1
|
Biswas A, Wechter P, Ganaparthi V, Jarquin D, Kousik S, Branham S, Levi A. Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:35. [PMID: 39849180 PMCID: PMC11757898 DOI: 10.1007/s00122-024-04813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
Complex traits influenced by multiple genes pose challenges for marker-assisted selection (MAS) in breeding. Genomic selection (GS) is a promising strategy for achieving higher genetic gains in quantitative traits by stacking favorable alleles into elite cultivars. Resistance to Fusarium oxysporum f. sp. niveum (Fon) race 2 in watermelon is a polygenic trait with moderate heritability. This study evaluated GS as an additional approach to quantitative trait loci (QTL) analysis/marker-assisted selection (MAS) for enhancing Fon race 2 resistance in elite watermelon cultivars. Objectives were to: (1) assess the accuracy of genomic prediction (GP) models for predicting Fon race 2 resistance in a F2:3 versus a recombinant inbred line (RIL) population, (2) rank and select families in each population based on genomic estimated breeding values (GEBVs) for developing testing populations, and (3) determined how many of the most superior families based on GEBV also have all QTL associated with Fon race 2 resistance. GBS-SNP data from genotyping-by-sequencing (GBS) for two populations were used, and parental line genome sequences were used as references. The GBLUP and random forest outperformed the other three parametric (GBLUP, Bayes B, Bayes LASSO) and three nonparametric AI (random forest, SVM linear, and SVM radial) models, with correlations of 0.48 and 0.68 in the F2:3 and RIL population, respectively. Selection intensities (SI) of 10%, 20%, and 30% showed that superior families with highest GEBV can also comprise all QTL associated with Fon race 2 resistance, highlighting GP efficacy in improving elite watermelon cultivars with polygenic traits of disease resistance.
Collapse
Affiliation(s)
- Anju Biswas
- USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Pat Wechter
- Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | - Venkat Ganaparthi
- Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | | | - Shaker Kousik
- USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Sandra Branham
- Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | - Amnon Levi
- USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
2
|
Ganaparthi VR, Wechter P, Levi A, Branham SE. Mapping and validation of Fusarium wilt race 2 resistance QTL from Citrullus amarus line USVL246-FR2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:91. [PMID: 38555543 PMCID: PMC10982098 DOI: 10.1007/s00122-024-04595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
KEY MESSAGE Fon race 2 resistant QTLs were identified on chromosomes 8 and 9. Families homozygous for resistance alleles at a haplotype of three KASP markers had 42% lower disease severity than those with susceptible alleles in an independent, interspecific validation population confirming their utility for introgression of Fusarium wilt resistance. Fusarium oxysporum f. sp. niveum (Fon) race 2 causes Fusarium wilt in watermelon and threatens watermelon production worldwide. Chemical management options are not effective, and no resistant edible watermelon cultivars have been released. Implementation of marker-assisted selection to develop resistant cultivars requires identifying sources of resistance and the underlying quantitative trait loci (QTL), developing molecular markers associated with the QTL, and validating marker-phenotype associations with an independent population. An intraspecific Citrullus amarus recombinant inbred line population from a cross of resistant USVL246-FR2 and susceptible USVL114 was used for mapping Fon race 2 resistance QTL. KASP markers were developed (N = 51) for the major QTL on chromosome 9 and minor QTL on chromosomes 1, 6, and 8. An interspecific F2:3 population was developed from resistance donor USVL246-FR2 (C. amarus) and a susceptible cultivar 'Sugar Baby' (Citrullus lanatus) to validate the utility of the markers for introgression of resistance from the wild crop relative into cultivated watermelon. Only 16 KASP markers segregated in the interspecific C. amarus/lanatus validation population. Four markers showed significant differences in the separation of genotypes based on family-mean disease severity, but together explained only 16% of the phenotypic variance. Genotypes that inherited homozygous resistant parental alleles at three KASP markers had 42% lower family-mean disease severity than homozygous susceptible genotypes. Thus, haplotype analysis was more effective at predicting the mean disease severity of families than single markers. The haplotype identified in this study will be valuable for developing Fon race 2 resistant watermelon cultivars.
Collapse
Affiliation(s)
| | - Patrick Wechter
- Coastal Research and Education Center, Clemson University, Charleston, SC, USA
| | - Amnon Levi
- USDA, US Vegetable Laboratory, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Sandra E Branham
- Coastal Research and Education Center, Clemson University, Charleston, SC, USA.
| |
Collapse
|
3
|
Zheng YP. Global characteristics and trends of researches on watermelon: Based on bibliometric and visualized analysis. Heliyon 2024; 10:e26824. [PMID: 38434322 PMCID: PMC10907791 DOI: 10.1016/j.heliyon.2024.e26824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Watermelon is an important horticultural plant. A bibliometric analysis of the watermelon literature was carried out in order to analyze the research state, hotspots, and trends, as well as to highlight the overall watermelon research development from a holistic viewpoint. The summary of watermelon research is given via metrological analysis based on a set of indices using a newly built Bibliometrix R-package tool. This study gathered 6,632 documents indexed in the Core Collection of Web of Science (WoS) in the domain of watermelon from 1992 to 2022 using bibliometrix. The results indicated that the number of published articles showed an apparently upward trend. The United States was in the first place, with Plant Disease being the most productive journal. Levi A from the United States Department of Agriculture-Agricultural Research Service is the most prolific author, and Levi A is the most cited; The most frequently used keywords by authors are "growth", "resistance", "identification", "yield", "quality" "plants", "watermelon stomach" and "expression"; The most talked-about issues in this subject are resistance, yield, and quality, which highlight the crucial research areas. To effectively comprehend the turning moments for future research, it is useful to monitor the hotspots and frontiers of watermelon studies. The results highlight the future paths for study in the field of watermelon and provide useful information for researchers interested in the topic.
Collapse
Affiliation(s)
- Yu-Ping Zheng
- Library of Henan University of Science and Technology, China
| |
Collapse
|
4
|
Lal D, Dev D, Kumari S, Pandey S, Aparna, Sharma N, Nandni S, Jha RK, Singh A. Fusarium wilt pandemic: current understanding and molecular perspectives. Funct Integr Genomics 2024; 24:41. [PMID: 38386088 DOI: 10.1007/s10142-024-01319-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Plant diseases pose a severe threat to the food security of the global human population. One such disease is Fusarium wilt, which affects many plant species and causes up to 100% yield losses. Fusarium pathogen has high variability in its genetic constitution; therefore, it has evolved into different physiological races to infect different plant species spread across the different geographical regions of the world. The pathogen mainly affects plant roots, leading to colonizing and blocking vascular bundle cells, specifically xylem vessels. This blocking results in chlorosis, vascular discoloration, leaf wilting, shortening of plant, and, in severe cases, premature plant death. Due to the soil-borne nature of the wilt pathogen, neither agronomic nor plant protection measures effectively reduce the incidence of the disease. Therefore, the most cost-effective management strategy for Fusarium wilt is developing varieties resistant to a particular race of the fungus wilt prevalent in a given region. This strategy requires understanding the pathogen, its disease cycle, and epidemiology with climate-changing scenarios. Hence, in the review, we will discuss the pathogenic aspect and genetics of the Fusarium wilt, including molecular interventions for developing climate-smart wilt tolerant/resistant varieties of crops. Overall, this review will add to our knowledge for advancing the breeding of resistance against the wilt pandemic.
Collapse
Affiliation(s)
- Dalpat Lal
- College of Agriculture, Jodhpur, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Devanshu Dev
- Department of Plant Pathology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, Bihar, India
| | - Sarita Kumari
- Department of Agricultural Biotechnology & Molecular Biology, CBS&H, RPCAU-Pusa, Samastipur, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Aparna
- Department of Agriculture, Jagan Nath University, Chaksu, Jaipur, India
| | - Nilesh Sharma
- Department of Agriculture, Jagan Nath University, Chaksu, Jaipur, India
| | - Sudha Nandni
- Department of Plant Pathology, PGCA, RPCAU, Pusa, 848125, Samastipur, Bihar, India
| | - Ratnesh Kumar Jha
- Centre for Advanced Studies On Climate Change, RPCAU, Pusa, 848125, Samastipur, Bihar, India
| | - Ashutosh Singh
- Centre for Advanced Studies On Climate Change, RPCAU, Pusa, 848125, Samastipur, Bihar, India.
| |
Collapse
|
5
|
Ganaparthi VR, Rennberger G, Wechter P, Levi A, Branham SE. Genome-Wide Association Mapping and Genomic Prediction of Fusarium Wilt Race 2 Resistance in the USDA Citrullus amarus Collection. PLANT DISEASE 2023; 107:3836-3842. [PMID: 37386705 DOI: 10.1094/pdis-02-23-0400-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) race 2 is a serious disease in watermelon and can reduce yields by 80%. Genome-wide association studies (GWAS) are a valuable tool in dissecting the genetic basis of traits. Citrullus amarus accessions (n = 120) from the USDA germplasm collection were genotyped with whole-genome resequencing, resulting in 2,126,759 single nucleotide polymorphic (SNP) markers that were utilized for GWAS. Three models were used for GWAS with the R package GAPIT. Mixed linear model (MLM) analysis did not identify any significant marker associations. FarmCPU identified four quantitative trait nucleotides (QTN) on three different chromosomes (i.e., chromosomes 1, 5, and 9), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) identified one QTN on chromosome 10 as significantly associated with Fon race 2 resistance. FarmCPU identified four QTN that explained 60% of Fon race 2 resistance, and the single QTN from BLINK explained 27%. Relevant candidate genes were found within the linkage disequilibrium (LD) blocks of these significant SNPs, including genes encoding aquaporins, expansins, 2S albumins, and glutathione S-transferases which have been shown to be involved in imparting resistance to Fusarium spp. Genomic predictions (GP) for Fon race 2 resistance using all 2,126,759 SNPs resulted in a mean prediction accuracy of 0.08 with five-fold cross-validation employing genomic best linear unbiased prediction (gBLUP) or ridge-regression best linear unbiased prediction (rrBLUP). Mean prediction accuracy with gBLUP leave-one-out cross-validation was 0.48. Thus, along with identifying genomic regions associated with Fon race 2 resistance among the accessions, this study observed prediction accuracies that were strongly influenced by population size.
Collapse
Affiliation(s)
| | | | - Patrick Wechter
- Coastal Research and Education Center, Clemson University, Charleston, SC
| | - Amnon Levi
- U.S. Vegetable Laboratory, USDA-ARS, Charleston, SC 29414
| | - Sandra E Branham
- Coastal Research and Education Center, Clemson University, Charleston, SC
| |
Collapse
|
6
|
Favre F, Jourda C, Grisoni M, Chiroleu F, Dijoux JB, Jade K, Rivallan R, Besse P, Charron C. First Vanilla planifolia High-Density Genetic Linkage Map Provides Quantitative Trait Loci for Resistance to Fusarium oxysporum. PLANT DISEASE 2023; 107:2997-3006. [PMID: 36856646 DOI: 10.1094/pdis-10-22-2386-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum f. sp. radicis-vanillae (Forv), the causal agent of root and stem rot disease, is the main pathogen affecting vanilla production. Sources of resistance have been reported in Vanilla planifolia G. Jackson ex Andrews, the main cultivated vanilla species. In this study, we developed the first high-density genetic map in this species with 1,804 genotyping-by-sequencing (GBS)-generated single nucleotide polymorphism (SNP) markers using 125 selfed progenies of the CR0040 traditional vanilla cultivar. Sixteen linkage groups (LG) were successfully constructed, with a mean of 113 SNPs and an average length of 207 cM per LG. The map had a high density with an average of 5.45 SNP every 10 cM and an average distance of 1.85 cM between adjacent markers. The first three LG were aligned against the first assembled chromosome of CR0040, and the other 13 LG were correctly associated with the other 13 assembled chromosomes. The population was challenged with the highly pathogenic Forv strain Fo072 using the root-dip inoculation method. Five traits were mapped, and 20 QTLs were associated with resistance to Fo072. Among the genes retrieved in the CR0040 physical regions associated with QTLs, genes potentially involved in biotic resistance mechanisms, coding for kinases, E3 ubiquitin ligases, pentatricopeptide repeat-containing proteins, and one leucine-rich repeat receptor underlying the qFo72_08.1 QTL have been highlighted. This study should provide useful resources for marker-assisted selection in V. planifolia.
Collapse
Affiliation(s)
- Félicien Favre
- University of Reunion Island, UMR PVBMT, F-97410 St. Pierre, Reunion Island, France
| | - Cyril Jourda
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| | | | | | | | - Katia Jade
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pascale Besse
- University of Reunion Island, UMR PVBMT, F-97410 St. Pierre, Reunion Island, France
| | - Carine Charron
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| |
Collapse
|
7
|
Vitale P, Fania F, Esposito S, Pecorella I, Pecchioni N, Palombieri S, Sestili F, Lafiandra D, Taranto F, De Vita P. QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes (Basel) 2021; 12:genes12040604. [PMID: 33923933 PMCID: PMC8074140 DOI: 10.3390/genes12040604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/20/2023] Open
Abstract
Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.
Collapse
Affiliation(s)
- Paolo Vitale
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (P.V.); (F.F.)
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Fabio Fania
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (P.V.); (F.F.)
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), 80055 Portici, Italy
- Correspondence: (F.T.); (P.D.V.)
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
- Correspondence: (F.T.); (P.D.V.)
| |
Collapse
|
8
|
Gimode W, Bao K, Fei Z, McGregor C. QTL associated with gummy stem blight resistance in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:573-584. [PMID: 33135096 PMCID: PMC7843542 DOI: 10.1007/s00122-020-03715-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
We identified QTLs associated with gummy stem blight resistance in an interspecific F2:3 Citrullus population and developed marker assays for selection of the loci in watermelon. Gummy stem blight (GSB), caused by three Stagonosporopsis spp., is a devastating fungal disease of watermelon (Citrullus lanatus) and other cucurbits that can lead to severe yield losses. Currently, no commercial cultivars with genetic resistance to GSB in the field have been reported. Utilizing GSB-resistant cultivars would reduce yield losses, decrease the high cost of disease control, and diminish hazards resulting from frequent fungicide application. The objective of this study was to identify quantitative trait loci (QTLs) associated with GSB resistance in an F2:3 interspecific Citrullus mapping population (N = 178), derived from a cross between Crimson Sweet (C. lanatus) and GSB-resistant PI 482276 (C. amarus). The population was phenotyped by inoculating seedlings with Stagonosporopsis citrulli 12178A in the greenhouse in two separate experiments, each with three replications. We identified three QTLs (ClGSB3.1, ClGSB5.1 and ClGSB7.1) associated with GSB resistance, explaining between 6.4 and 21.1% of the phenotypic variation. The genes underlying ClGSB5.1 includes an NBS-LRR gene (ClCG05G019540) previously identified as a candidate gene for GSB resistance in watermelon. Locus ClGSB7.1 accounted for the highest phenotypic variation and harbors twenty-two candidate genes associated with disease resistance. Among them is ClCG07G013230, encoding an Avr9/Cf-9 rapidly elicited disease resistance protein, which contains a non-synonymous point mutation in the DUF761 domain that was significantly associated with GSB resistance. High throughput markers were developed for selection of ClGSB5.1 and ClGSB7.1. Our findings will facilitate the use of molecular markers for efficient introgression of the resistance loci and development of GSB-resistant watermelon cultivars.
Collapse
Affiliation(s)
- Winnie Gimode
- Institute for Plant Breeding, Genetics & Genomics, University of Georgia, 1111 Plant Sciences Bldg, Athens, GA, 30602, USA
| | - Kan Bao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Cecilia McGregor
- Department of Horticulture and Institute for Plant Breeding, Genetics & Genomics, University of Georgia, 1111 Plant Sciences Bldg, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Branham SE, Patrick Wechter W, Ling KS, Chanda B, Massey L, Zhao G, Guner N, Bello M, Kabelka E, Fei Z, Levi A. QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:677-687. [PMID: 31822938 DOI: 10.1007/s00122-019-03500-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
A Citrullus amarus mapping population segregating for resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus was used to identify novel QTL, important for the improvement in watermelon disease resistance. Multiple disease screens of the USDA Citrullus spp. germplasm collection have highlighted the value of Citrullus amarus (citron melon or wild watermelon) as a resource for enhancing modern watermelon cultivars (Citrullus lanatus) with resistance to a broad range of fungal, bacterial and viral diseases of watermelon. We have generated a genetic population of C. amarus segregating for resistance to two important watermelon diseases: Fusarium wilt (caused by the fungus Fusarium oxysporum f. sp. niveum; Fon race 2) and Papaya ringspot virus-watermelon strain (PRSV-W). QTL mapping of Fon race 2 resistance identified seven significant QTLs, with the major QTL representing a novel genetic source of resistance and an opportunity for gene pyramiding. A single QTL was associated with resistance to PRSV-W, which adhered to expectations of a prior study indicating a single-gene recessive inheritance in watermelon. The resistance loci identified here provide valuable genetic resources for introgression into cultivated watermelon for the improvement in disease resistance.
Collapse
Affiliation(s)
- Sandra E Branham
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
- Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Kai-Shu Ling
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Bidisha Chanda
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Laura Massey
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Guangwei Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Zhengzhou, 450009, China
| | - Nihat Guner
- Sakata Seed America, 20900 State Road 82, Fort Myers, FL, 33913, USA
| | - Marco Bello
- Sakata Seed America, 20900 State Road 82, Fort Myers, FL, 33913, USA
| | - Eileen Kabelka
- Sakata Seed America, 18095 Serene Drive, Morgan Hill, CA, 95037, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| | - Amnon Levi
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
10
|
Branham SE, Levi A, Katawczik ML, Wechter WP. QTL mapping of resistance to bacterial fruit blotch in Citrullus amarus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1463-1471. [PMID: 30739153 DOI: 10.1007/s00122-019-03292-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Six QTLs were associated with affected leaf area in response to inoculation with Acidovorax citrulli in a recombinant inbred line population of Citrullus amarus. Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits, has the potential to devastate production of watermelon and other cucurbits. Despite decades of research on host-plant resistance to A. citrulli, no germplasm has been found with immunity and only a few sources with various levels of BFB resistance have been identified, but the genetic basis of resistance in these watermelon sources are not known. Most sources of resistance are plant introductions of Citrullus amarus (citron melon), a closely related species that crosses readily with cultivated watermelon (Citrullus lanatus L.). In this study, we evaluated a recombinant inbred line population (N = 200), derived from a cross between BFB-resistant (USVL246-FR2) and BFB-susceptible (USVL114) C. amarus lines, for foliar resistance to A. citrulli in three replicated greenhouse trials. We found the genetics of BFB resistance to be complicated by strong environmental influence, low heritability and significant genotype-by-environment interactions. QTL mapping of affected leaf area identified six QTL that each explained between 5 and 15% of the variation in BFB resistance in the population. This study represents the first identification of QTL associated with resistance to A. citrulli in any cucurbit.
Collapse
Affiliation(s)
- Sandra E Branham
- US Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Amnon Levi
- US Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Melanie L Katawczik
- US Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - W Patrick Wechter
- US Vegetable Laboratory, USDA, ARS, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|