1
|
Palmer MG, Holmes GJ. Fungicide Sensitivity in Strawberry Powdery Mildew Caused by Podosphaera aphanis in California. PLANT DISEASE 2021; 105:2601-2605. [PMID: 33404274 DOI: 10.1094/pdis-12-20-2604-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field observations suggest that reduced fungicide sensitivity exists in field populations of Podosphaera aphanis, the causal agent of strawberry powdery mildew (SPM). SPM is one of the most common diseases in strawberry production and is controlled with foliar fungicide applications. This study characterizes the sensitivity of 19 P. aphanis isolates to the most common fungicides used against SPM in California. Isolates were collected from commercial fruit production fields in Oxnard, Ventura, Santa Maria, Salinas, and Watsonville and from a plant nursery in Balico, California. Healthy, unfurled strawberry leaves (cultivar Monterey) free of visual disease symptoms were removed from actively growing plants and treated with one of six commercially formulated fungicides at the minimum labeled rate and inoculated with conidia of P. aphanis. Inoculated leaves were incubated at 20°C under 16/8 h of day/night lighting and assessed for disease incidence after 14 days. Pathogen growth on the treated leaflets constituted a measure of insensitivity to the fungicide. The six fungicide treatments and their average disease incidence on treated leaves for the 19 isolates are penthiopyrad (51.4%), quinoxyfen (41.5%), myclobutanil (39.8%), trifloxystrobin (19.8%), cyflufenamid (19.3%), and fluopyram + trifloxystrobin (3.5%). The average disease incidence for the trifloxystrobin treatment was raised significantly by two isolates considered to be resistant to the product (disease incidence >66.6%). Two isolates collected from organic production systems were sensitive to all fungicides. We document compromised fungicide efficacy due to resistance to most of the fungicides currently used for control of SPM in California. This is the first report of resistance in P. aphanis to any fungicide in California and the first report of resistance in P. aphanis to penthiopyrad and quinoxyfen worldwide.
Collapse
Affiliation(s)
- Michael G Palmer
- Strawberry Center, California Polytechnic State University, San Luis Obispo, CA 93407
- Department of Horticulture and Crop Science, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Gerald J Holmes
- Strawberry Center, California Polytechnic State University, San Luis Obispo, CA 93407
| |
Collapse
|
2
|
Gañán-Betancur L, Peever TL, Amiri A. No Evidence of Resistance to Trifloxystrobin, Triflumizole, and Boscalid in Podosphaera leucotricha Isolates From U.S. Commercial Apple Orchards. PLANT DISEASE 2021; 105:2356-2365. [PMID: 33728959 DOI: 10.1094/pdis-12-20-2685-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Apple powdery mildew, caused by Podosphaera leucotricha, continues to be a challenge in commercial apple orchards in the U.S. Pacific Northwest and worldwide. In this study, P. leucotricha isolates were collected in 2018 and 2019 from two organic (baseline) and eight conventional (exposed) apple orchards in Washington, New York, and Virginia, and assessed for their sensitivity to trifloxystrobin (TRI, n = 232), triflumizole (TFZ, n = 217), and boscalid (BOS, n = 240) using a detached leaf assay. Effective concentrations inhibiting 50% growth (EC50) were not significantly different between baseline and exposed isolates, and ranged from 0.001 to 0.105, 0.09 to 6.31, and 0.05 to 2.18 µg/ml, for TRI, TFZ, and BOS, respectively. Reduction in sensitivity by factors of 105, 63, and 22 to TRI, TFZ, and BOS, respectively, were observed in some isolates, but all isolates were controlled by the commercial label rates of the three fungicides on detached leaves. Sequencing of the cytochrome b (cytb), cytochrome P450 sterol 14α-demethylase (CYP51), and the iron-sulfur protein subunit (SdhB) genes in isolates with high EC50 revealed no mutation previously reported to confer resistance to these fungicides in other fungi, and presence of a group I intron after codon 143 in the cytb gene. Significant (P < 0.001) moderate positive correlations (r = 0.38) observed between sensitivity to TRI and TFZ warrant continuous rotations of fungicides with different modes of action in conventional orchards. The established baseline sensitivities and the molecular markers will help in selecting discriminatory doses and bypassing the challenging in vivo testing for future sensitivity monitoring in P. leucotricha.
Collapse
Affiliation(s)
- Lederson Gañán-Betancur
- Department of Plant Pathology, Washington State University, Pullman, WA 99163
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801
| | - Tobin L Peever
- Department of Plant Pathology, Washington State University, Pullman, WA 99163
| | - Achour Amiri
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801
| |
Collapse
|
3
|
Kunova A, Pizzatti C, Saracchi M, Pasquali M, Cortesi P. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms 2021; 9:1541. [PMID: 34361976 PMCID: PMC8307186 DOI: 10.3390/microorganisms9071541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Grapevine powdery mildew is a principal fungal disease of grapevine worldwide. Even though it usually does not cause plant death directly, heavy infections can lead to extensive yield losses, and even low levels of the disease can negatively affect the quality of the wine. Therefore, intensive spraying programs are commonly applied to control the disease, which often leads to the emergence and spread of powdery mildew strains resistant to different fungicides. In this review, we describe major fungicide classes used for grapevine powdery mildew management and the most common single nucleotide mutations in target genes known to confer resistance to different classes of fungicides. We searched the current literature to review the development of novel molecular methods for quick detection and monitoring of resistance to commonly used single-site fungicides against Erysiphe necator. We analyze and compare the developed methods. From our investigation it became evident that this research topic has been strongly neglected and we hope that effective molecular methods will be developed also for resistance monitoring in biotroph pathogens.
Collapse
Affiliation(s)
- Andrea Kunova
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (M.S.); (M.P.); (P.C.)
| | | | | | | | | |
Collapse
|
4
|
Miao J, Zhao G, Wang B, Du Y, Li Z, Gao X, Zhang C, Liu X. Three point-mutations in cytochrome b confer resistance to trifloxystrobin in Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2020; 76:4258-4267. [PMID: 32638510 DOI: 10.1002/ps.5990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rice blast, caused by Magnaporthe oryzae, is the most devastating disease in rice. Recently, trifloxystrobin was registered for the control of M. oryzae in China. The resistance profile and mechanism of M. oryzae to trifloxystrobin were investigated in the present study, providing important data for the recommended use of trifloxystrobin. RESULTS The baseline sensitivity was established at a half maximal effective concentration (EC50 ) of 0.024 μg mL-1 . Nine stable trifloxystrobin-resistant mutants were generated with EC50 values ranging from 12.75 to 171.49 μg mL-1 . The mutants exhibited strong adaptive traits in sporulation, conidial germination, and pathogenicity. Positive cross-resistance was only observed between trifloxystrobin and azoxystrobin, but not between trifloxystrobin and carbendazim, isoprothiolane, prochloraz, or chlorothalonil. The point mutation G143S in cytochrome b (cyt b) protein was found in eight high-resistance mutants with resistant factor ranging from 2295.16 to 13 200.00; and the double mutation G137R/M296V only occurred in Mg117-1 with resistance factor ≈ 900. The G143S mutation weakened hydrogen bond interactions, and G137R/M296V changed the conformation of trifloxystrobin in the cyt b binding pocket. A molecular detection method was established for the rapid detection of G143S mutants in M. oryzae. CONCLUSION The resistance risk of M. oryzae to trifloxystrobin could be moderate to high. Two genotypes with three point-mutations G143S, G137R, and M296V conferred resistance to trifloxystrobin in M. oryzae. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Guosen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Bin Wang
- Department of Plant Pathology, , China Agricultural University, Beijing, China
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, China
| | - Yixin Du
- Institute of Plant Protection, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Zhiwen Li
- Institute for the Control of Agrochemicals of Shaanxi Province, Xi'an, China
| | - Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Can Zhang
- Department of Plant Pathology, , China Agricultural University, Beijing, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Fungicide Resistance in Powdery Mildew Fungi. Microorganisms 2020; 8:microorganisms8091431. [PMID: 32957583 PMCID: PMC7564317 DOI: 10.3390/microorganisms8091431] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew fungi (Erysiphales) are among the most common and important plant fungal pathogens. These fungi are obligate biotrophic parasites that attack nearly 10,000 species of angiosperms, including major crops, such as cereals and grapes. Although cultural and biological practices may reduce the risk of infection by powdery mildew, they do not provide sufficient protection. Therefore, in practice, chemical control, including the use of fungicides from multiple chemical groups, is the most effective tool for managing powdery mildew. Unfortunately, the risk of resistance development is high because typical spray programs include multiple applications per season. In addition, some of the most economically destructive species of powdery mildew fungi are considered to be high-risk pathogens and are able to develop resistance to several chemical classes within a few years. This situation has decreased the efficacy of the major fungicide classes, such as sterol demethylation inhibitors, quinone outside inhibitors and succinate dehydrogenase inhibitors, that are employed against powdery mildews. In this review, we present cases of reduction in sensitivity, development of resistance and failure of control by fungicides that have been or are being used to manage powdery mildew. In addition, the molecular mechanisms underlying resistance to fungicides are also outlined. Finally, a number of recommendations are provided to decrease the probability of resistance development when fungicides are employed.
Collapse
|
6
|
Twizeyimana M, Hartman GL. Sensitivity of Phakopsora pachyrhizi Isolates to Fungicides and Reduction of Fungal Infection Based on Fungicide and Timing of Application. PLANT DISEASE 2017; 101:121-128. [PMID: 30682308 DOI: 10.1094/pdis-04-16-0552-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging foliar fungal disease in many soybean-growing areas of the world. Strategies to manage SBR include the use of foliar fungicides. Fungicide types, the rate of product application, and the number and timing of applications are critical components for successful rust management. The objectives of this study were to determine i) the sensitivity of P. pachyrhizi isolates collected in the U.S. to a range of fungicides and ii) the reduction of fungal infection based on fungicide type and timing of applications on soybean. There were differences (P < 0.05) in effective concentration (EC50) values among the fungicides tested. Azoxystrobin had low EC50 values for both urediniospore germination and fungal sporulation on inoculated leaflets. There were differences (P < 0.05) in fungal sporulation for application times, fungicide treatments, and their interaction when the fungus was inoculated on plants. All application times and nearly all fungicide treatments reduced (α = 0.05) fungal infection compared with the nonfungicide control. Information on fungicide sensitivity of P. pachyrhizi isolates and the preventive and curative effects of different fungicides are important in the management of SBR.
Collapse
Affiliation(s)
- M Twizeyimana
- Dept. of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - G L Hartman
- United States Department of Agriculture-Agricultural Research Service, and Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
7
|
Rallos LEE, Baudoin AB. Co-Occurrence of Two Allelic Variants of CYP51 in Erysiphe necator and Their Correlation with Over-Expression for DMI Resistance. PLoS One 2016; 11:e0148025. [PMID: 26839970 PMCID: PMC4740414 DOI: 10.1371/journal.pone.0148025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/12/2016] [Indexed: 01/15/2023] Open
Abstract
Demethylation inhibitors (DMIs) have been an important tool in the management of grapevine powdery mildew caused by Erysiphe necator. Long-term, intensive use of DMIs has resulted in reduced sensitivity in field populations. To further characterize DMI resistance and understand resistance mechanisms in this pathogen, we investigated the cyp51 sequence of 24 single-spored isolates from Virginia and surrounding states and analyzed gene expression in isolates representing a wide range of sensitivity. Two cyp51 alleles were found with respect to the 136th codon of the predicted EnCYP51 sequence: the wild-type (TAT) and the mutant (TTT), which results in the known Y136F amino acid change. Some isolates possessed both alleles, demonstrating gene duplication or increased gene copy number and possibly a requirement for at least one mutant copy of CYP51 for resistance. Cyp51 was over-expressed 1.4- to 19-fold in Y136F-mutant isolates. However, the Y136F mutation was absent in one isolate with moderate to high resistance factor. Two additional synonymous mutations were detected as well, one of which, A1119C was present only in isolates with high cyp51 expression. Overall, our results indicate that at least two mechanisms, cyp51 over-expression and the known target-site mutation in CYP51, contribute to resistance in E. necator, and may be working in conjunction with each other.
Collapse
Affiliation(s)
- Lynn Esther E. Rallos
- Department of Plant Pathology, Physiology and Weed Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anton B. Baudoin
- Department of Plant Pathology, Physiology and Weed Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
8
|
Jones L, Riaz S, Morales-Cruz A, Amrine KCH, McGuire B, Gubler WD, Walker MA, Cantu D. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 2014; 15:1081. [PMID: 25487071 PMCID: PMC4298948 DOI: 10.1186/1471-2164-15-1081] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/01/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Powdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator. RESULTS A shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide. CONCLUSIONS Taken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures.
Collapse
Affiliation(s)
- Laura Jones
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Summaira Riaz
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Abraham Morales-Cruz
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Katherine CH Amrine
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Brianna McGuire
- />Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - W Douglas Gubler
- />Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - M Andrew Walker
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Dario Cantu
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
9
|
Miles LA, Miles TD, Kirk WW, Schilder AMC. Strobilurin (QoI) Resistance in Populations of Erysiphe necator on Grapes in Michigan. PLANT DISEASE 2012; 96:1621-1628. [PMID: 30727456 DOI: 10.1094/pdis-01-12-0041-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Powdery mildew, caused by Erysiphe necator, is the most common and destructive disease of grapes (Vitis spp.) worldwide. In Michigan, it is primarily controlled with fungicides, including strobilurins (quinone outside inhibitors [QoIs]). Within the United States, resistance to this class of fungicides has been reported in E. necator populations in some east coast states. Among 12 E. necator isolates collected from five Michigan vineyards in 2008, one carried the G143A single-nucleotide mutation responsible for QoI resistance. This isolate was confirmed to be resistant in a conidium germination assay on water agar amended with trifloxystrobin at 0.001, 0.01, 0.1, 1, 10, or 100 μg/ml and salicylhydroxamic acid (100 mg/liter). The mutant isolate was able to germinate on media amended with 100 μg/ml trifloxystrobin, whereas a representative wild-type isolate did not germinate at concentrations higher than 0.1 μg/ml. In 2009, 172 isolates were collected from a total of 21 vineyards (juice and wine grapes): three vineyards with no fungicide application history (baseline sites), six research vineyards, and 12 commercial vineyards. QoI resistance was defined as the effective concentration that inhibited 50% of conidial germination (EC50) > 1 μg/ml. Isolates from baseline sites had EC50 values mostly below 0.01 μg/ml, while isolates that were highly resistant to trifloxystrobin (EC50 > 100 μg/ml) occurred in five research and three commercial wine grape vineyards at frequencies of 40 to 100% and 25 to 75% of the isolates, respectively. The G143A mutation was detected in every isolate with an EC50 > 1 μg/ml. These results suggest that fungicide resistance may play a role in suboptimal control of powdery mildew observed in some Michigan vineyards and emphasizes the need for continued fungicide resistance management.
Collapse
Affiliation(s)
- L A Miles
- Department of Plant Pathology, Michigan State University, 107 Center for Integrated Plant Systems, East Lansing, MI 48824
| | - T D Miles
- Department of Plant Pathology, Michigan State University, 107 Center for Integrated Plant Systems, East Lansing, MI 48824
| | - W W Kirk
- Department of Plant Pathology, Michigan State University, 107 Center for Integrated Plant Systems, East Lansing, MI 48824
| | - A M C Schilder
- Department of Plant Pathology, Michigan State University, 107 Center for Integrated Plant Systems, East Lansing, MI 48824
| |
Collapse
|
10
|
Colcol JF, Rallos LE, Baudoin AB. Sensitivity of Erysiphe necator to Demethylation Inhibitor Fungicides in Virginia. PLANT DISEASE 2012; 96:111-116. [PMID: 30731855 DOI: 10.1094/pdis-12-10-0883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grape powdery mildew (Erysiphe necator) isolates were collected from 2005 to 2007 from vineyards mostly in Virginia but also some in Maryland, North Carolina, and Pennsylvania. Using a leaf disc assay, the isolates were tested against five demethylation inhibitor (DMI) fungicides. Most isolates exhibited reduced sensitivity to the five DMIs when compared with a sensitive group (n = 12) and compared with unexposed populations reported from other areas. The median resistance factor (RF) was highest for tebuconazole (RF = 399) and myclobutanil (RF = 378), followed by triflumizole (RF = 70), triadimefon (RF = 62), and fenarimol (RF = 44). The sensitive group used as the basis for comparison appears to have been more sensitive than unexposed isolates in New York and California. Our finding that the greatest resistance shift occurred with tebuconazole and myclobutanil contrasts with earlier reports from New York and California, where the greatest resistance shift was observed with triadimefon or triadimenol. Sensitivities to all five DMI fungicides were strongly correlated (pairwise r values of 0.70 to 0.87) but our data suggest that some may retain greater utility than others.
Collapse
Affiliation(s)
| | - Lynn Esther Rallos
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061
| | - Anton B Baudoin
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061
| |
Collapse
|
11
|
Riaz S, Tenscher AC, Ramming DW, Walker MA. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1059-73. [PMID: 21188350 PMCID: PMC3056998 DOI: 10.1007/s00122-010-1511-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/04/2010] [Indexed: 05/18/2023]
Abstract
A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia 'Magnolia'. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in 'Magnolia' from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The 'Magnolia' resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia 'Trayshed'. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the 'Magnolia'-based populations, but the allele sizes of the flanking markers were different. 'Trayshed' and 'Magnolia' shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus termed Ren4 on chromosome 18, which explained 70% of the phenotypic variation in the same region of chromosome 18 found in the two M. rotundifolia resistant accessions. The mapping results indicate that powdery mildew resistance genes from different backgrounds reside on chromosome 18, and that genetic markers can be used as a powerful tool to pyramid these loci and other powdery mildew resistance loci into a single line.
Collapse
Affiliation(s)
- S. Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - A. C. Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - D. W. Ramming
- USDA-Agricultural Research Service, Parlier, CA 93468 USA
| | - M. A. Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| |
Collapse
|
12
|
Hoffmann S, Di Gaspero G, Kovács L, Howard S, Kiss E, Galbács Z, Testolin R, Kozma P. Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:427-38. [PMID: 18064436 DOI: 10.1007/s00122-007-0680-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 11/17/2007] [Indexed: 05/20/2023]
Abstract
Vitis vinifera 'Kishmish vatkana', a cultivated grapevine from Central Asia, does not produce visible symptoms in response to natural or artificial inoculation with the fungus Erysiphe necator Schwein., the casual agent of powdery mildew. 'Kishmish vatkana' allowed pathogen entry into epidermal cells at a rate comparable to that in the susceptible control Vitis vinifera 'Nimrang', but was able to limit subsequent hyphal proliferation. Density of conidiophores was significantly lower in 'Kishmish vatkana' (33.6+/-8.7 conidiophores mm(-2)) than in 'Nimrang' (310.5+/-24.0 conidiophores mm(-2)) by 120 h after inoculation. A progeny of 310 plants from a 'Nimrang 'Kishmish vatkana' cross were scored for the presence or absence of visible conidiophores throughout two successive seasons. Phenotypic segregation revealed the presence of a single dominant allele termed Resistance to Erysiphe necator 1 (REN1), which was heterozygous in 'Kishmish vatkana'. A bulked segregant analysis was carried out using 195 microsatellite markers uniformly distributed across the entire genome. For each marker, association with the resistance trait was inferred by measuring in the bulks the ratio of peak intensities of the two alleles inherited from 'Kishmish vatkana'. The phenotypic locus was assigned to linkage group 13, a genomic region in which no disease resistance had been reported previously. The REN1 position was restricted to a 7.4 cM interval by analyzing the 310 offspring for the segregation of markers that surrounded the target region. The closest markers, VMC9H4-2, VMCNG4E10-1 and UDV-020, were located 0.9 cM away from the REN1 locus.
Collapse
Affiliation(s)
- Sarolta Hoffmann
- Research Institute of Viticulture and Enology, Pázmány Péter u. 4, 7634, Pecs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rebollar-Alviter A, Madden LV, Jeffers SN, Ellis MA. Baseline and Differential Sensitivity to Two QoI Fungicides Among Isolates of Phytophthora cactorum That Cause Leather Rot and Crown Rot on Strawberry. PLANT DISEASE 2007; 91:1625-1637. [PMID: 30780602 DOI: 10.1094/pdis-91-12-1625] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sensitivities of 89 isolates of Phytophthora cactorum, the causal agent of crown rot and leather rot on strawberry plants, from seven states (Florida, Maine, North Carolina, Ohio, Oregon, South Carolina, and New York) to the QoI fungicide azoxystrobin were determined based on mycelium growth and zoospore germination. Radial growth of mycelia on lima bean agar amended with azoxystrobin at 0.001, 0.01, 0.1, 1.0, 10, and 30 μg/ml and salicylhydroxamic acid (SHAM) at 100 μg/ml was measured after 6 days. Effect on zoospore germination was evaluated in aqueous solutions of azoxystrobin at 0.005, 0.01, 0.05, 0.1, 0.5, and 1.0 μg/ml in 96-well microtiter plates by counting germinated and nongerminated zoospores after 4 h at room temperature. SHAM was not used to evaluate zoospore sensitivity. The effective dose to reduce mycelium growth by 50% (ED50) ranged from 0.16 to 12.52 μg/ml for leather rot isolates and 0.10 to 15 μg/ml for crown rot isolates. The Kolmogorov-Smirnov test showed significant differences (P < 0.001) between the two distributions. Zoospores were much more sensitive to azoxystrobin than were mycelia. Differences between sensitivity distributions for zoospores from leather rot and crown rot isolates were significant at P = 0.05. Estimated ED50 values ranged from 0.01 to 0.24 μg/ml with a median of 0.04 μg/ml. Experiments with pyraclostrobin, another QoI fungicide, demonstrated that both mycelia and zoospores of P. cactorum were more sensitive to pyraclostrobin than to azoxystrobin. Sensitivities to azoxystrobin and pyraclostrobin were moderately but significantly correlated (r = 0.60, P = 0.0001).
Collapse
Affiliation(s)
- A Rebollar-Alviter
- Universidad Autonoma Chapingo/Centro Regional Morelia, Morelia Michoacan, Mexico
| | - L V Madden
- Department of Plant Pathology, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster 44691
| | - S N Jeffers
- Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634
| | - M A Ellis
- Department of Plant Pathology, The Ohio State University/OARDC, Wooster
| |
Collapse
|
14
|
Dreo T, Seljak G, Janse JD, van der Beld I, Tjou-Tam-Sin L, Gorkink-Smits P, Ravnikar M. First laboratory confirmation of Xylophilus ampelinus in Slovenia. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1365-2338.2005.00795.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|