1
|
Greco D, Sabella E, Carluccio G, DePascali M, Nutricati E, De Bellis L, Luvisi A. Could Pistachio ( Pistacia vera) Be a Suitable Alternative Crop for Olive-Growing Mediterranean Areas Affected by Xylella fastidiosa subsp. pauca ST53? PLANT DISEASE 2024; 108:3222-3233. [PMID: 39478295 DOI: 10.1094/pdis-06-23-1210-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In the olive-growing areas of Apulia (southern Italy) where Xylella fastidiosa has caused enormous damage, there is a need to identify alternative crops. These could include pistachio (Pistacia vera L.), but it is critical to define the impact of the bacterium on this crop and what are the main phytosanitary threats for this species in the areas where the bacterium is now endemic. Therefore, we started evaluating infections caused by X. fastidiosa, the fungus Neofusicoccum mediterraneum, and other pathogens on four pistachio cultivars ('Kerman', 'Aegina', 'Lost Hills', and 'Napoletana') grown in areas where X. fastidiosa has been present for a long time. X. fastidiosa was detected only in one orchard (incidence: 18% 'Napoletana' and 55% 'Kerman') out of six surveyed orchards, with low bacterium concentration (1.67 to 5.98 × 103 CFU ml-1) and no symptoms. N. mediterraneum was retrieved in three orchards just on the cultivar Kerman but with high incidence (up to 30%) and infection level quantified as molecular severity (6.82 to 7.43); no other pathogens were detected. The N. mediterraneum representative isolates characterized in this study showed similarity with Spanish and Portuguese isolates. A confocal microscope analysis for this host-pathogen association suggested no differences in plant response to fungal aggression between the cultivars Kerman and Aegina, but just lack of latent inoculum in 'Aegina' plants, pointing to a possible nursery origin of the infection. Waiting for additional targeted experiments to clearly define host response of pistachio cultivars to Xylella spp., this study also points at N. mediterraneum as a potential threat to this tree crop new for the area.
Collapse
Affiliation(s)
- Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
- National Biodiversity Future Center, Palermo 90133, Italy
| | - Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
| | - Mariarosaria DePascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
- National Biodiversity Future Center, Palermo 90133, Italy
| | - Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
- National Biodiversity Future Center, Palermo 90133, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce 73100, Italy
| |
Collapse
|
2
|
Manetti G, Brunetti A, Sciarroni L, Lumia V, Bechini S, Marangi P, Reverberi M, Scortichini M, Pilotti M. Diplodia seriata Isolated from Declining Olive Trees in Salento (Apulia, Italy): Pathogenicity Trials Give a Glimpse That It Is More Virulent to Drought-Stressed Olive Trees and in a Warmth-Conditioned Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2245. [PMID: 39204681 PMCID: PMC11358911 DOI: 10.3390/plants13162245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The fungi Botryosphaeriaceae are involved in olive declines in both the world hemispheres and in all continents where this species is cultivated. In Salento (Apulia, Italy), the Botryosphaeriaceae Neofusicoccum mediterraneum and N. stellenboschiana have been reported as the agents of a branch and twig dieback that overlaps with olive quick decline syndrome caused by Xylella fastidiosa subsp. pauca. In this study, we report the finding of Diplodia seriata, another Botryosphaeriaceae species, in Salento in Xylella fastidiosa-infected olive trees affected by symptoms of branch and twig dieback. Given that its presence was also reported in olive in the Americas and in Europe (Croatia) with different degrees of virulence, we were prompted to assess its role in the Apulian decline. We identified representative isolates based on morphological features and a multilocus phylogeny. In vitro tests showed that the optimum growth temperature of the isolates is around 25-30 °C, and that they are highly thermo-tolerant. In pathogenicity trials conducted over eleven months, D. seriata expressed a very low virulence. Nonetheless, when we imposed severe water stress before the inoculation, D. seriata significatively necrotized bark and wood in a time frame of 35 days. Moreover, the symptoms which resulted were much more severe in the trial performed in summer compared with that in autumn. In osmolyte-supplemented media with a water potential from -1 to -3 Mpa, the isolates increased or maintained their growth rate compared with non-supplemented media, and they also grew, albeit to a lesser extent, on media with a water potential as low as -7 Mpa. This suggests that olives with a low water potential, namely those subjected to drought, may offer a suitable environment for the fungus' development. The analysis of the meteorological parameters, temperatures and rainfall, in Salento in the timeframe 1989-2023, showed that this area is subjected to a progressive increase of temperature and drought during the summer. Thus, overall, D. seriata has to be considered a contributor to the manifestation of branch and twig dieback of olive in Salento. Coherently with the spiral decline concept of trees, our results suggest that heat and drought act as predisposing/inciting factors facilitating D. seriata as a contributor. The fact that several adverse factors, biotic and abiotic, are simultaneously burdening olive trees in Salento offers a cue to discuss the possible complex nature of the olive decline in Salento.
Collapse
Affiliation(s)
- Giuliano Manetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (L.S.); (V.L.); (S.B.)
| | - Angela Brunetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (L.S.); (V.L.); (S.B.)
| | - Lorenzo Sciarroni
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (L.S.); (V.L.); (S.B.)
| | - Valentina Lumia
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (L.S.); (V.L.); (S.B.)
| | - Sara Bechini
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (L.S.); (V.L.); (S.B.)
| | - Paolo Marangi
- Terranostra S.r.l.s., 72021 Francavilla Fontana, Italy;
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, 00165 Rome, Italy;
| | - Marco Scortichini
- Research Centre for Olive, Fruit Trees and Citrus Crops (CREA-OFA), Council for Agricultural Research and Economics (CREA), 00134 Rome, Italy;
| | - Massimo Pilotti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (L.S.); (V.L.); (S.B.)
| |
Collapse
|
3
|
Petrović E, Vrandečić K, Belušić Vozila A, Ćosić J, Godena S. Diversity and Pathogenicity of Botryosphaeriaceae Species Isolated from Olives in Istria, Croatia, and Evaluation of Varietal Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1813. [PMID: 38999653 PMCID: PMC11244276 DOI: 10.3390/plants13131813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
During 2021 and 2022, a field investigation was conducted in Istria, Croatia, searching for trees exhibiting signs of Botryosphaeria dieback. Samples of symptomatic trees were collected from 26 different locations and analysed. Isolates that morphologically corresponded to species from the Botryosphaeriaceae family were selected, and detailed morphological characterisation and molecular identification of the isolates were conducted. Based on morphological characteristics and phylogenetic analysis using the internal transcribed spacer (ITS), beta-tubulin (TUB2), and translation elongation factor 1-alpha (TEF1-α) regions, six species of fungi from the Botryosphaeriaceae family were identified: Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not.; Diplodia mutila (Fr.) Fr.; Diplodia seriata De Not.; Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves; Dothiorella sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque; and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. This is the first report of D. mutila, Do. sarmentorum, and Do. iberica causing Botryosphaeria dieback on olive trees in Croatia, and the first study investigating the resistance of Croatian olive varieties to species from the Botryosphaeriaceae family. Pathogenicity testing of selected isolates and assessment of variety resistance were conducted on four different olive varieties, namely Buža, Istarska bjelica, Leccino, and Rosinjola, using representative isolates of the mentioned species. The most aggressive species was found to be N. parvum. Olive varieties exhibited differences in susceptibility depending on the fungus they were infected with.
Collapse
Affiliation(s)
- Elena Petrović
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (A.B.V.); (S.G.)
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (K.V.); (J.Ć.)
| | - Andreina Belušić Vozila
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (A.B.V.); (S.G.)
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (K.V.); (J.Ć.)
| | - Sara Godena
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (A.B.V.); (S.G.)
| |
Collapse
|
4
|
Waqas M, Guarnaccia V, Bardella S, Spadaro D. Molecular Characterization and Pathogenicity of Diaporthe Species Causing Nut Rot of Hazelnut in Italy. PLANT DISEASE 2024; 108:1005-1013. [PMID: 37883635 DOI: 10.1094/pdis-01-23-0168-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hazelnut (Corylus avellana), a nut crop that is rapidly expanding worldwide, is endangered by a rot. Nut rot results in hazelnut defects. A survey was conducted in northwestern Italy during 2020 and 2021 to identify the causal agents of hazelnut rots. Typical symptoms of black rot, mold, and necrotic spots were observed on hazelnuts. The prevalent fungi isolated from symptomatic hazelnut kernels were Diaporthe spp. (38%), Botryosphaeria dothidea (26%), Diplodia seriata (14%), and other fungal genera with less frequent occurrences. Among 161 isolated Diaporthe spp., 40 were selected for further analysis. Based on morphological characterization and multilocus phylogenetic analysis of the ITS, tef-1α, and tub2, seven Diaporthe species were identified as D. eres, D. foeniculina, D. novem, D. oncostoma, D. ravennica, D. rudis, and D. sojae. D. eres was the main species isolated from hazelnut rots, in particular from moldy nuts. The pathogenicity test performed on hazelnuts 'Tonda Gentile del Piemonte' using a mycelium plug showed that all the Diaporthe isolates were pathogenic on their original host. To our knowledge, this work is the first report of D. novem, D. oncostoma, and D. ravennica on hazelnuts worldwide. D. foeniculina, D. rudis, and D. sojae were reported for the first time as agents of hazelnut rot in Italy. Future studies should focus on the comprehension of epidemiology and climatic conditions favoring the development of Diaporthe spp. on hazelnut. Prevention and control measures should target D. eres, representing the main causal agents responsible for defects and nut rot of hazelnuts in Italy.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino 10095, Grugliasco, TO, Italy
| | - Vladimiro Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino 10095, Grugliasco, TO, Italy
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino 10095, Grugliasco, TO, Italy
| | - S Bardella
- Fondazione Agrion - Via Falicetto, 24 12030, Manta, CN, Italy
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino 10095, Grugliasco, TO, Italy
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino 10095, Grugliasco, TO, Italy
| |
Collapse
|
5
|
Azizi R, Ghosta Y, Ahmadpour A. Apple crown and collar canker and necrosis caused by Cytospora balanejica sp. nov. in Iran. Sci Rep 2024; 14:6629. [PMID: 38504125 PMCID: PMC10951349 DOI: 10.1038/s41598-024-57235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Apple is the most important fruit tree in West Azarbaijan province of Iran. In a survey of apple orchards, a disease with crown and collar canker and necrosis symptoms was observed in three young apple orchards in Urmia, affecting 15% and 1% of 'Red Delicious' and 'Golden Delicious' cultivars, respectively. A fungus with typical characteristics of the asexual morph of Cytospora was regularly isolated from the diseased tissues. Morphological characteristics and phylogenetic analyses inferred from the combined dataset of the ITS-rDNA, parts of LSU, tef1-α, rpb2, and act1 genes revealed that the isolates represent a new species of Cytospora, described herein as Cytospora balanejica sp. nov.. The pathogenicity of all isolates was confirmed on apple cv. 'Red Delicious' based on Koch's postulates. Also, the reaction of 12 other apple cultivars was assessed against five selected isolates with the highest virulence. The results showed that except for cv. 'Braeburn', which did not produce any symptoms of the disease, the other 11 cultivars showed characteristic disease symptoms including sunken and discolored bark and wood. The mean length of the discolored area was different among the 11 so-called susceptible cultivars, hence cvs. 'M4' and 'Golden Delicious' showed the highest and the lowest lesion length, respectively. Moreover, the aggressiveness of the five tested isolates was different, and the isolates BA 2-4 and BA 3-1 had the highest and lowest aggressiveness, respectively. Based on our observations on the potential ability of the fungus to cause disease on young and actively growing apple trees, it will be a serious threat to apple cultivation and industry.
Collapse
Affiliation(s)
- Razmig Azizi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Abdollah Ahmadpour
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| |
Collapse
|
6
|
Xu R, Su W, Wang Y, Tian S, Li Y, Phukhamsakda C. Morphological characteristics and phylogenetic evidence reveal two new species and the first report of Comoclathris (Pleosporaceae, Pleosporales) on dicotyledonous plants from China. MycoKeys 2024; 101:95-112. [PMID: 38250088 PMCID: PMC10799302 DOI: 10.3897/mycokeys.101.113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Two novel Comoclathris species were identified from dicotyledonous plants (Clematis sp. and Xanthocerassorbifolium) in China. The results were supported by morphological characters and Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. Multi-gene phylogenetic analyses of the ITS, LSU, SSU and rpb2 sequences revealed two new species Comoclathrisclematidis and C.xanthoceratis, which are phylogenetically distinct. The new species are phylogenetically closely related to C.arrhenatheri. However, they are distinguishable from C.arrhenatheri by having comparatively larger asci and ascospores. This study improves our knowledge of Comoclathris as no species has been previously described from China. This suggests such taxa may be rare and it is likely that new taxa will be discovered from hosts and environments that have not yet been extensively investigated.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, ChinaJilin Agricultural UniversityChangchunChina
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Yang Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, ChinaShenyang Agricultural UniversityShenyangChina
| | - Shangqing Tian
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Yu Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, ChinaJilin Agricultural UniversityChangchunChina
| | - Chayanard Phukhamsakda
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| |
Collapse
|
7
|
Cardoni M, Mercado-Blanco J. Confronting stresses affecting olive cultivation from the holobiont perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1261754. [PMID: 38023867 PMCID: PMC10661416 DOI: 10.3389/fpls.2023.1261754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The holobiont concept has revolutionized our understanding of plant-associated microbiomes and their significance for the development, fitness, growth and resilience of their host plants. The olive tree holds an iconic status within the Mediterranean Basin. Innovative changes introduced in olive cropping systems, driven by the increasing demand of its derived products, are not only modifying the traditional landscape of this relevant commodity but may also imply that either traditional or emerging stresses can affect it in ways yet to be thoroughly investigated. Incomplete information is currently available about the impact of abiotic and biotic pressures on the olive holobiont, what includes the specific features of its associated microbiome in relation to the host's structural, chemical, genetic and physiological traits. This comprehensive review consolidates the existing knowledge about stress factors affecting olive cultivation and compiles the information available of the microbiota associated with different olive tissues and organs. We aim to offer, based on the existing evidence, an insightful perspective of diverse stressing factors that may disturb the structure, composition and network interactions of the olive-associated microbial communities, underscoring the importance to adopt a more holistic methodology. The identification of knowledge gaps emphasizes the need for multilevel research approaches and to consider the holobiont conceptual framework in future investigations. By doing so, more powerful tools to promote olive's health, productivity and resilience can be envisaged. These tools may assist in the designing of more sustainable agronomic practices and novel breeding strategies to effectively face evolving environmental challenges and the growing demand of high quality food products.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
8
|
Scortichini M, Manetti G, Brunetti A, Lumia V, Sciarroni L, Pilotti M. Xylella fastidiosa subsp. pauca, Neofusicoccum spp. and the Decline of Olive Trees in Salento (Apulia, Italy): Comparison of Symptoms, Possible Interactions, Certainties and Doubts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3593. [PMID: 37896056 PMCID: PMC10609838 DOI: 10.3390/plants12203593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Xylella fastidiosa subsp. pauca (XFP), Neofusicoccum mediterraneum, N. stellenboschiana and other fungi have been found in olive groves of Salento (Apulia, Italy) that show symptoms of severe decline. XFP is well known to be the cause of olive quick decline syndrome (OQDS). It has also been assessed that Neofusicoccum spp. causes a distinct disease syndrome, namely, branch and twig dieback (BTD). All these phytopathogens incite severe symptoms that can compromise the viability of large canopy sectors or the whole tree. However, their specific symptoms are not easily distinguished, especially during the final stages of the disease when branches are definitively desiccated. By contrast, they can be differentiated during the initial phases of the infection when some facets of the diseases are typical, especially wood discoloration, incited solely by fungi. Here, we describe the typical symptomatological features of OQDS and BTD that can be observed in the field and that have been confirmed by Koch postulate experiments. Similar symptoms, caused by some abiotic adverse conditions and even by additional biotic factors, are also described. Thus, this review aims at: (i) raising the awareness that declining olive trees in Salento do not have to be linked a priori to XFP; (ii) defining the guidelines for a correct symptomatic diagnosis to orient proper laboratory analyses, which is crucial for the application of effective control measures. The possibility that bacterium and fungi could act as a polyspecies and in conjunction with predisposing abiotic stresses is also widely discussed.
Collapse
Affiliation(s)
- Marco Scortichini
- Research Centre for Olive, Fruit Trees and Citrus Crops (CREA-OFA), Council for Agricultural Research and Economics (CREA), 00134 Rome, Italy;
| | - Giuliano Manetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (V.L.); (L.S.)
| | - Angela Brunetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (V.L.); (L.S.)
| | - Valentina Lumia
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (V.L.); (L.S.)
| | - Lorenzo Sciarroni
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (V.L.); (L.S.)
| | - Massimo Pilotti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics (CREA), 00156 Rome, Italy; (G.M.); (A.B.); (V.L.); (L.S.)
| |
Collapse
|
9
|
Petrović E, Vrandečić K, Ivić D, Ćosić J, Godena S. First Report of Olive Branch Dieback in Croatia Caused by Cytospora pruinosa Défago. Microorganisms 2023; 11:1679. [PMID: 37512852 PMCID: PMC10384268 DOI: 10.3390/microorganisms11071679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Olive (Olea europaea L.) is a very important crop grown in the Mediterranean part of Croatia. Olive branch and fruit dieback symptoms were observed in two olive orchards in Istria, Croatia. The samples from symptomatic trees were collected and brought to the laboratory for analysis. Based on their morphological characterization, isolated fungi were identified as Cytospora sp. Two representative isolates (one per orchard) were taken for molecular analysis, and based on DNA sequence data of the ITS and TUB gene regions, and phylogenetic analysis of the sequences, the isolates were identified as Cytospora pruinosa Défago. To determine pathogenicity, pathogenicity tests were conducted on detached olive branches and two-year-old olive trees in the greenhouse. This is the first report of C. pruinosa causing olive branch and fruit dieback in Croatia.
Collapse
Affiliation(s)
- Elena Petrović
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Dario Ivić
- Centre for Plant Protection, Croatian Agency for Agriculture and Food, Gorice 68b, 10000 Zagreb, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Sara Godena
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
10
|
Belair M, Restrepo-Leal JD, Praz C, Fontaine F, Rémond C, Fernandez O, Besaury L. Botryosphaeriaceae gene machinery: Correlation between diversity and virulence. Fungal Biol 2023; 127:1010-1031. [PMID: 37142361 DOI: 10.1016/j.funbio.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The Botryosphaeriaceae family comprises numerous fungal pathogens capable of causing economically meaningful diseases in a wide range of crops. Many of its members can live as endophytes and turn into aggressive pathogens following the onset of environmental stress events. Their ability to cause disease may rely on the production of a broad set of effectors, such as cell wall-degrading enzymes, secondary metabolites, and peptidases. Here, we conducted comparative analyses of 41 genomes representing six Botryosphaeriaceae genera to provide insights into the genetic features linked to pathogenicity and virulence. We show that these Botryosphaeriaceae genomes possess a large diversity of carbohydrate-active enzymes (CAZymes; 128 families) and peptidases (45 families). Botryosphaeria, Neofusicoccum, and Lasiodiplodia presented the highest number of genes encoding CAZymes involved in the degradation of the plant cell wall components. The genus Botryosphaeria also exhibited the highest abundance of secreted CAZymes and peptidases. Generally, the secondary metabolites gene cluster profile was consistent in the Botryosphaeriaceae family, except for Diplodia and Neoscytalidium. At the strain level, Neofusicoccum parvum NpBt67 stood out among all the Botryosphaeriaceae genomes, presenting a higher number of secretome constituents. In contrast, the Diplodia strains showed the lowest richness of the pathogenicity- and virulence-related genes, which may correlate with their low virulence reported in previous studies. Overall, these results contribute to a better understanding of the mechanisms underlying pathogenicity and virulence in remarkable Botryosphaeriaceae species. Our results also support that Botryosphaeriaceae species could be used as an interesting biotechnological tool for lignocellulose fractionation and bioeconomy.
Collapse
|
11
|
Xu X, Guo L, Yang C, Teng H, Shen G, Wang S, Zhao J, Yang X, Zhang L, Wang X, Zhao J, Xiang W. Diversity and Pathogenicity of Fungi Associated with Fruit Rot of Winter Jujube in Shandong Province, China. PLANT DISEASE 2023; 107:794-801. [PMID: 35947009 DOI: 10.1094/pdis-05-22-1254-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Winter jujube originated from China and had an extremely high nutritional value. In 2021, symptomatic winter jujube fruits were collected from eight locations in Zhanhua District of Binzhou City, Shandong Province. In total, 108 fungal isolates were obtained and grouped into 11 species based on morphological characteristics and multilocus phylogenetic analysis, including Nothophoma quercina (43.52%), Fusarium lateritium (20.37%), Alternaria alternata (12.03%), F. proliferatum (7.41%), F. graminearum (4.63%), Botryosphaeria dothidea (3.70%), Fusarium sp. (2.78%), A. tenuissima (2.78%), Diaporthe eres (1.85%), Nigrospora oryzae (0.93%), and Cercospora nicotianae (0.93%). All fungal isolates obtained in this study showed aggressiveness on detached winter jujube fruits except N. oryzae and C. nicotianae isolates, of which F. proliferatum was the most virulent, while A. alternata isolates, which have been considered the major pathogen of winter jujube fruit rot, showed a relatively low-level virulence in this study. Furthermore, D. eres, F. graminearum, F. lateritium, and an unclassified Fusarium species were first reported as causal agents of winter jujube fruit rot. The typical symptoms of winter jujube fruit rot observed in this study could be distinguished into two types. N. quercina, A. alternata, A. tenuissima, Fusarium sp., D. nobilis, and F. lateritium isolates caused reddish brown to dark gray lesions on the peel, while B. dothidea, F. graminearum, and F. proliferatum isolates caused peel and pulp decay, resulting in red to reddish brown and water-soaked lesions. In addition, haplotype analysis of N. quercina isolates obtained in this study and validly published articles showed that there were 11 haplotypes worldwide; the isolates obtained in the current study were grouped into three haplotypes (Hap 1, Hap 2, and Hap 11), and two of them (Hap 2 and Hap 11) were confirmed as new haplotypes.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, P.R. China
| | - Chunbo Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Haolin Teng
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junlei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
12
|
Manetti G, Brunetti A, Lumia V, Sciarroni L, Marangi P, Cristella N, Faggioli F, Reverberi M, Scortichini M, Pilotti M. Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. J Fungi (Basel) 2023; 9:292. [PMID: 36983460 PMCID: PMC10053632 DOI: 10.3390/jof9030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
For about a decade, olive groves in Apulia (Southern Italy) have been progressively destroyed by Olive Quick Decline Syndrome (OQDS), a disease caused by the bacterium Xylella fastidiosa subsp. pauca (Xfp). Recently, we described an additional wilting syndrome affecting olive trees in that area. The botryosphaeriaceous fungus Neofusicoccum mediterraneum was found associated with the diseased trees, and its high virulence toward olive trees was demonstrated. Given the common features with Branch and Twig Dieback (BTD) of olive tree, occurring in Spain and California, we suggested that the observed syndrome was BTD. During our first survey, we also found a botryosphaeriaceous species other than N. mediterraneum. In the present article, we report the morphological and molecular characterization of this fungal species which we identified as Neofusicoccum stellenboschiana. In the study, we also included for comparison additional N. stellenboschiana isolates obtained from olive trees in Latium and Tuscany region (Central Italy). The occurrence of N. stellenboschiana in olive trees is reported here for the first time in the northern hemisphere. The pathogenicity and virulence were tested in nine inoculation trials, where the Apulian N. stellenboschiana isolate was compared with the isolate from Latium and with the Apulian isolate of N. mediterraneum. Both isolates of N. stellenboschiana proved pathogenic to olive trees. They caused evident bark canker and wood discolouration when inoculated at the base of the stem of two/three-year-old trees and on one-year-old twigs. However, virulence of N. stellenboschiana was significantly lower, though still remarkable, compared with N. mediterraneum in term of necrosis progression in the bark and the wood and capacity of wilting the twigs. Virulence of N. stellenboschiana and N. mediterraneum did not substantially change when inoculations were performed in spring/summer and in autumn, suggesting that these fungal species have the potential to infect and damage olive trees in all seasons. The high thermotolerance of N. stellenboschiana was also revealed with in vitro growth and survival tests. The high virulence of these Botryosphaeriaceae species highlights their contribution in BTD aetiology and the necessity to investigate right away their diffusion and, possibly, the role of additional factors other than Xfp in the general decline of olive groves in Apulia. Hence the importance of assessing the degree of overlap of BTD/Botryosphariaceae with OQDS/Xfp is discussed.
Collapse
Affiliation(s)
- Giuliano Manetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Angela Brunetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Valentina Lumia
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Lorenzo Sciarroni
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Paolo Marangi
- Terranostra S.r.l.s., 72021 Francavilla Fontana, Italy
| | | | - Francesco Faggioli
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, University Sapienza, 00165 Rome, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit trees and Citrus Crops, Council for Agricultural Research and Economics (CREA) (CREA-OFA), 00134 Rome, Italy
| | - Massimo Pilotti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| |
Collapse
|
13
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
14
|
Van Dyk M, Spies CFJ, Mostert L, Halleen F. Detection of Pseudophaeomoniella globosa, an Olive Trunk Pathogen, on Olive Pruning Debris. PLANT DISEASE 2022; 106:2330-2337. [PMID: 35380468 DOI: 10.1094/pdis-09-21-1903-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudophaeomoniella globosa has recently been identified as a pathogen contributing to olive trunk diseases in South Africa. Little is known regarding the biology and epidemiology of this pathogen. The aim of this study was to investigate whether olive pruning debris act as an inoculum source of P. globosa in established orchards. A nested species-specific PCR was developed for the detection of this pathogen on 138 samples of pruning debris collected from Paarl (40 wood pieces), Stellenbosch (42 wood pieces), and Worcester (56 pieces) in the Western Cape Province, South Africa. Spore washes were made from the samples (5 to 10 cm in length), after which the nested species-specific primers were used to determine the presence of P. globosa on the wood. P. globosa was detected on 37.5% of the pruning debris collected from Paarl, 61.9% from Stellenbosch, and 39.3% from Worcester. The pruning debris that tested positive for P. globosa were evaluated visually by microscopic observations for P. globosa pycnidia. Dark-brown to black pycnidia were found. Conidia from these pycnidia were measured, cultured, and confirmed as P. globosa by sequencing the internal transcribed spacer region. In this study, the pruning debris in established olive orchards were identified as inoculum sources of P. globosa. This study emphasizes the importance of additional means focused on reducing the inoculum sources of this pathogen in these orchards as an additional management strategy against olive trunk diseases.
Collapse
Affiliation(s)
- Meagan Van Dyk
- Plant Protection Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Christoffel F J Spies
- Plant Protection Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - Lizel Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Francois Halleen
- Plant Protection Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
15
|
Sisodiya S, Sinha A, Debnath M, Shekhawat R, Shekhawat SS. Protecting Superfood Olive Crop from Pests and Pathogens Using Image
Processing Techniques: A Review. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666211227103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Olive (Oleo europaea L.) cultivars are widely cultivated all over the
world. However, they are often attacked by pests and pathogens. This deteriorates the quality of
the crop, leading to less yield of olive oil. The different infections that cause comparable disease
symptoms on olive leaves can be classified using image processing techniques.
Objective:
The olive has established itself as a superfood and a possible source of medicine, owing
to the rapid increase in the availability of data in the field of nutrigenomics. The goal of this
review is to underline the importance of applying image processing techniques to detect and
classify diseases early.
Method:
PubMed, ScienceDirect, and Google Scholar were used to conduct a systematic literature
search using the keywords olive oil, pest and pathogen of olives, and metabolic profiling.
Results:
Infections caused by infectious diseases frequently result in significant losses and lowquality
olive oil yields. Early detection of disease infestations can safeguard the olive plant and
its yield.
Results:
This strategy can help protect the crop from disease spread, and early detection and
classification of the disease can aid in prompt prophylaxis of diseased olive plants before the
disease worsens. Protecting olive plants from pests and pathogens can help keep the yield and
quality of olive oil consistent.
Collapse
Affiliation(s)
- Smita Sisodiya
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Aditya Sinha
- Department of Computer Science &
Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Rajveer Shekhawat
- Department of Computer Science &
Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | | |
Collapse
|
16
|
Brunetti A, Matere A, Lumia V, Pasciuta V, Fusco V, Sansone D, Marangi P, Cristella N, Faggioli F, Scortichini M, Pilotti M. Neofusicoccum mediterraneum Is Involved in a Twig and Branch Dieback of Olive Trees Observed in Salento (Apulia, Italy). Pathogens 2022; 11:53. [PMID: 35056001 PMCID: PMC8780778 DOI: 10.3390/pathogens11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
Olive trees are infected and damaged by Botryosphaeriaceae fungi in various countries. The botryosphaeriaceous fungus Neofusicoccum mediterraneum is highly aggressive and is a major concern for olive groves in Spain and California (USA), where it causes 'branch and twig dieback' characterized by wood discoloration, bark canker, and canopy blight. During surveys of olive groves in Apulia (southern Italy), we noticed that-in some areas-trees were heavily affected by severe branch and twig dieback. In addition, chlorosis and the appearance of red-bronze patches on the leaf preceded the wilting of the foliage, with necrotic leaves persisting on the twigs. Given the severity of the manifestation in zones also subject to olive quick decline syndrome (OQDS) caused by Xylella fastidiosa subsp. pauca, we investigated the etiology and provide indications for differentiating the symptoms from OQDS. Isolation from diseased wood samples revealed a mycete, which was morphologically and molecularly identified as N. mediterraneum. The pathogenicity tests clearly showed that this fungus is able to cause the natural symptoms. Therefore, also considering the low number of tested samples, N. mediterraneum is a potential causal agent of the observed disease. Specifically, inoculation of the twigs caused complete wilting in two to three weeks, while inoculation at the base of the stem caused severe girdling wedge-shaped cankers. The growth rate of the fungus in in vitro tests was progressively higher from 10 to 30 °C, failing to grow at higher temperatures, but keeping its viability even after prolonged exposure at 50 °C. The capacity of the isolate to produce catenulate chlamydospores, which is novel for the species, highlights the possibility of a new morphological strain within N. mediterraneum. Further investigations are ongoing to verify whether additional fungal species are involved in this symptomatology.
Collapse
Affiliation(s)
- Angela Brunetti
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Antonio Matere
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Valentina Lumia
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Vittorio Pasciuta
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Valeria Fusco
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Domenico Sansone
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Paolo Marangi
- Terranostra S.r.l.s., Via Monte Grappa, 48, 72021 Francavilla Fontana, Italy; (P.M.); (N.C.)
| | - Nicola Cristella
- Terranostra S.r.l.s., Via Monte Grappa, 48, 72021 Francavilla Fontana, Italy; (P.M.); (N.C.)
| | - Francesco Faggioli
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit Trees and Citrus Crops (CREA-OFA), Via di Fioranello, 52, 00134 Roma, Italy;
| | - Massimo Pilotti
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| |
Collapse
|
17
|
Fusco V, Pasciuta V, Lumia V, Matere A, Battaglia V, Bertinelli G, Sansone D, Brunetti A, Pilotti M. Root and stem rot, and wilting of olive tree caused by Dematophora necatrix and associated with Emmia lacerata in Central Italy. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2022; 163:71-96. [PMID: 35095205 PMCID: PMC8783780 DOI: 10.1007/s10658-022-02458-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED Lethal wilting was observed on young olive trees cv Favolosa in a grove in central Italy. White mycelial strands wrapped the basal portion of the stems that had been buried during planting. The bark was rotted and the xylem was discoloured. A fungal morphotype was strictly associated with symptomatic plants and identified as Dematophora (ex Rosellinia) necatrix. Pathogenicity tests on cvs Favolosa, Leccino and Ogliarola demonstrated that D. necatrix was the causal agent of the disease. Our investigations revealed that infections occurring during autumn and winter greatly favour the disease. By applying a marcottage to the inoculation point, we accelerated the course of the disease and mimicked the lethal outcome observed in the field. In in vitro tests, seven systemic (potential) fungicides strongly inhibited D. necatrix. Dentamet, Al-phosphite and Thiophanate methyl were selected to be tested in planta with a curative and preventive modality. Only Thiophanate methyl, in preventive modality, fully protected the plants from disease progression throughout the observation period. An additional fungal species was strictly associated with both diseased and apparently healthy plants. Morphological and molecular features identified the fungus as Emmia lacerata, a polypore species within the Irpicaceae, which is the agent of white rot on dead woody substrates. To our knowledge, this is the first time that E. lacerata has been reported in Italy and worldwide on olive trees. Inoculation of ‛Favolosa' trees revealed that it colonizes the xylem without causing visible alterations. The possible role of E. lacerata in the olive tree-D. necatrix pathosystem is discussed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10658-022-02458-1.
Collapse
Affiliation(s)
- Valeria Fusco
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Vittorio Pasciuta
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Valentina Lumia
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Antonio Matere
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Valerio Battaglia
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Giorgia Bertinelli
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Domenico Sansone
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Angela Brunetti
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Massimo Pilotti
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| |
Collapse
|
18
|
van Dyk M, Spies CFJ, Mostert L, van der Rijst M, du Plessis IL, Moyo P, van Jaarsveld WJ, Halleen F. Pathogenicity Testing of Fungal Isolates Associated with Olive Trunk Diseases in South Africa. PLANT DISEASE 2021; 105:4060-4073. [PMID: 34156267 DOI: 10.1094/pdis-08-20-1837-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A recent olive trunk disease survey performed in the Western Cape Province, South Africa, identified several fungi associated with olive trunk disease symptoms, including species of Basidiomycota, Botryosphaeriaceae, Coniochaetaceae, Calosphaeriaceae, Diaporthaceae, Diatrypaceae, Phaeomoniellaceae, Phaeosphaeriaceae, Symbiotaphrinaceae, Togniniaceae, and Valsaceae. Many of the species recovered had not yet been reported from olive trees; therefore, the aim of this study was to determine their pathogenicity toward this host. Pathogenicity tests were first conducted on detached shoots to select virulent isolates, which were then used in field trials. During field trials, 2-year-old olive branches of 15-year-old trees were inoculated by inserting colonized agar plugs into artificially wounded tissue. Measurements were made of the internal lesions after 8 months. In total, 58 isolates were selected for the field trials. Species that formed lesions significantly larger than the control could be considered as olive trunk pathogens. These included Biscogniauxia rosacearum, Celerioriella umnquma, Coniochaeta velutina, Coniothyrium ferrarisianum, isolates of the Cytospora pruinosa complex, Didymocyrtis banksiae, Diaporthe foeniculina, Eutypa lata, Fomitiporella viticola, Neofusicoccum stellenboschiana, Neofusicoccum vitifusiforme, Neophaeomoniella niveniae, Phaeoacremonium africanum, Phaeoacremonium minimum, Phaeoacremonium oleae, Phaeoacremonium parasiticum, Phaeoacremonium prunicola, Phaeoacremonium scolyti, Phaeoacremonium spadicum, Pleurostoma richardsiae, Pseudophaeomoniella globosa, Punctularia atropurpurascens, Vredendaliella oleae, an undescribed Cytospora sp., Geosmithia sp., two undescribed Neofusicoccum spp., and four Xenocylindrosporium spp. Pseudophaeomoniella globosa can be regarded as one of the main olive trunk pathogens in South Africa because of its high incidence from olive trunk disease symptoms in established orchards and its high virulence in pathogenicity trials.
Collapse
Affiliation(s)
- Meagan van Dyk
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Christoffel F J Spies
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Lizel Mostert
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | | | - Ihan L du Plessis
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Providence Moyo
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Wynand J van Jaarsveld
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Francois Halleen
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| |
Collapse
|
19
|
Dieback and decline pathogens of olive trees in South Africa. Persoonia - Molecular Phylogeny and Evolution of Fungi 2021; 45:196-220. [PMID: 34456377 PMCID: PMC8375345 DOI: 10.3767/persoonia.2020.45.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 12/03/2022]
Abstract
Trunk disease fungal pathogens reduce olive production globally by causing cankers, dieback, and other decline-related symptoms on olive trees. Very few fungi have been reported in association with olive dieback and decline in South Africa. Many of the fungal species reported from symptomatic olive trees in other countries have broad host ranges and are known to occur on other woody host plants in the Western Cape province, the main olive production region of South Africa. This survey investigated the diversity of fungi and symptoms associated with olive dieback and decline in South Africa. Isolations were made from internal wood symptoms of 145 European and 42 wild olive trees sampled in 10 and 9 districts, respectively. A total of 99 taxa were identified among 440 fungal isolates using combinations of morphological and molecular techniques. A new species of Pseudophaeomoniella, P. globosa, had the highest incidence, being recovered from 42.8 % of European and 54.8 % of wild olive samples. This species was recovered from 9 of the 10 districts where European olive trees were sampled and from all districts where wild olive trees were sampled. Members of the Phaeomoniellales (mainly P. globosa) were the most prevalent fungi in five of the seven symptom types considered, the only exceptions being twig dieback, where members of the Botryosphaeriaceae were more common, and soft/white rot where only Basidiomycota were recovered. Several of the species identified are known as pathogens of olives or other woody crops either in South Africa or elsewhere in the world, including species of Neofusicoccum, Phaeoacremonium, and Pleurostoma richardsiae. However, 81 of the 99 taxa identified have not previously been recorded on olive trees and have unknown interactions with this host. These taxa include one new genus and several putative new species, of which four are formally described as Celerioriella umnquma sp. nov., Pseudophaeomoniella globosa sp. nov., Vredendaliella oleae gen. & sp. nov., and Xenocylindrosporium margaritarum sp. nov.
Collapse
|
20
|
Li Y, Gai Z, Wang C, Li P, Li B. Identification of Mellein as a Pathogenic Substance of Botryosphaeria dothidea by UPLC-MS/MS Analysis and Phytotoxic Bioassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8471-8481. [PMID: 34304561 DOI: 10.1021/acs.jafc.1c03249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Botryosphaeria dothidea is a pathogenic fungus that can cause apple ring rot, a destructive apple disease in China. There have been reports on its molecular pathogenesis, but the pathogenic substances still remain unknown. In the present study, instrument analysis including UPLC-high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance showed that B. dothidea fermentation broth contained (R)-(-)-mellein, a well-known fungal enantiomer of mellein. For further confirmation, a UPLC-MS/MS method for the determination of mellein was developed and validated. By this method, mellein was found to also exist in B. dothidea-infected apple fruits and branches with concentration ranges of 0.14-0.94 and 5.88-80.29 mg/kg, respectively. The concentration in fruits reached a peak at 48 h after pathogen inoculation, while a sustained concentration increase was achieved within 11 days for branches. Simultaneously, it was evident that there was a relation between disease spot expansion and mellein production kinetics in apple tissue. Phytotoxic bioassay showed that mellein could cause discoloration and death of apple leaves and browning in stems. Therefore, we confirmed that mellein was one of the pathogenic substances of B. dothidea. The present study provided additional data for the research on the pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Yuanze Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Zheng Gai
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Caixia Wang
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pingliang Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Baohua Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
21
|
van Dyk M, Spies CFJ, Mostert L, Halleen F. Survey of Trunk Pathogens in South African Olive Nurseries. PLANT DISEASE 2021; 105:1630-1639. [PMID: 33100152 DOI: 10.1094/pdis-04-20-0798-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several fungal trunk pathogens are associated with olive trunk diseases in South Africa. Little is known regarding the inoculum sources of these pathogens in the olive industry, and no specific management strategies are in place. The aim of this study was to investigate the status of olive nurseries in South Africa, with regard to the presence of trunk pathogens in olive plant material, to determine whether nursery material can be considered inoculum sources contributing to long-distance dispersal of these pathogens. Isolations were made from asymptomatic cuttings from mother blocks (stage 1), asymptomatic and symptomatic rooted cuttings (stage 2), and 1- to 2-year-old trees (stage 3) of eight cultivars in two nurseries. Known olive trunk pathogens of Nectriaceae, Diaporthaceae, Botrysphaeriaceae, Togniniaceae, Phaeomoniellaceae, and Pleurostomataceae were recovered. Neofusicoccum australe was detected in a single stage 1 cutting. Stage 3 material showed the highest incidence of fungi from these families, with Pleurostoma richardsiae having the highest incidence in both nurseries (82.2 and 36.7% of the 1- to 2-year-old trees). Phaeoacremonium parasiticum was present in 28.9% of the trees from one nursery (stage 3). The remaining pathogens occurred in ≤13.3% of the material. These results indicate that nursery propagation material from mother blocks harbors low levels of trunk pathogens and that additional infections occur during the nursery process. Management strategies should focus on the prevention and elimination of infections in mother blocks as well as during the propagation process to ensure that pathogen-free material is delivered to producers.
Collapse
Affiliation(s)
- Meagan van Dyk
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa
| | - Christoffel F J Spies
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa
- ARC-Plant Health and Protection, Stellenbosch 7599, South Africa
| | - Lizel Mostert
- Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa
| | - Francois Halleen
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa
| |
Collapse
|
22
|
Zou J, Dong Y, Wang H, Liang W, Li D. Identification and Characterization of Nothophoma quercina Causing Bud Blight on Photinia × fraseri in China. PLANT DISEASE 2021; 105:1356-1364. [PMID: 33258433 DOI: 10.1094/pdis-06-20-1218-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photinia (Photinia × fraseri Dress) is a well-known green plant that has high ornamental value and is widely distributed around the world. An outbreak of typical bud blight disease was observed between May and August in photinia in 2017 in Qingdao, China. The causal agent for this blight was subsequently isolated from symptomatic samples and identified as Nothophoma quercina based on morphological characterization and molecular analyses (ITS, LSU, RPB2, and TUB2). Results of pathogenicity tests on isolated fungi also supported the conclusion that N. quercina is the pathogen responsible for this condition. To our knowledge, this is the first report of bud blight on P. fraseri caused by N. quercina in China.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanhan Dong
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Huizheng Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Delong Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
23
|
Agustí-Brisach C, Jiménez-Urbano JP, Del Carmen Raya M, López-Moral A, Trapero A. Vascular Fungi Associated with Branch Dieback of Olive in Super-High-Density Systems in Southern Spain. PLANT DISEASE 2021; 105:797-818. [PMID: 33021920 DOI: 10.1094/pdis-08-20-1750-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Symptoms of branch dieback of olive with internal longitudinal dark streaking were observed during routine surveys in super-high-density systems in southern Spain. Nineteen fungal isolates recovered from wood samples showing internal discoloration and necrotic xylem vessels were selected. Multilocus alignments of the internal transcribed spacer, 28S ribosomal RNA, β-tubulin, or actin were performed, and the following species were identified: Acremonium sclerotigenum, Cadophora luteo-olivacea, Paracremonium sp., Phaeoacremonium italicum, P. minimum, P. scolyti, and Pseudophaeomoniella oleicola. Colony color, mycelial growth, conidial characteristics, and production were defined on potato dextrose agar, malt extract agar (MEA), and oatmeal agar. Phenotypic characteristics and conidial production varied depending on the isolate and culture media. The effect of temperature on mycelial growth was evaluated on MEA. The isolates showed slow mycelial growth (0.5 to 2.0 mm day-1), with the optimum temperature ranging from 23.2 to 33.9°C. Pathogenicity tests were conducted on 9-month-old olive potted plants (Arbequina) inoculated with mycelial plugs. C. luteo-olivacea, Phaeoacremonium minimum, and Phaeomoniella chlamydospora isolates from grapevine were included in the pathogenicity tests for comparative purposes. Prior to inoculation, the effect on the infection by inoculation with conidial suspensions or mycelial plugs was evaluated, with the second method being the most effective. C. luteo-olivacea was the fungus most aggressive to olive, followed by Phaeoacremonium minimum.
Collapse
Affiliation(s)
- Carlos Agustí-Brisach
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - José Pablo Jiménez-Urbano
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - María Del Carmen Raya
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Ana López-Moral
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Antonio Trapero
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| |
Collapse
|
24
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
25
|
Agustí-Brisach C, Moldero D, Raya MDC, Lorite IJ, Orgaz F, Trapero A. Water Stress Enhances the Progression of Branch Dieback and Almond Decline under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091213. [PMID: 32947913 PMCID: PMC7570136 DOI: 10.3390/plants9091213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Branch dieback and tree decline have been described as a common complex disease worldwide in woody crops, with Botryosphaeriaceae and Diaporthaceae being considered the most frequent fungi associated with the disease symptoms. Their behaviour is still uncertain, since they are considered endophytes becoming pathogenic in weakened hosts when stress conditions, such as water deficiency occur. Therefore, the main goal of this study was to determine if water stress enhances general decline on weakened almond trees subjected to different irrigation treatments under natural field conditions. In parallel, the occurrence of fungal species associated with almond decline was also determined in relation to disease progression by fungal isolation, and morphological and molecular based-methods. The symptoms of branch dieback and general decline were observed over time, mainly in the experimental plots subjected to high water deficiency. Botryosphaeriaceae were the most consistently isolated fungi, and Botryosphaeria dothidea was the most frequent. Collophorina hispanica was the second most frequent species and Diaporthe and Cytospora species were isolated in a low frequency. Most of them were recovered from both asymptomatic and symptomatic trees, with their consistency of isolation increasing with the disease severity. This work reveals the need to elucidate the role of biotic and abiotic factors which increase the rate of infection of fungal trunk pathogens, in order to generate important knowledge on their life cycle.
Collapse
Affiliation(s)
- Carlos Agustí-Brisach
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (M.d.C.R.); (A.T.)
| | - David Moldero
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (D.M.); (F.O.)
| | - María del Carmen Raya
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (M.d.C.R.); (A.T.)
| | - Ignacio J. Lorite
- IFAPA-Centro Alameda del Obispo, Junta de Andalucía, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Francisco Orgaz
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (D.M.); (F.O.)
| | - Antonio Trapero
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (M.d.C.R.); (A.T.)
| |
Collapse
|
26
|
Nicoletti R, Di Vaio C, Cirillo C. Endophytic Fungi of Olive Tree. Microorganisms 2020; 8:E1321. [PMID: 32872625 PMCID: PMC7565531 DOI: 10.3390/microorganisms8091321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to the general interest connected with investigations on biodiversity in natural contexts, more recently the scientific community has started considering occurrence of endophytic fungi in crops in the awareness of the fundamental role played by these microorganisms on plant growth and protection. Crops such as olive tree, whose management is more and more frequently based on the paradigm of sustainable agriculture, are particularly interested in the perspective of a possible applicative employment, considering that the multi-year crop cycle implies a likely higher impact of these symbiotic interactions. Aspects concerning occurrence and effects of endophytic fungi associated with olive tree (Olea europaea) are revised in the present paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Claudio Di Vaio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
27
|
Bettenfeld P, Fontaine F, Trouvelot S, Fernandez O, Courty PE. Woody Plant Declines. What's Wrong with the Microbiome? TRENDS IN PLANT SCIENCE 2020; 25:381-394. [PMID: 31983620 DOI: 10.1016/j.tplants.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions from nutrient cycling to community assembly and for regulating a variety of processes. To limit effects and to fight against declines, we propose: (i) to consider the WP and its associated microbiota as an holobiont and as a set of functions; (ii) to consider simultaneously, without looking at what comes first, the physiological or pathogenic disorders; and (iii) to define pragmatic strategies, including preventive and curative agronomical practices based on microbiota engineering.
Collapse
Affiliation(s)
- Pauline Bettenfeld
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France; SFR Condorcet CNRS 3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims, France
| | - Florence Fontaine
- SFR Condorcet CNRS 3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Olivier Fernandez
- SFR Condorcet CNRS 3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
28
|
Zheng XR, Zhang MJ, Shang XL, Fang SZ, Chen FM. Stem Canker on Cyclocarya paliurus Is Caused by Botryosphaeria dothidea. PLANT DISEASE 2020; 104:1032-1040. [PMID: 31999219 DOI: 10.1094/pdis-11-18-1990-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cyclocarya paliurus, an important endangered plant in China, has considerable medicinal, timber, and horticultural value. However, little is known about diseases that affect its health. In recent years, stem canker diseases on C. paliurus have been observed frequently in newly established nurseries in Jiangsu Province, China. Symptomatic trees showed elliptical, sunken lesions on the bark, with internal discoloration, leading to enlarging cankers with delineated margins. Pathogenicity tests with fungi isolated from symptomatic samples reproduced typical canker symptoms on both detached branches and potted plants of C. paliurus. Moreover, conidia from pycnidia of isolate ZB-23 could also cause stem canker on C. paliurus. Through combined morphological observation and DNA sequences of ITS region, β-tubulin, and translation elongation factor 1-α genes, the pathogen was identified as Botryosphaeria dothidea. Multigene maximum likelihood and maximum parsimony phylogenetic analyses further supported the identification of the pathogen. To our knowledge, this is the first report of B. dothidea causing stem canker on C. paliurus in China.
Collapse
Affiliation(s)
- Xiang-rong Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mao-jiao Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xu-lan Shang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sheng-zuo Fang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Feng-mao Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
29
|
Gerin D, Nigro F, Faretra F, Pollastro S. Identification of Arthrinium marii as Causal Agent of Olive Tree Dieback in Apulia (Southern Italy). PLANT DISEASE 2020; 104:694-701. [PMID: 31961768 DOI: 10.1094/pdis-03-19-0569-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Olive (Olea europaea L. var. sativa) is one of the most economically important tree crops grown in the Mediterranean basin. Arthrinium Kunze ex Fr. (teleomorph: Apiospora Sacc.) is a widespread fungal genus, and Arthrinium marii Larrondo & Calvo is a ubiquitous species, found in algae, soil, plants, and agricultural communities. A. marii was isolated from olive trees showing dieback from orchards located in Andria and in Fasano, Brindisi (Apulia, southern Italy) and identified based on morphological features and molecular analysis of four genomic regions (ITS, TUB2, TEF1, and LSU). Two-year-old olive plants artificially inoculated with three representative A. marii isolates showed complete dieback within 6 months, and the fungus was reisolated, satisfying Koch's postulates. This is the first report of A. marii causing dieback on olive trees that could represent an important threat for olive cultivation.
Collapse
Affiliation(s)
- Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
- Selge Network, University of Bari Aldo Moro, Bari 70126, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
- Selge Network, University of Bari Aldo Moro, Bari 70126, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
- Selge Network, University of Bari Aldo Moro, Bari 70126, Italy
| |
Collapse
|
30
|
López-Moral A, Lovera M, Raya MDC, Cortés-Cosano N, Arquero O, Trapero A, Agustí-Brisach C. Etiology of Branch Dieback and Shoot Blight of English Walnut Caused by Botryosphaeriaceae and Diaporthe Species in Southern Spain. PLANT DISEASE 2020; 104:533-550. [PMID: 31746696 DOI: 10.1094/pdis-03-19-0545-re] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
English walnut (Juglans regia L.) is considered an economically important fruit crop worldwide. In Spain, little attention has been given to walnut diseases owing to the minor economic importance of the walnut crop in the country until recently. In 2017, typical symptoms of branch dieback and shoot blight of English walnut were observed in southern Spain. From 2017 to 2018, 10 commercial walnut orchards showing disease symptoms were surveyed. Botryosphaeriaceae and Diaporthe fungi were consistently isolated from affected shoots. Cytospora isolates were also recovered with minor relevance. Representative isolates of each fungal group were characterized based on colony and conidial morphology, optimum growth temperature, and comparison of DNA sequence data from the internal transcribed spacer, elongation factor 1-α, and β-tubulin genomic areas. Pathogenicity tests were performed on detached and attached shoots and on detached fruit by inoculating them with mycelial plugs. Botryosphaeriaceae and Diaporthe isolates had higher optimum growth temperatures (≈25 to 27°C) than Cytospora sp. (19.5°C). The following species were identified: Botryosphaeriaceae: Botryosphaeria dothidea, Diplodia seriata, Dothiorella sarmentorum, Dothiorella sp., Neofusicoccum mediterraneum, and N. parvum; Diaporthe: Diaporthe neotheicola, Dia. rhusicola, Diaporthe sp., and Phomopsis amygdali; and Cytospora sp. Botryosphaeriaceae isolates were the most aggressive fungi to walnut in all tissues evaluated, followed by Diaporthe isolates and Cytospora sp. N. parvum was the most virulent among the remaining species tested in any of the tissues evaluated, followed by B. dothidea or N. mediterraneum. This work is the first report to identify the fungal species causing this complex disease of English walnut in Spain and Europe.
Collapse
Affiliation(s)
- Ana López-Moral
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - María Lovera
- Departamento de Fruticultura Mediterránea, IFAPA, 14004 Córdoba, Spain
| | - María Del Carmen Raya
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Nerea Cortés-Cosano
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Octavio Arquero
- Departamento de Fruticultura Mediterránea, IFAPA, 14004 Córdoba, Spain
| | - Antonio Trapero
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
31
|
Song J, Liang JF, Mehrabi-Koushki M, Krisai-Greilhuber I, Ali B, Bhatt VK, Cerna-Mendoza A, Chen B, Chen ZX, Chu HL, Corazon-Guivin MA, da Silva GA, De Kesel A, Dima B, Dovana F, Farokhinejad R, Ferisin G, Guerrero-Abad JC, Guo T, Han LH, Ilyas S, Justo A, Khalid AN, Khodadadi-Pourarpanahi S, Li TH, Liu C, Lorenzini M, Lu JK, Mumtaz AS, Oehl F, Pan XY, Papp V, Qian W, Razaq A, Semwal KC, Tang LZ, Tian XL, Vallejos-Tapullima A, van der Merwe NA, Wang SK, Wang CQ, Yang RH, Yu F, Zapparoli G, Zhang M, Antonín V, Aptroot A, Aslan A, Banerjee A, Chatterjee S, Dirks AC, Ebrahimi L, Fotouhifar KB, Ghosta Y, Kalinina LB, Karahan D, Liu J, Maiti MK, Mookherjee A, Nath PS, Panja B, Saha J, Ševčíková H, Voglmayr H, Yazıcı K, Haelewaters D. Fungal Systematics and Evolution: FUSE 5. SYDOWIA 2019; 71:141-245. [PMID: 31975743 PMCID: PMC6978154 DOI: 10.12905/0380.sydowia71-2019-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thirteen new species are formally described: Cortinarius brunneocarpus from Pakistan, C. lilacinoarmillatus from India, Curvularia khuzestanica on Atriplex lentiformis from Iran, Gloeocantharellus neoechinosporus from China, Laboulbenia bernaliana on species of Apenes, Apristus, and Philophuga (Coleoptera, Carabidae) from Nicaragua and Panama, L. oioveliicola on Oiovelia machadoi (Hemiptera, Veliidae) from Brazil, L. termiticola on Macrotermes subhyalinus (Blattodea, Termitidae) from the DR Congo, Pluteus cutefractus from Slovenia, Rhizoglomus variabile from Peru, Russula phloginea from China, Stagonosporopsis flacciduvarum on Vitis vinifera from Italy, Strobilomyces huangshanensis from China, Uromyces klotzschianus on Rumex dentatus subsp. klotzschianus from Pakistan. The following new records are reported: Alternaria calendulae on Calendula officinalis from India; A. tenuissima on apple and quince fruits from Iran; Candelariella oleaginescens from Turkey; Didymella americana and D. calidophila on Vitis vinifera from Italy; Lasiodiplodia theobromae causing tip blight of Dianella tasmanica 'variegata' from India; Marasmiellus subpruinosus from Madeira, Portugal, new for Macaronesia and Africa; Mycena albidolilacea, M. tenuispinosa, and M. xantholeuca from Russia; Neonectria neomacrospora on Madhuca longifolia from India; Nothophoma quercina on Vitis vinifera from Italy; Plagiosphaera immersa on Urtica dioica from Austria; Rinodina sicula from Turkey; Sphaerosporium lignatile from Wisconsin, USA; and Verrucaria murina from Turkey. Multi-locus analysis of ITS, LSU, rpb1, tef1 sequences revealed that P. immersa, commonly classified within Gnomoniaceae (Diaporthales) or as Sordariomycetes incertae sedis, belongs to Magnaporthaceae (Magnaporthales). Analysis of a six-locus Ascomycota-wide dataset including SSU and LSU sequences of S. lignatile revealed that this species, currently in Ascomycota incertae sedis, belongs to Pyronemataceae (Pezizomycetes, Pezizales).
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Jun-Feng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Mehdi Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Barkat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Biochemistry, Genetics and Microbiology, Division of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | | | - Agustín Cerna-Mendoza
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
| | - Bin Chen
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Zai-Xiong Chen
- Management Bureau of Danxiashan National Nature Reserve of Guangdong, Shaoguan 512300, China
| | - Hong-Long Chu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
| | - Gladstone Alves da Silva
- Departamento de Micologia, CB, Universidade Federal de Pernambuco, Av. da engenharia s/n, Cidade Universitária, 50740-600, Recife, PE, Brazil
| | - André De Kesel
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Francesco Dovana
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - Reza Farokhinejad
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Juan Carlos Guerrero-Abad
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
- Instituto Nacional de Innovación Agraria (INIA). Dirección General de Recursos Genéticos y Biotecnología. Av. La Molina 1981, La Molina - Lima, Peru
| | - Ting Guo
- Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Li-Hong Han
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Sobia Ilyas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Alfredo Justo
- New Brunswick Museum, 277 Douglas Ave., Saint John, New Brunswick, E2K 1E5, Canada
| | | | | | - Tai-Hui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | | | - Jun-Kun Lu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Müller-Thurgau-Strasse 29, CH-8820 Wädenswil, Switzerland
| | - Xue-Yu Pan
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Viktor Papp
- Department of Botany, Szent István University, H-1518 Budapest, Hungary
| | - Wu Qian
- Bureau of Parks and Woods of Mt. Huangshan Administrative Committee, Huangshan, Anhui 245000, China
| | - Abdul Razaq
- Discipline of Botany, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences (UVAS), Ravi Campus, Pattoki, Pakistan
| | - Kamal C. Semwal
- Department of Biology, College of Sciences, Eritrea Institute of Technology, Mai Nafhi, Asmara, Eritrea
| | - Li-Zhou Tang
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Xue-Lian Tian
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Adela Vallejos-Tapullima
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
| | - Nicolaas A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Division of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Sheng-Kun Wang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Chao-Qun Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Rui-Heng Yang
- Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fei Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Giacomo Zapparoli
- Università degli Studi di Verona, Dipartimento di Biotecnologie, Italy
| | - Ming Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Vladimir Antonín
- Department of Botany, Moravian Museum, Zelný trh 6, CZ-659 37 Brno, Czech Republic
| | - André Aptroot
- ABL Herbarium G.v.d.Veenstraat, 107 NL-3762, XK Soest, The Netherlands
| | - Ali Aslan
- Yüzüncü Yıl University, Faculty of Pharmacy, 65080 Campus, Van, Turkey; Kyrgyz-Turkish Manas University, Faculty of Arts and Science, Dept. of Biology, Bishkek, Kyrgyzstan
| | - Arghya Banerjee
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Subrata Chatterjee
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Alden C. Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, 4050 Biological Sciences Building, Ann Arbor, MI 48109, USA
| | - Leila Ebrahimi
- Department of Entomology and Plant Pathology, Aburaihan Campus, University of Tehran, Tehran, 33916-53755, Iran
| | - Khalil-Berdi Fotouhifar
- Department of Plant Protection, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, P. O. Box 165, Iran
| | - Lyudmila B. Kalinina
- Russian Academy of Sciences, Komarov Botanical Institute, Prof. Popov Str. 2, St. Petersburg RU-197376, Russia
| | - Dilara Karahan
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Jingyu Liu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Mrinal Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Abhirup Mookherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Partha Sarathi Nath
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Birendranath Panja
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Jayanta Saha
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Hana Ševčíková
- Department of Botany, Moravian Museum, Zelný trh 6, CZ-659 37 Brno, Czech Republic
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, Universität Wien, Rennweg 14, 1030 Wien, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, BOKU-University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82/I, 1190 Wien, Austria
| | - Kenan Yazıcı
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
- Herbario UCH, Universidad Autónoma de Chiriquí, Apartado Postal 0427, David, Panama
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Panama
| |
Collapse
|
32
|
Moral J, Morgan D, Trapero A, Michailides TJ. Ecology and Epidemiology of Diseases of Nut Crops and Olives Caused by Botryosphaeriaceae Fungi in California and Spain. PLANT DISEASE 2019; 103:1809-1827. [PMID: 31232653 DOI: 10.1094/pdis-03-19-0622-fe] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, the cultivated area and production of nuts and olives have increased, driven by an increasing consumer interest in healthier food. Diseases of almond, pistachio, olive, and walnut crops caused by species belonging to the Botryosphaeriaceae family have caused concern worldwide. Although considerable progress has been made in elucidating the etiology of these diseases, scientific knowledge of other aspects of these diseases is more limited. In this article, we present an overview of the most important diseases caused by Botryosphaeriaceae fungi affecting almond, pistachio, olive, and walnut crops by focusing on ecology and epidemiology, primarily in California and Spain.
Collapse
Affiliation(s)
- Juan Moral
- 1Department of Plant Pathology, University of California, Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
- 2Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - David Morgan
- 1Department of Plant Pathology, University of California, Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Antonio Trapero
- 2Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Themis J Michailides
- 1Department of Plant Pathology, University of California, Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
33
|
Buzón-Durán L, Martín-Gil J, Pérez-Lebeña E, Ruano-Rosa D, Revuelta JL, Casanova-Gascón J, Ramos-Sánchez MC, Martín-Ramos P. Antifungal Agents Based on Chitosan Oligomers, ε-polylysine and Streptomyces spp. Secondary Metabolites against Three Botryosphaeriaceae Species. Antibiotics (Basel) 2019; 8:antibiotics8030099. [PMID: 31330856 PMCID: PMC6783921 DOI: 10.3390/antibiotics8030099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
Grapevine trunk diseases (GTDs) are a major threat to the wine and grape industry. The aim of the study was to investigate the antifungal activity against Neofusicoccum parvum, Diplodia seriata, and Botryosphaeria dothidea of ε-polylysine, chitosan oligomers, their conjugates, Streptomyces rochei and S. lavendofoliae culture filtrates, and their binary mixtures with chitosan oligomers. In vitro mycelial growth inhibition tests suggest that the efficacy of these treatments, in particular those based on ε-polylysine and ε-polylysine:chitosan oligomers 1:1 w/w conjugate, against the three Botryosphaeriaceae species would be comparable to or higher than that of conventional synthetic fungicides. In the case of ε-polylysine, EC90 values as low as 227, 26.9, and 22.5 µg·mL-1 were obtained for N. parvum, D. seriata, and B. dothidea, respectively. Although the efficacy of the conjugate was slightly lower, with EC90 values of 507.5, 580.2, and 497.4 µg·mL-1, respectively, it may represent a more cost-effective option to the utilization of pure ε-polylysine. The proposed treatments may offer a viable and sustainable alternative for controlling GTDs.
Collapse
Affiliation(s)
- Laura Buzón-Durán
- Departamento de Ingeniería Agroforestal, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Jesús Martín-Gil
- Departamento de Ingeniería Agroforestal, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Eduardo Pérez-Lebeña
- Departamento de Ingeniería Agroforestal, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - David Ruano-Rosa
- Instituto Tecnológico Agrario de Castilla y León, Unidad de Cultivos Leñosos y Hortícolas, Ctra. De Burgos km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - José L Revuelta
- Departamento de Microbiología y Genética, Facultad de Biología, Universidad de Salamanca, Campus Miguel de Unamuno, C/ Donantes de Sangre, s/n, 37007 Salamanca, Spain
| | - José Casanova-Gascón
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
| | - M Carmen Ramos-Sánchez
- Servicio de Microbiología y Parasitología, Hospital Universitario Rio Hortega, SACYL, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - Pablo Martín-Ramos
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain.
| |
Collapse
|
34
|
Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00429-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Moral J, Ahimera N, Felts DG, Morgan DP, Michailides TJ. Effects of Wound Size, Amount of Sap, and Number of Blighted Nuts on Infection of Pistachio Organs by Neofusicoccum mediterraneum. PLANT DISEASE 2017; 101:2027-2033. [PMID: 30677373 DOI: 10.1094/pdis-04-17-0544-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laboratory and field studies were conducted to determine the effects of wounding of nut exocarp, susceptibility period after wounding, and sap nut on infection of pistachio nut by Neofusicoccum mediterraneum, the main causal agent of panicle and shoot blight of pistachio. Under controlled conditions and in the field, detached nuts were inoculated with a conidial suspension 30 min before or after wounding. In addition, a 30-µl drop of pistachio sap was placed on the surface of noninjured nuts 30 min before or after they were wounded and then inoculated. Wounding increased the disease severity under both controlled and field conditions. The addition of sap increased the susceptibility of nuts under controlled conditions but not in the field, possibly due to dried sap blocking the pathogen infection. When nuts of Kerman, Kalehghouchi, and Golden Hills pistachio were wounded and inoculated at different time periods after wounding; the nuts of the three cultivars were highly susceptible to pathogen infection during at least the first 24 h after wounding. Under field conditions, there was not a clear effect of increasing the number of inoculated nuts per panicle or the inoculation position (basal or apical) in killing (blight) of the panicle. Conversely, inoculations conducted with mycelial plugs resulted in higher disease, increased the proportion of dead panicles, and resulted in faster symptom expression than inoculations conducted with a conidial suspension. To determine the temporal infection pattern, leaves and panicles were regularly collected from different orchards from 2004 to 2007 and the pathogen was isolated on medium. Important differences in latent infection were detected between years and orchards, with nut and rachis being, in general, the tissues most susceptible to infection. Results of this study help in better understanding the dynamic of infection and colonization of pistachio by N. mediterraneum.
Collapse
Affiliation(s)
- J Moral
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center, Parlier 93648; and Department of Agronomy, University of Córdoba, Córdoba, Spain
| | - N Ahimera
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center
| | - D G Felts
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center
| | - D P Morgan
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center
| | - T J Michailides
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center
| |
Collapse
|
36
|
Vettraino AM, Li HM, Eschen R, Morales-Rodriguez C, Vannini A. The sentinel tree nursery as an early warning system for pathway risk assessment: Fungal pathogens associated with Chinese woody plants commonly shipped to Europe. PLoS One 2017; 12:e0188800. [PMID: 29186190 PMCID: PMC5706704 DOI: 10.1371/journal.pone.0188800] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022] Open
Abstract
Introduction of and invasion by alien plant pathogens represents the main cause of emerging infectious diseases affecting domesticated and wild plant species worldwide. The trade in living plants is the most common pathway of introduction. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists. To help determine the potential risk of pest introduction through trading of ornamental plants, a sentinel nursery was established in Beijing, China in 2008. The sentinel nursery planting included four of the most common ornamental woody species shipped to Europe including Ilex cornuta var. fortunae, Zelkova schneideriana, Fraxinus chinensis and Buxus microphylla. Symptoms developing on these species within the sentinel nursery were detected in 2013 and consisted of necrotic spots on leaves, canker and stem necrosis, shoot blight and shoot necrosis. Fungi associated with the trees and their symptoms included Alternaria alternata detected from all hosts; Diaporthe liquidambaris and Diaporthe capsici from bark and leaf necrosis of Zelkova schneideriana; Botryosphaeria dothidea and Nothophoma quercina from stem cankers on Fraxinus chinensis and leaf necrosis on Ilex cornuta; and Pseudonectria foliicola from leaf necrosis on Buxus microphylla. Next generation sequencing analysis from asymptomatic tissues detected eighteen OTU's at species level among which some taxa had not been previously recorded in Europe. These results clearly demonstrate that looking at trees of internationally traded species in the region of origin can reveal the presence of potentially harmful organisms of major forestry, landscape or crop trees. Results of this study also provide an indication as to how some disease agents can be introduced using pathways other than the co-generic hosts. Hence, sentinel nurseries represent one potential mechanism to address the current lack of knowledge about pests in the countries from where live plants are shipped and the threats they represent to native flora and crops in importing countries.
Collapse
Affiliation(s)
| | - Hong-Mei Li
- CABI, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | |
Collapse
|