding Institute of Pomology Holovousy Ltd., 508 01 Horice, Czech Republic; (R.Č.); (M.R.); (L.V.); (J.S.)
| | - Lucie Valentová
- Research and Breeding Institute of Pomology Holovousy Ltd., 508 01 Horice, Czech Republic; (R.Č.); (M.R.); (L.V.); (J.S.)
| | - Jiří Sedlák
- Research and Breeding Institute of Pomology Holovousy Ltd., 508 01 Horice, Czech Republic; (R.Č.); (M.R.); (L.V.); (J.S.)
| | - Jan Holub
- Jan Holub Ltd., 783 25 Bouzov, Czech Republic; (J.H.); (J.S.)
| | - Jan Skalík
- Jan Holub Ltd., 783 25 Bouzov, Czech Republic; (J.H.); (J.S.)
| | - Dag-Ragnar Blystad
- Norwegian Institute of Bioeconomy Research, 1433 Aas, Norway; (D.-R.B.); (B.S.); (Z.H.)
| | - Bijaya Sapkota
- Norwegian Institute of Bioeconomy Research, 1433 Aas, Norway; (D.-R.B.); (B.S.); (Z.H.)
| | - Zhibo Hamborg
- Norwegian Institute of Bioeconomy Research, 1433 Aas, Norway; (D.-R.B.); (B.S.); (Z.H.)
| |
Collapse
|
3
|
Reinhold LA, Pscheidt JW. Diagnostic and Historical Surveys of Sweet Cherry ( Prunus avium) Virus and Virus-Like Diseases in Oregon. PLANT DISEASE 2023; 107:633-643. [PMID: 36018551 DOI: 10.1094/pdis-02-21-0327-sr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There are over 35 known virus and virus-like diseases of sweet cherry (Prunus avium), some with potential to cause severe economic impact by reducing vegetative growth, vigor, or fruit quality. Oregon is the second-ranked state for sweet cherry production in the United States. Statewide surveys were conducted in Oregon sweet cherry orchards for virus and virus-like diversity and distribution. Orchards in key production regions with suspected virus disease symptoms were sampled. Virus-specific enzyme-linked immunosorbent assay, isothermal amplification, or quantitative real-time PCR were used to test for the presence of common or economically important sweet cherry pathogens, including cherry leaf roll virus (CLRV), little cherry virus 2 (LChV2), prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), tomato ringspot virus (ToRSV), and 'Candidatus Phytoplasma pruni'. CLRV, a new virus of sweet cherry in Oregon, was found associated with enation and dieback symptoms in The Dalles. Some viruses were found in new regions, which included Hood River (PDV, PNRSV, and ToRSV) and the Umpqua Valley (PDV and PNRSV). A subsequent survey was conducted in the Mid-Columbia production region for the presence of little cherry symptoms associated with little cherry and X-Diseases. All symptomatic samples from The Dalles and Mosier, OR, or Dallesport, WA, tested positive for 'Ca. P. pruni' but not LChV2. These findings provide a foundation for the current understanding and management of virus and virus-like diseases of sweet cherry in Oregon and context for further studies into these pathogens and their vectors.
Collapse
Affiliation(s)
- Lauri A Reinhold
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jay W Pscheidt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
4
|
Tan JL, Trandem N, Fránová J, Hamborg Z, Blystad DR, Zemek R. Known and Potential Invertebrate Vectors of Raspberry Viruses. Viruses 2022; 14:v14030571. [PMID: 35336978 PMCID: PMC8949175 DOI: 10.3390/v14030571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
The estimated global production of raspberry from year 2016 to 2020 averaged 846,515 tons. The most common cultivated Rubus spp. is European red raspberry (Rubus idaeus L. subsp. idaeus). Often cultivated for its high nutritional value, the red raspberry (Rubus idaeus) is susceptible to multiple viruses that lead to yield loss. These viruses are transmitted through different mechanisms, of which one is invertebrate vectors. Aphids and nematodes are known to be vectors of specific raspberry viruses. However, there are still other potential raspberry virus vectors that are not well-studied. This review aimed to provide an overview of studies related to this topic. All the known invertebrates feeding on raspberry were summarized. Eight species of aphids and seven species of plant-parasitic nematodes were the only proven raspberry virus vectors. In addition, the eriophyid mite, Phyllocoptes gracilis, has been suggested as the natural vector of raspberry leaf blotch virus based on the current available evidence. Interactions between vector and non-vector herbivore may promote the spread of raspberry viruses. As a conclusion, there are still multiple aspects of this topic that require further studies to get a better understanding of the interactions among the viral pathogens, invertebrate vectors, and non-vectors in the raspberry agroecosystem. Eventually, this will assist in development of better pest management strategies.
Collapse
Affiliation(s)
- Jiunn Luh Tan
- Department of Zoology, Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, 37005 České Budějovice, Czech Republic;
- Correspondence:
| | - Nina Trandem
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway; (N.T.); (Z.H.); (D.-R.B.)
| | - Jana Fránová
- Biology Centre CAS, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic;
| | - Zhibo Hamborg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway; (N.T.); (Z.H.); (D.-R.B.)
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway; (N.T.); (Z.H.); (D.-R.B.)
| | - Rostislav Zemek
- Biology Centre CAS, Institute of Entomology, 37005 České Budějovice, Czech Republic;
| |
Collapse
|
5
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Winter S, Bosco D, Chiumenti M, Di Serio F, Ferilli F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses of Rubus L. EFSA J 2020; 18:e05928. [PMID: 32626483 PMCID: PMC7008910 DOI: 10.2903/j.efsa.2020.5928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Panel on Plant Health of EFSA conducted a pest categorisation of 17 viruses of Rubus L. that were previously classified as either non-EU or of undetermined standing in a previous opinion. These infectious agents belong to different genera and are heterogeneous in their biology. Blackberry virus X, blackberry virus Z and wineberry latent virus were not categorised because of lack of information while grapevine red blotch virus was excluded because it does not infect Rubus. All 17 viruses are efficiently transmitted by vegetative propagation, with plants for planting representing the major pathway for entry and spread. For some viruses, additional pathway(s) are Rubus seeds, pollen and/or vector(s). Most of the viruses categorised here infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Cherry rasp leaf virus, raspberry latent virus, raspberry leaf curl virus, strawberry necrotic shock virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria to qualify as potential Union quarantine pests (QPs). With the exception of impact in the EU territory, on which the Panel was unable to conclude, blackberry chlorotic ringspot virus, blackberry leaf mottle-associated virus, blackberry vein banding-associated virus, blackberry virus E, blackberry virus F, blackberry virus S, blackberry virus Y and blackberry yellow vein-associated virus satisfy all the other criteria to be considered as potential QPs. Black raspberry cryptic virus, blackberry calico virus and Rubus canadensis virus 1 do not meet the criterion of having a potential negative impact in the EU. For several viruses, the categorisation is associated with high uncertainties, mainly because of the absence of data on biology, distribution and impact. Since the opinion addresses non-EU viruses, they do not meet the criteria to qualify as potential Union regulated non-quarantine pests.
Collapse
|
6
|
Weiland JE, Benedict C, Zasada IA, Scagel CR, Beck BR, Davis A, Graham K, Peetz A, Martin RR, Dung JKS, Gaige AR, Thiessen L. Late-summer Disease Symptoms in Western Washington Red Raspberry Fields Associated with Co-Occurrence of Phytophthora rubi, Verticillium dahliae, and Pratylenchus penetrans, but not Raspberry bushy dwarf virus. PLANT DISEASE 2018; 102:938-947. [PMID: 30673387 DOI: 10.1094/pdis-08-17-1293-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sixty percent of the $109 million processed red raspberry industry of the United States occurs in northern Washington State. In 2012, late-summer symptoms of vascular wilt and root disease were observed in many raspberry plantings. These symptoms were initially attributed to Verticillium dahliae. However, diagnostic tests for the pathogen were often contradictory and other soilborne pathogens (Phytophthora rubi and Pratylenchus penetrans) or Raspberry bushy dwarf virus (RBDV) might also have been involved. Therefore, a survey was conducted in 2013 and 2014 to (i) establish the incidence and soil population levels of V. dahliae in red raspberry production fields, (ii) compare among diagnostic methods and laboratories for detecting and quantifying V. dahliae from raspberry field soil, and (iii) assess which pathogens are associated with late-summer disease symptoms of raspberry. Plant and soil samples were collected from 51 disease sites and 20 healthy sites located in 24 production fields. Samples were analyzed for the presence and quantity of each pathogen using traditional plating and extraction methods (V. dahliae, P. rubi, and P. penetrans), quantitative polymerase chain reaction (qPCR) (V. dahliae and P. rubi), and enzyme-linked immunosorbent assay (RBDV). Results showed that V. dahliae was present in 88% of the production fields and that detection of the pathogen differed by method and by laboratory: qPCR detected V. dahliae in the soil from approximately three times as many sites (51 of 71 total sites) as by plating on NP10 semi-selective medium (15 of 71 total sites). Soil populations of V. dahliae were slightly greater at disease sites, but the pathogen was detected with similar frequency from healthy sites and it was rarely isolated from diseased plants (4%). P. rubi, P. penetrans, and RBDV were also common in production fields (79, 91, and 53% of fields, respectively). Both P. rubi (soil and root samples) and P. penetrans (root populations only), but not RBDV, were more frequently found at disease sites than healthy sites, and the amount of P. rubi detected by qPCR was greater from disease sites than healthy sites. In addition, P. rubi was isolated from 27% of the symptomatic plants located at disease sites. Regardless of detection method, V. dahliae, P. rubi, and P. penetrans, either with or without RBDV, were more likely to co-occur at disease sites (73%) than healthy sites (35%), suggesting that a soilborne disease complex is present in raspberry production fields. Results indicate that P. rubi is the primary pathogen most strongly associated with late-summer symptoms of disease, but root populations of P. penetrans and higher soil populations of V. dahliae may also be of concern. Therefore, disease control methods should focus on all three soilborne pathogens.
Collapse
Affiliation(s)
- Jerry E Weiland
- United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Horticultural Crops Research Laboratory, Corvallis, OR 97330
| | - Chris Benedict
- Washington State University Whatcom County Extension, Bellingham 98225
| | | | | | - Bryan R Beck
- USDA-ARS, Horticultural Crops Research Laboratory
| | - Anne Davis
- USDA-ARS, Horticultural Crops Research Laboratory
| | - Kim Graham
- USDA-ARS, Horticultural Crops Research Laboratory
| | - Amy Peetz
- USDA-ARS, Horticultural Crops Research Laboratory
| | | | - Jeremiah K S Dung
- Oregon State University, Department of Botany and Plant Pathology, Corvallis 97331
| | - Andres Reyes Gaige
- Oregon State University, Department of Botany and Plant Pathology, Corvallis 97331
| | - Lindsey Thiessen
- Oregon State University, Department of Botany and Plant Pathology, Corvallis 97331
| |
Collapse
|
7
|
Gergerich RC, Welliver RA, Osterbauer NK, Kamenidou S, Martin RR, Golino DA, Eastwell K, Fuchs M, Vidalakis G, Tzanetakis IE. Safeguarding Fruit Crops in the Age of Agricultural Globalization. PLANT DISEASE 2015; 99:176-187. [PMID: 30699566 DOI: 10.1094/pdis-07-14-0762-fe] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The expansion of fruit production and markets into new geographic areas provides novel opportunities and challenges for the agricultural and marketing industries. Evidence that fruit consumption helps prevent nutrient deficiencies and reduces the risk of cardiovascular disease and cancer has assisted in the expansion of all aspects of the fruit industry. In today's competitive global market environment, producers need access to the best plant material available in terms of genetics and health if they are to maintain a competitive advantage in the market. An ever-increasing amount of plant material in the form of produce, nursery plants, and breeding stock moves vast distances, and this has resulted in an increased risk of pest and disease introductions into new areas. One of the primary concerns of the global fruit industry is a group of systemic pathogens for which there are no effective remedies once plants are infected. These pathogens and diseases require expensive management and control procedures at nurseries and by producers locally and nationally. Here, we review (i) the characteristics of some of these pathogens, (ii) the history and economic consequences of some notable disease epidemics caused by these pathogens, (iii) the changes in agricultural trade that have exacerbated the risk of pathogen introduction, (iv) the path to production of healthy plants through the U.S. National Clean Plant Network and state certification programs, (v) the economic value of clean stock to nurseries and fruit growers in the United States, and (vi) current efforts to develop and harmonize effective nursery certification programs within the United States as well as with global trading partners.
Collapse
Affiliation(s)
- Rose C Gergerich
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| | - Ruth A Welliver
- Bureau of Plant Industry, Pennsylvania Department of Agriculture
| | | | - Sophia Kamenidou
- Department of Plant Pathology and Microbiology, University of California-Riverside
| | - Robert R Martin
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis
| | | | | | - Marc Fuchs
- Department of Plant Pathology and Plant Microbe Biology, Cornell University
| | - Georgios Vidalakis
- Department of Plant Pathology and Microbiology, University of California-Riverside
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| |
Collapse
|
8
|
Abstract
Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas, and systemic bacteria, through a combination of testing and therapy. These then become the top-tier plants in certification programs and are the source from which all certified plants are produced, usually after multiple cycles of propagation. In certification schemes, efforts are made to produce plants free of the targeted pathogens to provide plants of high health status to berry growers. This is achieved using a systems approach to manage virus vectors. Once planted in fruit production fields, virus control shifts to disease control where efforts are focused on controlling viruses or virus complexes that result in disease. In fruiting fields, infection with a virus that does not cause disease is of little concern to growers. Virus control is based on the use of resistance and tolerance, vector management, and isolation.
Collapse
Affiliation(s)
- Robert R Martin
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
MacFarlane S, McGavin W, Tzanetakis I. Virus testing by PCR and RT-PCR amplification in berry fruit. Methods Mol Biol 2015; 1302:227-248. [PMID: 25981258 DOI: 10.1007/978-1-4939-2620-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Berry fruit crops are prone to infection by a wide range of viruses, with the list expanding every year, primarily because of the expansion of the crops to new geographic regions. Although some methods allow for virus detection in a nonspecific manner, the advent of cheap and effective nucleic acid sequencing technologies has allowed for the development of species-specific tests. This chapter describes methods for extraction of nucleic acids for molecular testing from a range of different berry fruit crops and lists oligonucleotide primers that have been developed for amplification of a large number of berry fruit viruses.
Collapse
Affiliation(s)
- Stuart MacFarlane
- Cell and Molecular Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK,
| | | | | |
Collapse
|