1
|
Shantharaj D, Román-Écija M, Velasco-Amo MP, Navas-Cortés JA, Landa BB, De La Fuente L. European Xylella fastidiosa Strains Can Cause Symptoms in Blueberry. PLANT DISEASE 2024; 108:2658-2662. [PMID: 38973078 DOI: 10.1094/pdis-12-23-2640-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Strains of the bacterial pathogen Xylella fastidiosa subspecies multiplex (Xfm) and pauca (Xfp) isolated from symptomatic almond and olive plants in Spain and Italy were used in this study. Because of the risk of host jump and considering the importance of southern highbush blueberry production in Spain, we tested a small set of these strains for their potential to infect and cause disease symptoms in blueberries under greenhouse experiments. Xfm IVIA5901 (isolated from almonds in Alicante, Spain) caused symptoms similar to those caused by Xfm AlmaEm3 (isolated from blueberries in Georgia, U.S.A., and used as a reference strain capable of inducing severe symptoms in blueberry). Nevertheless, bacterial populations of Xfm IVIA5901 in planta were significantly lower than those of Xfm AlmaEm3. Xfm ESVL (isolated from almonds, Alicante, Spain) and Xfp XYL1961/18 (isolated from olives, Ibiza Island, Spain) caused limited symptoms, while Xfm XYL466/19 (isolated from wild olives, Mallorca Island, Spain) and Xfm XF3348 (isolated from almonds, Mallorca Island, Spain) and Xfp De Donno (isolated from olives, Puglia, Italy, and representative of the devastating olive quick decline syndrome) did not cause symptoms nor colonize blueberries. This study suggests that certain strains already found in Europe could infect blueberry if conditions conducive for a host jump in this region are met, such as proximity of blueberries to other infected hosts and presence of insect vectors that feed on these crops. Surveys on the presence of X. fastidiosa in blueberries in Spain and other European countries are needed to anticipate possible issues.
Collapse
Affiliation(s)
- Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Miguel Román-Écija
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (IAS-CSIC), 14004 Córdoba, Spain
- Programa de Doctorado Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain
| | - Maria Pilar Velasco-Amo
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (IAS-CSIC), 14004 Córdoba, Spain
| | - Juan A Navas-Cortés
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (IAS-CSIC), 14004 Córdoba, Spain
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (IAS-CSIC), 14004 Córdoba, Spain
| | | |
Collapse
|
2
|
Ratsoma FM, Mokoena NZ, Santana QC, Wingfield BD, Steenkamp ET, Motaung TE. Characterization of the Fusarium circinatum biofilm environmental response role. J Basic Microbiol 2024; 64:e2300536. [PMID: 38314962 DOI: 10.1002/jobm.202300536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
The capacity to form biofilms is a common trait among many microorganisms present on Earth. In this study, we demonstrate for the first time that the fatal pine pitch canker agent, Fusarium circinatum, can lead a biofilm-like lifestyle with aggregated hyphal bundles wrapped in extracellular matrix (ECM). Our research shows F. circinatum's ability to adapt to environmental changes by assuming a biofilm-like lifestyle. This was demonstrated by varying metabolic activities exhibited by the biofilms in response to factors like temperature and pH. Further analysis revealed that while planktonic cells produced small amounts of ECM per unit of the biomass, heat- and azole-exposed biofilms produced significantly more ECM than nonexposed biofilms, further demonstrating the adaptability of F. circinatum to changing environments. The increased synthesis of ECM triggered by these abiotic factors highlights the link between ECM production in biofilm and resistance to abiotic stress. This suggests that ECM-mediated response may be one of the key survival strategies of F. circinatum biofilms in response to changing environments. Interestingly, azole exposure also led to biofilms that were resistant to DNase, which typically uncouples biofilms by penetrating the biofilm and degrading its extracellular DNA; we propose that DNases were likely hindered from reaching target cells by the ECM barricade. The interplay between antifungal treatment and DNase enzyme suggests a complex relationship between eDNA, ECM, and antifungal agents in F. circinatum biofilms. Therefore, our results show how a phytopathogen's sessile (biofilm) lifestyle could influence its response to the surrounding environment.
Collapse
Affiliation(s)
- Francinah M Ratsoma
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nthabiseng Z Mokoena
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Agricultural Research Council (ARC) Biotechnology Platform, Private Bag X5 Onderstepoort, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Thabiso E Motaung
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Xiao WN, Nunn GM, Fufeng AB, Belu N, Brookman RK, Halim A, Krysmanski EC, Cameron RK. Exploring Pseudomonas syringae pv. tomato biofilm-like aggregate formation in susceptible and PTI-responding Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2024; 25:e13403. [PMID: 37988240 PMCID: PMC10799205 DOI: 10.1111/mpp.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Bacterial biofilm-like aggregates have been observed in plants, but their role in pathogenicity is underinvestigated. In the present study, we observed that extracellular DNA and polysaccharides colocalized with green fluorescent protein (GFP)-expressing Pseudomonas syringae pv. tomato (Pst) aggregates in Arabidopsis leaves, suggesting that Pst aggregates are biofilms. GFP-expressing Pst, Pst ΔalgU ΔmucAB (Pst algU mutant), and Pst ΔalgD ΔalgU ΔmucAB (Pst algU algD mutant) were examined to explore the roles of (1) alginate, a potential biofilm component; (2) Pst AlgU, thought to regulate alginate biosynthesis and some type III secretion system effector genes; and (3) intercellular salicylic acid (SA) accumulation during pathogen-associated molecular pattern-triggered immunity (PTI). Pst formed extensive aggregates in susceptible plants, whereas aggregate numbers and size were reduced in Pst algU and Pst algD algU mutants, and both multiplied poorly in planta, suggesting that aggregate formation contributes to Pst success in planta. However, in SA-deficient sid2-2 plants, Pst algD algU mutant multiplication and aggregate formation were partially restored, suggesting plant-produced SA contributes to suppression of Pst aggregate formation. Pst algD algU mutants formed fewer and smaller aggregates than Pst algU mutants, suggesting both AlgU and AlgD contribute to Pst aggregate formation. Col-0 plants accumulated low levels of SA in response to Pst and both mutants (Pst algU and Pst algD algU), suggesting the regulatory functions of AlgU are not involved in suppressing SA-mediated plant defence. Plant PTI was associated with highly reduced Pst aggregate formation and accumulation of intercellular SA in flg22-induced PTI-responding wild-type Col-0, but not in PTI-incompetent fls2, suggesting intercellular SA accumulation by Arabidopsis contributes to suppression of Pst biofilm-like aggregate formation during PTI.
Collapse
Affiliation(s)
- Wantao N. Xiao
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Garrett M. Nunn
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | | | - Natalie Belu
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | | | - Abdul Halim
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | | | | |
Collapse
|
4
|
Harding MW, Marques LLR, Allan N, Olson ME, Buziak B, Nadworny P, Omar A, Howard RJ, Feng J. Bactericidal Efficacy of Oxidized Silver against Biofilms Formed by Curtobacterium flaccumfaciens pv. flaccumfaciens. THE PLANT PATHOLOGY JOURNAL 2022; 38:334-344. [PMID: 35953053 PMCID: PMC9372099 DOI: 10.5423/ppj.oa.04.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Bacterial wilt is a re-emerging disease on dry bean and can affect many other crop species within the Fabaceae. The causal agent, Curtobacterium flaccumfaciens pv. flaccumfaciens (CFF), is a small, Gram-positive, rodshaped bacterium that is seed-transmitted. Infections in the host become systemic, leading to wilting and economic loss. Clean seed programs and bactericidal seed treatments are two critical management tools. This study characterizes the efficacies of five bactericidal chemicals against CFF. It was hypothesized that this bacterium was capable of forming biofilms, and that the cells within biofilms would be more tolerant to bactericidal treatments. The minimum biocide eradication concentration assay protocol was used to grow CFF biofilms, expose the biofilms to bactericides, and enumerate survivors compared to a non-treated control (water). Streptomycin and oxysilver bisulfate had EC95 values at the lowest concentrations and are likely the best candidates for seed treatment products for controlling seed-borne bacterial wilt of bean. The results showed that CFF formed biofilms during at least two phases of the bacterial wilt disease cycle, and the biofilms were much more difficult to eradicate than their planktonic counterparts. Overall, biofilm formation by CFF is an important part of the bacterial wilt disease cycle in dry edible bean and antibiofilm bactericides such as streptomycin and oxysilver bisulfate may be best suited for use in disease management.
Collapse
Affiliation(s)
- Michael W. Harding
- Alberta Agriculture, Forestry and Rural Economic Development, Crop Diversification Centre South, Brooks, AB, T1R 1E6,
Canada
| | | | - Nick Allan
- Chinook Contract Research, Airdrie, AB, T4A 0C3,
Canada
| | | | | | | | - Amin Omar
- Innovotech Inc., Edmonton, AB, T6N 1H1,
Canada
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman,
Jordan
| | | | - Jie Feng
- Alberta Agriculture, Forestry and Rural Economic Development, Alberta Plant Health Lab, Edmonton, Alberta, T5Y 6H3,
Canada
| |
Collapse
|
5
|
Ge Q, Liu R, Cobine PA, Potnis N, De La Fuente L. Phenotypic and Phylogenetic Characterization of Cu Homeostasis among Xylella fastidiosa Strains. Pathogens 2021; 10:pathogens10040495. [PMID: 33924015 PMCID: PMC8073393 DOI: 10.3390/pathogens10040495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Xylella fastidiosa is a bacterial pathogen causing severe diseases and asymptomatic colonization in more than 600 plants worldwide. Copper (Cu) is a widely used antimicrobial treatment for various plant diseases, including those affecting X. fastidiosa hosts. Cu homeostasis among X. fastidiosa strains from different geographical locations and host species has not been characterized. Here, we assessed minimum inhibitory concentration (MIC) of Cu for 54 X. fastidiosa strains. We observed strain-level variation in MIC values within each subspecies. We hypothesized that these differences could be explained by sequence variation in Cu homeostasis genes. Phylogenies based on copA, copB, copL, and cutC were created using 74 genomes (including 43 strains used in vitro) of X. fastidiosa, showing that the phylogenetic clustering of Cu homeostasis associated with clustering was based on core genome phylogenies, rather than on pattern of MIC. No association was found among Cu MIC, subspecies classification, and host and location of isolation, probably due to uneven and limited group of strains whose genomes are available. Further analysis focused on a subgroup of isolates from Georgia’s vineyards that shared similar Cu-related phenotypes. Further research is needed to better understand the distribution of Cu homeostasis for this pathogen.
Collapse
Affiliation(s)
- Qing Ge
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Ranlin Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA;
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
- Correspondence: ; Tel.: +1-334-844-2582
| |
Collapse
|
6
|
Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial Plant-Associated Pseudomonas. Microorganisms 2021; 9:microorganisms9020445. [PMID: 33670010 PMCID: PMC7926942 DOI: 10.3390/microorganisms9020445] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of biofilms results from a multicellular mode of growth, in which bacteria remain enwrapped by an extracellular matrix of their own production. Many different bacteria form biofilms, but among the most studied species are those that belong to the Pseudomonas genus due to the metabolic versatility, ubiquity, and ecological significance of members of this group of microorganisms. Within the Pseudomonas genus, biofilm studies have mainly focused on the opportunistic human pathogen Pseudomonas aeruginosa due to its clinical importance. The extracellular matrix of P. aeruginosa is mainly composed of exopolysaccharides, which have been shown to be important for the biofilm architecture and pathogenic features of this bacterium. Notably, some of the exopolysaccharides recurrently used by P. aeruginosa during biofilm formation, such as the alginate and polysaccharide synthesis loci (Psl) polysaccharides, are also used by pathogenic and beneficial plant-associated Pseudomonas during their interaction with plants. Interestingly, their functions are multifaceted and seem to be highly dependent on the bacterial lifestyle and genetic context of production. This paper reviews the functions and significance of the exopolysaccharides produced by plant-associated Pseudomonas, particularly the alginate, Psl, and cellulose polysaccharides, focusing on their equivalents produced in P. aeruginosa within the context of pathogenic and beneficial interactions.
Collapse
|
7
|
Monteiro MP, Hernandez-Montelongo J, Sahoo PK, Hernández Montelongo R, de Oliveira DS, Piazzeta MHO, García Sandoval JP, de Souza AA, Gobbi AL, Cotta MA. Functionalized microchannels as xylem-mimicking environment: Quantifying X. fastidiosa cell adhesion. Biophys J 2021; 120:1443-1453. [PMID: 33607085 DOI: 10.1016/j.bpj.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022] Open
Abstract
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.
Collapse
Affiliation(s)
- Moniellen P Monteiro
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jacobo Hernandez-Montelongo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Prasana K Sahoo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Rosaura Hernández Montelongo
- Departamento de Electrónica, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Douglas S de Oliveira
- Campus Avançado de Jandaia do Sul, Universidade Federal do Paraná, Jandaia do Sul, Paraná, Brasil
| | - Maria H O Piazzeta
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM, Campinas, São Paulo, Brasil
| | - Juan P García Sandoval
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Alessandra A de Souza
- Instituto Agronômico de Campinas, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brasil
| | - Angelo L Gobbi
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM, Campinas, São Paulo, Brasil
| | - Mônica A Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
8
|
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E. Shaping the leaf microbiota: plant-microbe-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:36-56. [PMID: 32910810 PMCID: PMC8210630 DOI: 10.1093/jxb/eraa417] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
The aerial portion of a plant, namely the leaf, is inhabited by pathogenic and non-pathogenic microbes. The leaf's physical and chemical properties, combined with fluctuating and often challenging environmental factors, create surfaces that require a high degree of adaptation for microbial colonization. As a consequence, specific interactive processes have evolved to establish a plant leaf niche. Little is known about the impact of the host immune system on phyllosphere colonization by non-pathogenic microbes. These organisms can trigger plant basal defenses and benefit the host by priming for enhanced resistance to pathogens. In most disease resistance responses, microbial signals are recognized by extra- or intracellular receptors. The interactions tend to be species specific and it is unclear how they shape leaf microbial communities. In natural habitats, microbe-microbe interactions are also important for shaping leaf communities. To protect resources, plant colonizers have developed direct antagonistic or host manipulation strategies to fight competitors. Phyllosphere-colonizing microbes respond to abiotic and biotic fluctuations and are therefore an important resource for adaptive and protective traits. Understanding the complex regulatory host-microbe-microbe networks is needed to transfer current knowledge to biotechnological applications such as plant-protective probiotics.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| | - Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Priyamedha Sengupta
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Asteggiano A, Franceschi P, Zorzi M, Aigotti R, Dal Bello F, Baldassarre F, Lops F, Carlucci A, Medana C, Ciccarella G. HPLC-HRMS Global Metabolomics Approach for the Diagnosis of "Olive Quick Decline Syndrome" Markers in Olive Trees Leaves. Metabolites 2021; 11:metabo11010040. [PMID: 33429872 PMCID: PMC7827768 DOI: 10.3390/metabo11010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Olive quick decline syndrome (OQDS) is a multifactorial disease affecting olive plants. The onset of this economically devastating disease has been associated with a Gram-negative plant pathogen called Xylella fastidiosa (Xf). Liquid chromatography separation coupled to high-resolution mass spectrometry detection is one the most widely applied technologies in metabolomics, as it provides a blend of rapid, sensitive, and selective qualitative and quantitative analyses with the ability to identify metabolites. The purpose of this work is the development of a global metabolomics mass spectrometry assay able to identify OQDS molecular markers that could discriminate between healthy (HP) and infected (OP) olive tree leaves. Results obtained via multivariate analysis through an HPLC-ESI HRMS platform (LTQ-Orbitrap from Thermo Scientific) show a clear separation between HP and OP samples. Among the differentially expressed metabolites, 18 different organic compounds highly expressed in the OP group were annotated; results obtained by this metabolomic approach could be used as a fast and reliable method for the biochemical characterization of OQDS and to develop targeted MS approaches for OQDS detection by foliage analysis.
Collapse
Affiliation(s)
- Alberto Asteggiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Pietro Franceschi
- Unit of Computational Biology, IASMA Research and Innovation Centre, Fondazione Edmund Mach via E. Mach, 1, 38010 San Michele all’ Adige, Italy;
| | - Michael Zorzi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Riccardo Aigotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
| | - Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Francesco Lops
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy; (F.L.); (A.C.)
| | - Antonia Carlucci
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy; (F.L.); (A.C.)
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (A.A.); (M.Z.); (R.A.); (F.D.B.)
- Correspondence: (C.M.); (G.C.); Tel.: +39-011-670-5240 (C.M.); +39-083-231-9810 (G.C.)
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
- Correspondence: (C.M.); (G.C.); Tel.: +39-011-670-5240 (C.M.); +39-083-231-9810 (G.C.)
| |
Collapse
|
10
|
Phenotypic Characterization and Transformation Attempts Reveal Peculiar Traits of Xylella fastidiosa Subspecies pauca Strain De Donno. Microorganisms 2020; 8:microorganisms8111832. [PMID: 33233703 PMCID: PMC7699976 DOI: 10.3390/microorganisms8111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Xylella fastidiosa subsp. pauca strain De Donno has been recently identified as the causal agent of a severe disease affecting olive trees in a wide area of the Apulia Region (Italy). While insights on the genetics and epidemiology of this virulent strain have been gained, its phenotypic and biological traits remained to be explored. We investigated in vitro behavior of the strain and compare its relevant biological features (growth rate, biofilm formation, cell-cell aggregation, and twitching motility) with those of the type strain Temecula1. The experiments clearly showed that the strain De Donno did not show fringe on the agar plates, produced larger amounts of biofilm and had a more aggregative behavior than the strain Temecula1. Repeated attempts to transform, by natural competence, the strain De Donno failed to produce a GFP-expressing and a knockout mutant for the rpfF gene. Computational prediction allowed us to identify potentially deleterious sequence variations most likely affecting the natural competence and the lack of fringe formation. GFP and rpfF- mutants were successfully obtained by co-electroporation in the presence of an inhibitor of the type I restriction-modification system. The availability of De Donno mutant strains will open for new explorations of its interactions with hosts and insect vectors.
Collapse
|
11
|
Chen H, De La Fuente L. Calcium transcriptionally regulates movement, recombination and other functions of Xylella fastidiosa under constant flow inside microfluidic chambers. Microb Biotechnol 2019; 13:548-561. [PMID: 31729188 PMCID: PMC7017821 DOI: 10.1111/1751-7915.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Xylella fastidiosa is a xylem‐limited bacterial pathogen causing devastating diseases in many economically important crops. Calcium (Ca) is a major inorganic nutrient in xylem sap that influences virulence‐related traits of this pathogen, including biofilm formation and twitching motility. This study aimed to adapt a microfluidic system, which mimics the natural habitat of X. fastidiosa, for whole transcriptome analysis under flow conditions. A microfluidic chamber with two parallel channels was used, and RNA isolated from cells grown inside the system was analysed by RNA‐Seq. Ca transcriptionally regulated the machinery of type IV pili and other genes related to pathogenicity and host adaptation. Results were compared to our previous RNA‐Seq study in biofilm cells in batch cultures (Parker et al., 2016, Environ Microbiol 18, 1620). Ca‐regulated genes in both studies belonged to similar functional categories, but the number and tendencies (up‐/downregulation) of regulated genes were different. Recombination‐related genes were upregulated by Ca, and we proved experimentally that 2 mM Ca enhances natural transformation frequency. Taken together, our results suggest that the regulatory role of Ca in X. fastidiosa acts differently during growth in flow or batch conditions, and this can correlate to the different phases of growth (planktonic and biofilm) during the infection process.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
12
|
Silva MMD, Andrade MDS, Bauermeister A, Merfa MV, Forim MR, Fernandes JB, Vieira PC, Silva MFDGFD, Lopes NP, Machado MA, Souza AAD. A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry. Molecules 2017; 22:E985. [PMID: 28608830 PMCID: PMC6152636 DOI: 10.3390/molecules22060985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 11/28/2022] Open
Abstract
Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium (X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa, which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa, which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.
Collapse
Affiliation(s)
| | - Moacir Dos Santos Andrade
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | - Anelize Bauermeister
- Núcleo Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto-SP, Brazil.
| | - Marcus Vinícius Merfa
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis-SP, Brazil.
| | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | - João Batista Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | | | - Norberto Peporine Lopes
- Núcleo Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto-SP, Brazil.
| | - Marcos Antônio Machado
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis-SP, Brazil.
| | | |
Collapse
|
13
|
Mendes JS, Santiago AS, Toledo MAS, Horta MAC, de Souza AA, Tasic L, de Souza AP. In vitro Determination of Extracellular Proteins from Xylella fastidiosa. Front Microbiol 2016; 7:2090. [PMID: 28082960 PMCID: PMC5183587 DOI: 10.3389/fmicb.2016.02090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - André S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Maria A. C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | | | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de CampinasCampinas, Brazil
| | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
14
|
Mendes JS, Santiago ADS, Toledo MAS, Rosselli-Murai LK, Favaro MTP, Santos CA, Horta MAC, Crucello A, Beloti LL, Romero F, Tasic L, de Souza AA, de Souza AP. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity. PLoS One 2015; 10:e0145765. [PMID: 26694028 PMCID: PMC4687846 DOI: 10.1371/journal.pone.0145765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023] Open
Abstract
Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - André da S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Luciana K. Rosselli-Murai
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Marianna T. P. Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Clelton A. Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Maria Augusta C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Lilian L. Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Fabian Romero
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-970
| | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-970
| | | | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil, CEP 13083-862
| |
Collapse
|
15
|
Scientific Opinion on the risks to plant health posed byXylella fastidiosain the EU territory, with the identification and evaluation of risk reduction options. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3989] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media. Curr Microbiol 2014; 69:866-73. [PMID: 25100224 DOI: 10.1007/s00284-014-0660-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
Xylella fastidiosa is a xylem-limited bacterial pathogen, and is the causative agent of Pierce's disease of grapevines and scorch diseases of many other plant species. The disease symptoms are putatively due to blocking of the transpiration stream by bacterial-induced biofilm formation and/or by the formation of plant-generated tylosis. Xylella fastidiosa has been classified as an obligate aerobe, which appears unusual given that dissolved O2 levels in the xylem during the growing season are often hypoxic (20-60 μmol L(-1)). We examined the growth and biofilm formation of three strains of X. fastidiosa under variable O2 conditions (21, 2.1, 0.21 and 0 % O2), in comparison to that of Pseudomonas syringae (obligate aerobe) and Erwinia carotovora (facultative anaerobe) under similar conditions. The growth of X. fastidiosa more closely resembled that of the facultative anaerobe, and not the obligate aerobe. Xanthomonas campestris, the closest genetic relative of X. fastidiosa, exhibited no growth in an N2 environment, whereas X. fastidiosa was capable of growing in an N2 environment in PW(+), CHARDS, and XDM2-PR media. The magnitude of growth and biofilm formation in the N2 (0 % O2) treatment was dependent on the specific medium. Additional studies involving the metabolism of X. fastidiosa in response to low O2 are warranted. Whether X. fastidiosa is classified as an obligate aerobe or a facultative anaerobe should be confirmed by gene activation and/or the quantification of the metabolic profiles under hypoxic conditions.
Collapse
|
17
|
Ahmad AA, Askora A, Kawasaki T, Fujie M, Yamada T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 2014; 5:321. [PMID: 25071734 PMCID: PMC4076744 DOI: 10.3389/fmicb.2014.00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/11/2014] [Indexed: 12/15/2022] Open
Abstract
In this study, filamentous phage XacF1, which can infect Xanthomonas axonopodis pv. citri (Xac) strains, was isolated and characterized. Electron microscopy showed that XacF1 is a member of the family Inoviridae and is about 600 nm long. The genome of XacF1 is 7325 nucleotides in size, containing 13 predicted open reading frames (ORFs), some of which showed significant homology to Ff-like phage proteins such as ORF1 (pII), ORF2 (pV), ORF6 (pIII), and ORF8 (pVI). XacF1 showed a relatively wide host range, infecting seven out of 11 strains tested in this study. Frequently, XacF1 was found to be integrated into the genome of Xac strains. This integration occurred at the host dif site (attB) and was mediated by the host XerC/D recombination system. The attP sequence was identical to that of Xanthomonas phage Cf1c. Interestingly, infection by XacF1 phage caused several physiological changes to the bacterial host cells, including lower levels of extracellular polysaccharide production, reduced motility, slower growth rate, and a dramatic reduction in virulence. In particular, the reduction in virulence suggested possible utilization of XacF1 as a biological control agent against citrus canker disease.
Collapse
Affiliation(s)
- Abdelmonim Ali Ahmad
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Ahmed Askora
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
- Department of Microbiology, Faculty of Science, Zagazig UniversityZagazig, Sharkia, Egypt
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| |
Collapse
|
18
|
de Souza AA, Ionescu M, Baccari C, da Silva AM, Lindow SE. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling. Appl Environ Microbiol 2013; 79:3444-54. [PMID: 23542613 PMCID: PMC3648042 DOI: 10.1128/aem.03834-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022] Open
Abstract
Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.
Collapse
Affiliation(s)
- Alessandra A de Souza
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
19
|
Santos CA, Saraiva AM, Toledo MAS, Beloti LL, Crucello A, Favaro MTP, Horta MAC, Santiago AS, Mendes JS, Souza AA, Souza AP. Initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa related to the human cytosolic 5'-nucleotidase I. Microb Pathog 2013; 59-60:1-6. [PMID: 23474016 DOI: 10.1016/j.micpath.2013.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Worthington RJ, Rogers SA, Huigens RW, Melander C, Ritchie DF. Foliar-Applied Small Molecule that Suppresses Biofilm Formation and Enhances Control of Copper-Resistant Xanthomonas euvesicatoria on Pepper. PLANT DISEASE 2012; 96:1638-1644. [PMID: 30727459 DOI: 10.1094/pdis-02-12-0190-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a small molecule additive, a member of the 2-aminoimidazole (2AI) group that is an analogue of the marine sponge natural product oroidin that suppresses resistance of Xanthomonas euvesicatoria to copper and decreases biofilm formation in an in vitro system. In laboratory experiments, 2AI combined with copper reduced both bacterial multiplication in broth and bacterial recovery on pepper leaf discs of a copper-resistant strain of X. euvesicatoria to a level close to that of a copper-sensitive strain. Compound 2AI used alone exhibited minimal bactericidal activity. In 3 years of field experiments, when combined with a copper-containing material, copper hydroxide (Kocide 3000), and other antibacterial materials, these spray mixtures resulted in decreased bacterial spot foliar disease and increased fruit yields using hybrid bell pepper (Capsicum annuum) cultivars and copper-resistant strains of X. euvesicatoria. This study demonstrates the concept for using small molecules as additives to antibacterial compounds at nonbactericidal concentrations under field conditions that, in the laboratory, were demonstrated to suppress bacterial biofilms and copper-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | - D F Ritchie
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
21
|
Renzi M, Copini P, Taddei AR, Rossetti A, Gallipoli L, Mazzaglia A, Balestra GM. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. PHYTOPATHOLOGY 2012; 102:827-840. [PMID: 22713076 DOI: 10.1094/phyto-02-12-0019-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae is a severe threat to kiwifruit production worldwide. Many aspects of P. syringae pv. actinidiae biology and epidemiology still require in-depth investigation. The infection by and spread of P. syringae pv. actinidiae in xylem and phloem was investigated by carrying out artificial inoculation experiments with histological and dendrochronological analyses of naturally diseased plants in Italy. We found that the bacterium can infect host plants by entering natural openings and lesions. In naturally infected kiwifruit plants, P. syringae pv. actinidiae is present in the lenticels as well as in the dead phloem tissue beneath the lenticels, surrounded by a lesion in the periderm which appears to indicate the importance of lenticels to kiwifruit infection. Biofilm formation was observed outside and inside plants. In cases of advanced stages of P. syringae pv. actinidiae infection, neuroses of the phloem occur, which are followed by cambial dieback and most likely by infection of the xylem. Anatomical changes in wood such as reduced ring width, a drastic reduction in vessel size, and the presence of tyloses were observed within several infected sites. In the field, these changes occur only a year after the first leaf symptoms are observed suggesting a significant time lapse between primary and secondary symptoms. It was possible to study the temporal development of P. syringae pv. actinidiae-induced cambial dieback by applying dendrochronology methods which revealed that cambial dieback occurs only during the growing season.
Collapse
Affiliation(s)
- Marsilio Renzi
- Dipartimento di Scienze e Technologoe per l'Agricoltura Foreste, la Natura e l'Energia, Univesità della Tuscia, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Silva MS, De Souza AA, Takita MA, Labate CA, Machado MA. Analysis of the biofilm proteome of Xylella fastidiosa. Proteome Sci 2011; 9:58. [PMID: 21939513 PMCID: PMC3187737 DOI: 10.1186/1477-5956-9-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 09/22/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. RESULTS We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. CONCLUSIONS We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.
Collapse
Affiliation(s)
- Mariana S Silva
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| | | | - Marco A Takita
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| | - Carlos A Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Marcos A Machado
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| |
Collapse
|
23
|
Qaderi MM, Reid DM. Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:97-105. [PMID: 32480866 DOI: 10.1071/fp10119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 12/16/2010] [Indexed: 06/11/2023]
Abstract
Recent studies using single environmental variables show that under aerobic conditions terrestrial plants can emit methane (CH4). However, the effects of multiple environmental factors - as components of global climate change - on aerobic CH4 emissions have been little studied. We examined the combined effects of temperature, carbon dioxide (CO2) and watering regime on CH4 emissions from six commonly cultivated crop species: faba bean, sunflower, pea, canola, barley and wheat. Plants were grown from seeds in controlled-environment growth chambers under two temperature regimes (24°C day/20°C night and 30°C day/26°C night), two CO2 concentrations (380 and 760µmolmol-1) and two watering regimes (well watered and water stressed). Plants were grown first under 24/20°C for 1 week from sowing, and then placed under experimental conditions for a further week. After the specified time, plant growth, gas exchange and CH4 emission rates were determined. Our results revealed that higher temperature and water stress significantly enhance CH4 emissions from plants, whereas elevated CO2 had the opposite effect and partially reverses the promotive effects of these factors. We suggest that the despite the mitigating effects of rising atmospheric CO2, CH4 emission may be higher in the face of ongoing global climate change in warmer and drier environments.
Collapse
Affiliation(s)
- Mirwais M Qaderi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David M Reid
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Shi X, Bi J, Morse JG, Toscano NC, Cooksey DA. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine. FEMS Microbiol Lett 2010; 304:82-8. [PMID: 20070368 DOI: 10.1111/j.1574-6968.2009.01885.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.
Collapse
Affiliation(s)
- Xiangyang Shi
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA.
| | | | | | | | | |
Collapse
|
25
|
Caserta R, Takita MA, Targon ML, Rosselli-Murai LK, de Souza AP, Peroni L, Stach-Machado DR, Andrade A, Labate CA, Kitajima EW, Machado MA, de Souza AA. Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 2010; 76:4250-9. [PMID: 20472735 PMCID: PMC2897468 DOI: 10.1128/aem.02114-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 05/04/2010] [Indexed: 11/20/2022] Open
Abstract
Complete sequencing of the Xylella fastidiosa genome revealed characteristics that have not been described previously for a phytopathogen. One characteristic of this genome was the abundance of genes encoding proteins with adhesion functions related to biofilm formation, an essential step for colonization of a plant host or an insect vector. We examined four of the proteins belonging to this class encoded by genes in the genome of X. fastidiosa: the PilA2 and PilC fimbrial proteins, which are components of the type IV pili, and XadA1 and XadA2, which are afimbrial adhesins. Polyclonal antibodies were raised against these four proteins, and their behavior during biofilm development was assessed by Western blotting and immunofluorescence assays. In addition, immunogold electron microscopy was used to detect these proteins in bacteria present in xylem vessels of three different hosts (citrus, periwinkle, and hibiscus). We verified that these proteins are present in X. fastidiosa biofilms but have differential regulation since the amounts varied temporally during biofilm formation, as well as spatially within the biofilms. The proteins were also detected in bacteria colonizing the xylem vessels of infected plants.
Collapse
Affiliation(s)
- R. Caserta
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. A. Takita
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. L. Targon
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - L. K. Rosselli-Murai
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. P. de Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - L. Peroni
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - D. R. Stach-Machado
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. Andrade
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - C. A. Labate
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - E. W. Kitajima
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. A. Machado
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. A. de Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| |
Collapse
|
26
|
Functional analysis of pilQ gene in Xanthomanas oryzae pv. oryzae, bacterial blight pathogen of rice. J Microbiol 2008; 46:214-20. [DOI: 10.1007/s12275-007-0173-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
27
|
Influence of Culture Medium pH on Growth, Aggregation, and Biofilm Formation of Xylella fastidiosa. Curr Microbiol 2008; 57:127-32. [DOI: 10.1007/s00284-008-9164-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
28
|
Rudrappa T, Biedrzycki ML, Bais HP. Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 2008; 64:153-66. [PMID: 18355294 DOI: 10.1111/j.1574-6941.2008.00465.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The rhizosphere is the critical interface between plant roots and soil where beneficial and harmful interactions between plants and microorganisms occur. Although microorganisms have historically been studied as planktonic (or free-swimming) cells, most are found attached to surfaces, in multicellular assemblies known as biofilms. When found in association with plants, certain bacteria such as plant growth promoting rhizobacteria not only induce plant growth but also protect plants from soil-borne pathogens in a process known as biocontrol. Contrastingly, other rhizobacteria in a biofilm matrix may cause pathogenesis in plants. Although research suggests that biofilm formation on plants is associated with biological control and pathogenic response, little is known about how plants regulate this association. Here, we assess the biological importance of biofilm association on plants.
Collapse
Affiliation(s)
- Thimmaraju Rudrappa
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | | | | |
Collapse
|
29
|
Chatterjee S, Wistrom C, Lindow SE. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci U S A 2008; 105:2670-5. [PMID: 18268318 PMCID: PMC2268194 DOI: 10.1073/pnas.0712236105] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Indexed: 11/18/2022] Open
Abstract
Cell-cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF.
Collapse
Affiliation(s)
| | - Christina Wistrom
- Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | | |
Collapse
|
30
|
Roper MC, Greve LC, Labavitch JM, Kirkpatrick BC. Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta. Appl Environ Microbiol 2007; 73:7252-8. [PMID: 17827325 PMCID: PMC2168192 DOI: 10.1128/aem.00895-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022] Open
Abstract
Many phytopathogenic bacteria, such as Ralstonia solanacearum, Pantoea stewartii, and Xanthomonas campestris, produce exopolysaccharides (EPSs) that aid in virulence, colonization, and survival. EPS can also contribute to host xylem vessel blockage. The genome of Xylella fastidiosa, the causal agent of Pierce's disease (PD) of grapevine, contains an operon that is strikingly similar to the X. campestris gum operon, which is responsible for the production of xanthan gum. Based on this information, it has been hypothesized that X. fastidiosa is capable of producing an EPS similar in structure and composition to xanthan gum but lacking the terminal mannose residue. In this study, we raised polyclonal antibodies against a modified xanthan gum polymer similar to the predicted X. fastidiosa EPS polymer. We used enzyme-linked immunosorbent assay to quantify production of EPS from X. fastidiosa cells grown in vitro and immunolocalization microscopy to examine the distribution of X. fastidiosa EPS in biofilms formed in vitro and in planta and assessed the contribution of X. fastidiosa EPS to the vascular occlusions seen in PD-infected grapevines.
Collapse
Affiliation(s)
- M Caroline Roper
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
31
|
Li Y, Hao G, Galvani CD, Meng Y, Fuente LDL, Hoch HC, Burr TJ. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. MICROBIOLOGY-SGM 2007; 153:719-726. [PMID: 17322192 DOI: 10.1099/mic.0.2006/002311-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xylella fastidiosa, an important phytopathogenic bacterium, causes serious plant diseases including Pierce's disease of grapevine. It is reported here that type I and type IV pili of X. fastidiosa play different roles in twitching motility, biofilm formation and cell-cell aggregation. Type I pili are particularly important for biofilm formation and aggregation, whereas type IV pili are essential for motility, and also function in biofilm formation. Thirty twitching-defective mutants were generated with an EZ : : TN transposome system, and several type-IV-pilus-associated genes were identified, including fimT, pilX, pilY1, pilO and pilR. Mutations in fimT, pilX, pilO or pilR resulted in a twitch-minus phenotype, whereas the pilY1 mutant was twitching reduced. A mutation in fimA resulted in a biofilm-defective and twitching-enhanced phenotype. A fimA/pilO double mutant was twitch minus, and produced almost no visible biofilm. Transmission electron microscopy revealed that the pili, when present, were localized to one pole of the cell. Both type I and type IV pili were present in the wild-type isolate and the pilY1 mutant, whereas only type I pili were present in the twitch-minus mutants. The fimA mutant produced no type I pili. The fimA/pilO double mutant produced neither type I nor type IV pili.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Guixia Hao
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Cheryl D Galvani
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Yizhi Meng
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Leonardo De La Fuente
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - H C Hoch
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Thomas J Burr
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|
32
|
Bi JL, Dumenyo CK, Hernandez-Martinez R, Cooksey DA, Toscano NC. Effect of host plant Xylem fluid on growth, aggregation, and attachment of Xylella fastidiosa. J Chem Ecol 2007; 33:493-500. [PMID: 17252211 DOI: 10.1007/s10886-006-9248-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
In the Temecula Valley of California the proximity of citrus groves to vineyards influences the incidence and severity of Pierce's disease (PD) in grapes, a disease caused by the gram-negative bacterium, Xylella fastidiosa. Although the glassy-winged sharpshooter (GWSS), the major insect vector of the bacterium, feeds on and moves back and forth between citrus groves and vineyards, there are no visible symptoms of disease caused by X fastidiosa in citrus. Previous evidences suggested that while grapevines are susceptible to the PD strain of X. fastidiosa, citrus trees are resistant or tolerant but could be a reservoir to harbor the pathogen for the GWSS acquisition. We investigated the mechanisms of host plant resistance/susceptibility by examining the in vitro effect of xylem fluid from grapefruit, orange, lemon, and grape on the growth, aggregation, and attachment of a X. fastidiosa strain isolated from grape. Our results revealed that xylem fluid from grapefruit, orange, and lemon trees caused the bacterial cells to form aggregations of large whitish clumps, whereas the xylem fluid from grape vines created a visible thick biofilm. The densities of X. fastidiosa cells in grapefruit xylem fluid treatment were significantly higher at 6, 8, and 9 d postinoculation compared with those in grape xylem fluid treatment. The cell densities of X. fastidiosa cultures in orange or lemon xylem fluid were generally lower than those in grape xylem fluid treatment, whereas citrus xylem fluid significantly inhibited X. fastidiosa biofilm formation compared to grape xylem fluid.
Collapse
Affiliation(s)
- J L Bi
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
33
|
Galvani CD, Li Y, Burr TJ, Hoch HC. Twitching motility among pathogenic Xylella fastidiosa isolates and the influence of bovine serum albumin on twitching-dependent colony fringe morphology. FEMS Microbiol Lett 2007. [DOI: 10.1111/j.1574-6968.2007.00601.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Souza LCA, Wulff NA, Gaurivaud P, Mariano AG, Virgílio ACD, Azevedo JL, Monteiro PB. Disruption of Xylella fastidiosa CVC gumB and gumF genes affects biofilm formation without a detectable influence on exopolysaccharide production. FEMS Microbiol Lett 2006; 257:236-42. [PMID: 16553859 DOI: 10.1111/j.1574-6968.2006.00176.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose.
Collapse
Affiliation(s)
- Leonardo C A Souza
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Rodrigues JLM, Silva-Stenico ME, de Souza AN, Lopes JRS, Tsai SM. In situ probing of Xylella fastidiosa in honeydew of a xylem sap-feeding insect using 16S rRNA-targeted fluorescent oligonucleotides. Environ Microbiol 2006; 8:747-54. [PMID: 16584486 DOI: 10.1111/j.1462-2920.2005.00958.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant pathogen that threatens a US$ 4.6 billion worldwide wine and citrus industry. Monitoring its presence and distribution in plants and vectors is crucial for designing control strategies, as well as for understanding its ecological role and fate. We developed two fluorescent oligonucleotide probes complementary to different regions of the 16S rRNA gene of X. fastidiosa. The specificity of the newly designed probes S-S-X.fas-0067-a-A-18 and S-S-X.fas-1439-a-A-18 was demonstrated using fluorescence in situ hybridization (FISH) for 12 Xylella isolates, 15 closely related microorganisms and three plant endophytes. These probes were used to detect and quantify X. fastidiosa in plant sap (average value of 2.9 +/- 0.3 x 10(6) cells ml(-1)) from three different citrus orchards. In a second experiment, cells were quantified in honeydew (2.2 +/- 0.2 x 10(4) cells ml(-1)) collected from the insect vector Bucephalogonia xanthophis during the acquisition access period on an infected plant. The number of pathogen cells retained or digested by the insect is 10,000 times greater than the estimated minimum value to ensure an efficient transmission. Polymerase chain reaction (PCR) amplification using specific primers with plant sap and honeydew samples, followed by sequencing, confirmed the presence of the plant pathogen. This is the first demonstration of FISH being used for environmental samples, such as plant sap and insect honeydew, to estimate the abundance of a plant pathogen during infection.
Collapse
Affiliation(s)
- Jorge L M Rodrigues
- Centro de Energia Nuclear na Agricultura, ESALQ, Universidade de Sao Paulo, Piracicaba, SP, 13400-970, Brazil.
| | | | | | | | | |
Collapse
|
36
|
Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci U S A 2006; 103:5983-8. [PMID: 16585516 PMCID: PMC1458684 DOI: 10.1073/pnas.0509860103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Indexed: 01/17/2023] Open
Abstract
The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.
Collapse
Affiliation(s)
| | | | - Timothy D. Minogue
- Plant Science, University of Connecticut, Storrs, CT 06269; and
- Pathogen Functional Genomic Resource Center, Center for Genomic Research, 9712 Medical Drive, Rockville, MD 20850
| | | |
Collapse
|
37
|
Guilhabert MR, Kirkpatrick BC. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:856-68. [PMID: 16134898 DOI: 10.1094/mpmi-18-0856] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.
Collapse
|
38
|
Jacques MA, Josi K, Darrasse A, Samson R. Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans. Appl Environ Microbiol 2005; 71:2008-15. [PMID: 15812033 PMCID: PMC1082538 DOI: 10.1128/aem.71.4.2008-2015.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.
Collapse
Affiliation(s)
- M-A Jacques
- UMR PaVé, Centre INRA, 42, rue George Morel, BP 60057, 49071 Beaucouzé cedex, France.
| | | | | | | |
Collapse
|
39
|
de Souza AA, Takita MA, Pereira EO, Coletta-Filho HD, Machado MA. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta. Curr Microbiol 2005; 50:223-8. [PMID: 15902471 DOI: 10.1007/s00284-004-4447-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.
Collapse
|
40
|
Abstract
Xanthomonas campestris pathovar campestris is the causal agent of black rot disease of cruciferous plants. A cell-cell signalling system encoded by genes within the rpf cluster is required for the full virulence of this plant pathogen. This system has recently been implicated in regulation of the formation and dispersal of Xanthomonas biofilms.
Collapse
Affiliation(s)
- Lisa Crossman
- Pathogen Sequencing Unit, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
41
|
Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C. Biofilm formation in plant–microbe associations. Curr Opin Microbiol 2004; 7:602-9. [PMID: 15556032 DOI: 10.1016/j.mib.2004.10.014] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacteria adhere to environmental surfaces in multicellular assemblies described as biofilms. Plant-associated bacteria interact with host tissue surfaces during pathogenesis and symbiosis, and in commensal relationships. Observations of bacteria associated with plants increasingly reveal biofilm-type structures that vary from small clusters of cells to extensive biofilms. The surface properties of the plant tissue, nutrient and water availability, and the proclivities of the colonizing bacteria strongly influence the resulting biofilm structure. Recent studies highlight the importance of these structures in initiating and maintaining contact with the host by examining the extent to which biofilm formation is an intrinsic component of plant-microbe interactions.
Collapse
Affiliation(s)
- Bronwyn E Ramey
- Department of Biology, 1001 East 3(rd) Street, Jordan Hall 142, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
42
|
Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto NH, Oliveira RC, Nunes LR, Machado MA. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09716.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
43
|
Leite B, Andersen PC, Ishida ML. Colony aggregation and biofilm formation in xylem chemistry-based media for Xylella fastidiosa. FEMS Microbiol Lett 2004; 230:283-90. [PMID: 14757251 DOI: 10.1016/s0378-1097(03)00917-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Two chemically defined media based on xylem fluid chemistry were developed for Xylella fastidiosa. These media were tested and compared to chemically defined media XDM2, XDM4 and XF-26. New media were evaluated for the Pierce's disease (PD) strain UCLA-PD. Our media either was similar to the concentration of some amino acids found in the xylem fluid of the PD-susceptible Vitis vinifera cv. Chardonnay (medium CHARD2) or incorporated the tripeptide glutathione found in xylem fluid composition (medium 3G10-R). CHARD2 and 3G10-R are among the simplest chemically defined media available. Xylem fluid chemistry-based media supported X. fastidiosa growth and especially stimulated aggregation and biofilm formation.
Collapse
Affiliation(s)
- Breno Leite
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 155 Research Road, Quincy, FL 32351, USA.
| | | | | |
Collapse
|
44
|
de Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Goldman GH, Yanai GM, Muto NH, de Oliveira RC, Nunes LR, Machado MA. Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:867-875. [PMID: 14558688 DOI: 10.1094/mpmi.2003.16.10.867] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.
Collapse
|
45
|
Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 2003; 100:10995-1000. [PMID: 12960398 PMCID: PMC196915 DOI: 10.1073/pnas.1833360100] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Indexed: 11/18/2022] Open
Abstract
The rpf gene cluster of Xanthomonas campestris pathovar campestris (Xcc) is required for the pathogenesis of this bacterium to plants. Several rpf genes are involved in the coordinate positive regulation of the production of virulence factors mediated by the small diffusible molecule DSF (for diffusible signal factor). RpfF directs the synthesis of DSF, and a two-component sensory transduction system comprising RpfC and RpfG has been implicated in the perception of the DSF signal and signal transduction. In L medium, rpfF, rpfG, rpfC, and rpfGHC mutants grew as matrix-enclosed aggregates, whereas the wild type grew in a dispersed planktonic fashion. Synthesis of the extracellular polysaccharide xanthan was required for aggregate formation. Addition of DSF triggered dispersion of the aggregates formed by the rpfF strain, but not those of rpf strains defective in DSF signal transduction. An extracellular enzyme from Xcc whose synthesis was positively controlled by the DSF/rpf system could disperse the aggregates produced by all rpf strains. The enzyme was identified as the single endo-beta-1,4-mannanase encoded by the Xcc genome. This enzyme had no detectable activity against soluble xanthan. The endo-beta-1,4-mannanase was required for the full virulence of Xcc to plants. On the basis of this model system, we propose that one role of the beta-mannanase during disease is to promote transitions from an aggregated or biofilm lifestyle to a planktonic lifestyle in response to the DSF signal.
Collapse
Affiliation(s)
- J Maxwell Dow
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|