1
|
Hrycan J, Theilmann J, Mahovlic A, Boulé J, Úrbez-Torres JR. Health Status of Ready-to-Plant Grapevine Nursery Material in Canada Regarding Young Vine Decline Fungi. PLANT DISEASE 2023; 107:3708-3717. [PMID: 37436216 DOI: 10.1094/pdis-05-23-0900-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Young vine decline (YVD), caused by several taxonomically different fungi, results in the decline and death of grapevines within a few years after planting. Infection can occur in nursery mother blocks and/or at several stages in the nursery propagation process, but the final plant material may remain asymptomatic. Four nurseries that sell ready-to-plant grapevines in Canada were sampled to evaluate the health status with regard to YVD fungi, including Botryosphaeriaceae spp., Cadophora luteo-olivacea, Dactylonectria macrodidyma, Dactylonectria torresensis, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Plants representing three cultivars, 'Chardonnay', 'Merlot', and 'Pinot noir', either grafted onto '3309C' rootstock or self-rooted, were provided by the nurseries. Samples from the roots, base of the rootstock or self-rooted cultivar, graft-union, and scion were collected from each plant. DNA was extracted, and the total abundance of each fungus was quantified using Droplet Digital PCR. Results revealed that 99% of plants harbored at least one of the fungi studied, with a mean of three different fungal species that were present per grapevine. Droplet Digital PCR results showed that the abundance of the different fungi significantly varied between different sections of each plant, individual plants for each cultivar, and cultivars from the same nursery. Necrosis measurements were recorded from the base of the rootstock or self-rooted cultivars and did not correlate with fungal abundance recorded in that section for each grapevine, but necrosis was consistent across cultivars within nurseries. Five different rootstocks were compared from one nursery, and results showed no differences between rootstocks and their health status. Among all nurseries, C. luteo-olivacea was the most prevalent fungus (97% of the plants), while D. macrodidyma was the least commonly found (13% of the plants). This study shows that ready-to-plant nursery material sold in Canada is likely to be infected with several YVD fungi and that presence and abundance of fungi vary significantly among individual grapevines and nurseries.
Collapse
Affiliation(s)
- Jared Hrycan
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
- University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - April Mahovlic
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
- University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Julie Boulé
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| |
Collapse
|
2
|
de Souza LM, Joaquim AR, Gava A, Ficagna E, Almança MAK, Andrade SF, Fuentefria AM. In vitro evaluation of the efficacy of 8-hydroxyquinoline derivatives for the control of Phaeomoniella chlamydospora, the causative agent of Petri disease in grapevines. J Appl Microbiol 2023; 134:lxad228. [PMID: 37804172 DOI: 10.1093/jambio/lxad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
AIM This study evaluates the in vitro efficacy of 8-hydroxyquinoline (8HQ) derivatives in controlling the phytopathogenic fungus Phaeomoniella chlamydospora. METHODS AND RESULTS The in vitro tests assessed the susceptibility to the minimum inhibitory concentration (MIC), checkerboard assay, mycelial growth (MG) inhibition, and EC50 determination. Among the seven agricultural fungicides tested, tebuconazole (TEB) displayed the lowest MIC, 1.01 µg mL-1, followed by captan (CAP), thiophanate methyl (TM), and mancozeb with MICs of 4.06, 5.46, and 10.62 µg mL-1, respectively. The 8HQ derivatives used in this study were clioquinol and PH 151 (PH) with MICs of 1.09 and 2.02 µg mL-1, respectively. PH associated with TEB and CAP showed synergism and inhibited 95.8% of MG at the highest dose. TEB inhibited 100% of MG at the three highest doses, while associated with PH exhibited the lowest EC50 (0.863 + 0.0381 µg mL-1). CONCLUSIONS We concluded that the 8HQ derivatives tested controlled effectively the P. chlamydospora in vitro. PH associated with CAP and TEB exhibited a synergistic effect. The association between PH and TM was considered indifferent. IMPACT STATEMENT This study expands the list of active ingredients tested against P. chlamydospora, with the PH 151 and clioquinol derivatives being tested for the first time. The in vitro efficacy and synergistic action with other fungicides suggest a potential use as a grapevine wound protectant. This association makes it possible to reduce doses and increase the potency of both drugs, reducing the risk of resistance development and harm to humans and the environment.
Collapse
Affiliation(s)
- Luciana M de Souza
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90035-003, Brazil
- Instituto Federal do Rio Grande do Sul/Campus Bento Gonçalves, Bento Gonçalves/RS. 95700-000, Brazil
| | - Angelica R Joaquim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90610-000, Brazil
| | - Angelo Gava
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90035-003, Brazil
| | - Evandro Ficagna
- Instituto Federal do Rio Grande do Sul/Campus Bento Gonçalves, Bento Gonçalves/RS. 95700-000, Brazil
| | - Marcus A K Almança
- Instituto Federal do Rio Grande do Sul/Campus Bento Gonçalves, Bento Gonçalves/RS. 95700-000, Brazil
| | - Saulo F Andrade
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90610-000, Brazil
| | - Alexandre M Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS. 90610-000, Brazil
| |
Collapse
|
3
|
Billones-Baaijens R, Liu M, Sosnowski MR, Ayres MR, Savocchia S. Molecular detection and identification of Diatrypaceous airborne spores in Australian vineyards revealed high species diversity between regions. PLoS One 2023; 18:e0286738. [PMID: 37267392 DOI: 10.1371/journal.pone.0286738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
The grapevine trunk disease, Eutypa dieback (ED), causes significant vine decline and yield reduction. For many years, the fungus Eutypa lata was considered the main pathogen causing ED of grapevines in Australia. Recent studies showed other Diatrypaceous fungi were also associated with vines exhibiting dieback symptoms but there is limited information on how these fungal pathogens spread in vineyards. Thus, information on the spore dispersal patterns of Diatrypaceous fungi in different wine regions will assist in identifying high-risk infection periods in vineyards. Using more than 6800 DNA samples from airborne spores collected from eight wine regions in south-eastern Australia over 8 years using a Burkard spore trap, this study investigated the diversity and abundance of Diatrypaceous species, using multi-faceted molecular tools. A multi-target quantitative PCR (qPCR) assay successfully detected and quantified Diatrypaceous spores from 30% of the total samples with spore numbers and frequency of detection varying between regions and years. The high-resolution melting analysis (HRMA) coupled with DNA sequencing identified seven species, with E. lata being present in seven regions and the most prevalent species in the Adelaide Hills, Barossa Valley and McLaren Vale. Cryptovalsa ampelina and Diatrype stigma were the predominant species in the Clare Valley and Coonawarra, respectively while Eutypella citricola and Eu. microtheca dominated in the Hunter Valley and the Riverina regions. This study represents the first report of D. stigma and Cryptosphaeria multicontinentalis in Australian vineyards. This study further showed rainfall as a primary factor that triggers spore release, however, other weather factors that may influence the spore release in different climatic regions of Australia still requires further investigation.
Collapse
Affiliation(s)
| | - Meifang Liu
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Mark R Sosnowski
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Matthew R Ayres
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
4
|
Venbrux M, Crauwels S, Rediers H. Current and emerging trends in techniques for plant pathogen detection. FRONTIERS IN PLANT SCIENCE 2023; 14:1120968. [PMID: 37223788 PMCID: PMC10200959 DOI: 10.3389/fpls.2023.1120968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.
Collapse
Affiliation(s)
- Marc Venbrux
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Rediers
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Ni X, Lyu J, Wang Y, Li M, Qiao N, Jiang T, Sun X. Simultaneous detection of five viruses and two viroids affecting apples through a DNA macroarray chip. J Virol Methods 2023; 316:114730. [PMID: 37031744 DOI: 10.1016/j.jviromet.2023.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Multiple infections of various viruses and viroids in apple trees are common and have caused a significant loss in the world apple industry. To provide an early detection of any of those possible pathogens at the molecular level, a multiplex DNA macroarray chip was designed and developed for a simultaneous identification of five common apple viruses and two viroids including apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple mosaic virus (ApMV), apple necrosis mosaic virus (ApNMV), apple scar skin viroid (ASSVd), and apple dimple fruit viroid (ADFVd). The macroarray with a 23bp probe arranged with the coat protein (CP) gene or a target DNA segment of each viruses and viroids has demonstrated a high specificity and sensitivity without any competitions, inhibitions or cross-interferences when it was tested against more than a mixture of viral and viroid samples. To our best knowledge, this is the first report on the simultaneous detection of five different apple viruses and two viroids through using a DNA macroarray, therefore, we suggest that this detection protocol and procedure be used for any apple viral diagnosis before setting up a production nursery for virus-free apple seedlings.
Collapse
Affiliation(s)
- Xiumei Ni
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shandong, 262700, China
| | - Jinfu Lyu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shandong, 262700, China
| | - Yanjuan Wang
- Shandong Dafengyuan Agriculture Co., Ltd., Shandong, 262305, China
| | - Meiqin Li
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shandong, 262700, China
| | - Ning Qiao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shandong, 262700, China
| | - Tao Jiang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shandong, 262700, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shandong, 262700, China; Division of Plant Industry, Florida Department of Agriculture and Consumer Services (Retired), 1911 SW 34th Street, Gainesville, FL 32608, USA
| |
Collapse
|
6
|
Muntean MD, Drăgulinescu AM, Tomoiagă LL, Comșa M, Răcoare HS, Sîrbu AD, Chedea VS. Fungal Grapevine Trunk Diseases in Romanian Vineyards in the Context of the International Situation. Pathogens 2022; 11:1006. [PMID: 36145437 PMCID: PMC9503734 DOI: 10.3390/pathogens11091006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vitis vinifera, known as the common grape vine, represents one of the most important fruit crops in the world. Romania is a wine-producing country with a rich and long tradition in viticulture. In the last decade, increasing reports of damage caused by grapevine trunk diseases (GTDs) have raised concerns in all wine producing countries. Up to now, no study was performed regarding the GTDs situation in Romania, an important grapevine grower in Europe. In this study, we aim, after a comprehensive presentation of the fungal GTDs worldwide, to review the scientific information related to these diseases in Romania in order to open a national platform in an international framework. In order to achieve this, we consulted over 500 references from different scientific databases and cited 309 of them. Our review concludes that, in Romania, there is little amount of available literature on this matter. Three out of six fungal GTDs are reported and well documented in all of the Romanian viticultural zones (except for viticultural zone 4). These are Eutypa dieback, Phomopsis dieback, and Esca disease. Of the fungal pathogens considered responsible Eutypa lata, Phomopsis viticola and Stereum hirsutum are the most studied and well documented in Romania. Management measures are quite limited, and they mostly include preventive measures to stop the GTDs spread and the removal of affected grapevines.
Collapse
Affiliation(s)
- Maria-Doinița Muntean
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Ana-Maria Drăgulinescu
- Electronics, Telecommunication and Information Technology Faculty, University Politehnica of Bucharest (UPB), 060042 Bucharest, Romania
| | | | - Maria Comșa
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Horia-Silviu Răcoare
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Alexandra Doina Sîrbu
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| |
Collapse
|
7
|
Carbone MJ, Gelabert M, Moreira V, Mondino P, Alaniz S. Grapevine nursery propagation material as source of fungal trunk disease pathogens in Uruguay. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:958466. [PMID: 37746215 PMCID: PMC10512308 DOI: 10.3389/ffunb.2022.958466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 09/26/2023]
Abstract
Grapevine fungal trunk diseases (GTDs) have become a serious problem for grapevines worldwide. Nursery vines infected during the propagation process are considered one of the main ways of dissemination of GTD pathogens. In this study, we examined the status of GTDs in grapevine planting material, from rootstocks and scion mother cuttings to grafted rooted vines ready to plant, according to the local nursery propagation process. During 2018-2019, internal symptoms of GTDs were examined in 2400 propagation materials and fungal isolations were carried out from a subsample of 1026 selected materials. Our results revealed that nursery grapevine plants produced in Uruguay have a high incidence of GTDs, regardless of the scion/rootstock combination. Typical brown to black streaks and sectorial wood necrosis were observed in materials on all propagation stages, with a markedly increasing incidence throughout the nursery process, reaching almost 100% in grafted rooted vines ready to plant. Botryosphaeria dieback, Petri disease and black-foot disease were the main GTDs found. The results showed that Botryosphaeria dieback and Petri disease pathogens infect materials from the early stages of the process, with a marked increase towards the end of the plant production process, whereas black-foot disease pathogens were found exclusively in vines ready to plant. Diaporthe dieback pathogens were also detected in materials in all stages but in a low proportion (less than 10% of infected material). Based on single locus analysis, the 180 isolates selected were placed into eight genera and 89% identified within 22 fungal species associated with GTDs, with Phaeoacremonium oleae and Diaporthe terebinthifolii as new records on grapevine worldwide. Our results have concluded that locally produced vines are one of the main ways of dissemination of GTD pathogens and showed that a nursery sanitation programme is required to reduce the incidence of these diseases.
Collapse
Affiliation(s)
- María Julia Carbone
- Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
8
|
Kwaśna H, Szewczyk W, Baranowska M, Gallas E, Wiśniewska M, Behnke-Borowczyk J. Mycobiota Associated with the Vascular Wilt of Poplar. PLANTS 2021; 10:plants10050892. [PMID: 33925219 PMCID: PMC8146881 DOI: 10.3390/plants10050892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023]
Abstract
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.
Collapse
Affiliation(s)
- Hanna Kwaśna
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
- Correspondence:
| | - Wojciech Szewczyk
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| | - Marlena Baranowska
- Department of Silviculture, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625 Poznań, Poland;
| | - Ewa Gallas
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| | - Milena Wiśniewska
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| | - Jolanta Behnke-Borowczyk
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| |
Collapse
|
9
|
Hariharan G, Prasannath K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front Cell Infect Microbiol 2021; 10:600234. [PMID: 33505921 PMCID: PMC7829251 DOI: 10.3389/fcimb.2020.600234] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- Ganeshamoorthy Hariharan
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Kandeeparoopan Prasannath
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
10
|
Kraus C, Damm U, Bien S, Voegele RT, Fischer M. New species of Phaeomoniellales from a German vineyard and their potential threat to grapevine ( Vitis vinifera) health. Fungal Syst Evol 2020; 6:139-155. [PMID: 32904175 PMCID: PMC7452154 DOI: 10.3114/fuse.2020.06.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, the order Phaeomoniellales was established that includes fungi closely related to Phaeomoniella chlamydospora, a phytopathogen assumed to be the main causal agent of the two most destructive grapevine trunk diseases, Petri disease and esca. Other species of this order are reported as pathogens of other economically important crops, like olive, peach, apricot, cherry, plum, rambutan, lichee or langsat. However, they are rarely isolated and hence, little is known about their ecological traits and pathogenicity. During a 1-yr period of spore trapping in a German vineyard divided in minimally and intensively pruned grapevines, 23 fungal strains of the Phaeomoniellales were collected. Based on morphological and molecular (ITS, LSU and tub2) analyses the isolated strains were assigned to eight different species. Two species were identified as P. chlamydospora and Neophaeomoniella zymoides, respectively. The remaining six species displayed morphological and molecular differences to known species of the Phaeomoniellales and are newly described, namely Aequabiliellapalatina, Minutiella simplex, Moristroma germanicum, Mo. palatinum,Neophaeomoniella constricta and N. ossiformis. A pathogenicity test conducted in the greenhouse revealed that except for P. chlamydospora, none of the species of the Phaeomoniellales isolated from spore traps is able to induce lesions in grapevine wood.
Collapse
Affiliation(s)
- C Kraus
- Julius Kühn-Institute, Federal Research Centre of Cultivated Plants, Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany.,University of Hohenheim, Department of Phytopathology, 70599 Hohenheim, Germany
| | - U Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - S Bien
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - R T Voegele
- University of Hohenheim, Department of Phytopathology, 70599 Hohenheim, Germany
| | - M Fischer
- Julius Kühn-Institute, Federal Research Centre of Cultivated Plants, Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany
| |
Collapse
|
11
|
Cover Crop Diversity as a Tool to Mitigate Vine Decline and Reduce Pathogens in Vineyard Soils. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wine grape production is an important economic asset in many nations; however, a significant proportion of vines succumb to grapevine trunk pathogens, reducing yields and causing economic losses. Cover crops, plants that are grown in addition to main crops in order to maintain and enhance soil composition, may also serve as a line of defense against these fungal pathogens by producing volatile root exudates and/or harboring suppressive microbes. We tested whether cover crop diversity reduced disease symptoms and pathogen abundance. In two greenhouse experiments, we inoculated soil with a 106 conidia suspension of Ilyonectria liriodendri, a pathogenic fungus, then conditioned soil with cover crops for several months to investigate changes in pathogen abundance and fungal communities. After removal of cover crops, Chardonnay cuttings were grown in the same soil to assess disease symptoms. When grown alone, white mustard was the only cover crop associated with reductions in necrotic root damage and abundance of Ilyonectria. The suppressive effects of white mustard largely disappeared when paired with other cover crops. In this study, plant identity was more important than diversity when controlling for fungal pathogens in vineyards. This research aligns with other literature describing the suppressive potential of white mustard in vineyards.
Collapse
|
12
|
Berbegal M, Ramón-Albalat A, León M, Armengol J. Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. PEST MANAGEMENT SCIENCE 2020; 76:967-977. [PMID: 31472038 DOI: 10.1002/ps.5605] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Fungal grapevine trunk diseases (GTDs) represent a threat to viticulture, being responsible for important economic losses worldwide. Nursery and vineyard experiments were set up to evaluate the ability of Trichoderma atroviride SC1 to reduce infections of GTD pathogens in grapevine planting material during the propagation process and to assess the long-term protection provided by this biocontrol agent on grapevine plants in young vineyards during two growing seasons. RESULTS Reductions of some GTD pathogen incidence and severity were found on grapevine propagation material after nursery application of T. atroviride SC1 during the grafting process, and also after additional T. atroviride SC1 treatments performed during two growing seasons in young vineyards, when compared with untreated plants. CONCLUSION Trichoderma atroviride SC1 showed promise to reduce infections caused by some GTD pathogens in nurseries, and also when establishing new vineyards. This biological control agent could possibly be a valuable component in an integrated management approach where various strategies are combined to reduce GTD infections. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Ramón-Albalat
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Maela León
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
13
|
Berlanas C, Ojeda S, López-Manzanares B, Andrés-Sodupe M, Bujanda R, Del Pilar Martínez-Diz M, Díaz-Losada E, Gramaje D. Occurrence and Diversity of Black-Foot Disease Fungi in Symptomless Grapevine Nursery Stock in Spain. PLANT DISEASE 2020; 104:94-104. [PMID: 31738690 DOI: 10.1094/pdis-03-19-0484-re] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, 3,426 grafted grapevines ready to be planted from 15 grapevine nursery fields in Northern Spain were inspected from 2016 to 2018 for black-foot causing pathogens. In all, 1,427 isolates of black-foot pathogens were collected from the asymptomatic inner tissues of surface sterilized secondary roots and characterized based on morphological features and DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, histone H3, translation elongation factor 1-alpha and β-tubulin genes. Eleven species belonging to the genera Dactylonectria, Ilyonectria, Neonectria, and Thelonectria were identified, including Dactylonectria alcacerensis, D. macrodidyma, D. novozelandica, D. pauciseptata, D. torresensis, Ilyonectria liriodendri, I. pseudodestructans, I. robusta, Neonectria quercicola, Neonectria sp. 1, and Thelonectria olida. In addition, two species are newly described, namely D. riojana and I. vivaria. Twenty-four isolates representing 13 black-foot species were inoculated onto grapevine seedlings cultivar 'Tempranillo'. The pathogenicity tests detected diversity in virulence among fungal species and between isolates within each species. The most virulent species was D. novozelandica isolate BV-0760, followed by D. alcacerensis isolate BV-1240 and I. vivaria sp. nov. isolate BV-2305. This study improves our knowledge on the etiology and virulence of black-foot disease pathogens, and opens up new perspectives in the study of the endophytic phase of these pathogens in grapevines.
Collapse
Affiliation(s)
- Carmen Berlanas
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| | - Sonia Ojeda
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| | - Beatriz López-Manzanares
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| | - Marcos Andrés-Sodupe
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| | - Rebeca Bujanda
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| | - María Del Pilar Martínez-Diz
- Estación de Viticultura y Enología de Galicia (AGACAL-EVEGA), Ponte San Clodio s/n 32428-Leiro-Ourense, Spain
- Universidade da Coruña, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Emilia Díaz-Losada
- Estación de Viticultura y Enología de Galicia (AGACAL-EVEGA), Ponte San Clodio s/n 32428-Leiro-Ourense, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| |
Collapse
|
14
|
Saccà ML, Manici LM, Caputo F, Frisullo S. Changes in rhizosphere bacterial communities associated with tree decline: grapevine esca syndrome case study. Can J Microbiol 2019; 65:930-943. [DOI: 10.1139/cjm-2019-0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An investigation was carried out on rhizosphere bacteria to determine if they may be associated with perennial crops affected by nonspecific decline, a phenomenon that is difficult to diagnose and prevent. Esca disease of grapevine was chosen for this case study because of its easy foliar symptom identification. Ribosomal DNA fingerprint analysis by polymerase chain reaction – denaturing gradient gel electrophoresis (PCR–DGGE), quantitative PCR (qPCR), and rDNA amplicon sequencing by next-generation sequencing (NGS) were adopted to investigate the bacterial communities associated with grapevines, which were selected for the presence and absence of external foliar symptoms in 11 vineyards. According to PCR–DGGE and qPCR, bacterial communities differed in site of origin (vineyards), but not between symptomatic and asymptomatic plants, whereas qPCR gave a significantly higher presence of total bacteria and Pseudomonas spp. in asymptomatic plants. NGS confirmed no difference between symptomatic and asymptomatic plants, apart from a few minor genera (<0.5%) such as Salinibacterium, Flavobacterium, Nocardia, and Janthinobacterium, which were, in all cases, higher in asymptomatic plants and whose functional role should be the object of further investigation. The fact that total bacteria and Pseudomonas were more abundant in the rhizosphere of asymptomatic grapevines and that some bacterial genera were associated with the latter, represents a new element when investigating the multiple-origin phenomenon such as esca disease of grapevine.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Council for Agricultural Research and Economics, Agriculture and Environment Research Center, Bologna, Italy
| | - Luisa Maria Manici
- Council for Agricultural Research and Economics, Agriculture and Environment Research Center, Bologna, Italy
| | - Francesco Caputo
- Council for Agricultural Research and Economics, Agriculture and Environment Research Center, Bologna, Italy
| | - Salvatore Frisullo
- University of Foggia, Department of the Sciences of Agriculture, Food and Environment, Foggia, Italy
| |
Collapse
|
15
|
Vukicevich E, Lowery DT, Bennett JA, Hart M. Influence of Groundcover Vegetation, Soil Physicochemical Properties, and Irrigation Practices on Soil Fungi in Semi-arid Vineyards. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Marin-Felix Y, Hernández-Restrepo M, Wingfield M, Akulov A, Carnegie A, Cheewangkoon R, Gramaje D, Groenewald J, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher R, Spies C, Thangavel R, Taylor P, Wilson A, Wingfield B, Wood A, Crous P. Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol 2019; 92:47-133. [PMID: 29997401 PMCID: PMC6031069 DOI: 10.1016/j.simyco.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.
Collapse
Key Words
- 26 new taxa
- Apoharknessia eucalypti Crous & M.J. Wingf.
- Cylindrocladiella addiensis L. Lombard & Crous
- Cylindrocladiella nauliensis L. Lombard & Crous
- DNA barcodes
- Diaporthe heterophyllae Guarnaccia & Crous
- Diaporthe racemosae A.R. Wood, Guarnaccia & Crous
- Dichotomophthora basellae Hern.-Restr., Cheew. & Crous
- Dichotomophthora brunnea Hern.-Restr. & Crous
- Fungal systematics
- Harknessia bourbonica Crous & M.J. Wingf.
- Harknessia corymbiae Crous & A.J. Carnegie
- Harknessia cupressi Crous & R.K. Schumach.
- Harknessia pilularis Crous & A.J. Carnegie
- Helminthosporium arundinaceum Corda
- Huntiella abstrusa A.M. Wilson, Marinc., M.J. Wingf.
- Macgarvieomyces luzulae (Ondřej) Y. Marín, Akulov & Crous
- Metulocladosporiella chiangmaiensis Y. Marín, Cheew. & Crous
- Metulocladosporiella malaysiana Y. Marín & Crous
- Metulocladosporiella musigena Y. Marín, Cheew. & Crous
- Metulocladosporiella samutensis Y. Marín, Luangsa-ard & Crous
- Microdochium novae-zelandiae Hern.-Restr., Thangavel & Crous
- Oculimacula acuformis (Nirenberg) Y. Marín & Crous
- Phaeoacremonium pravum C.F.J. Spies, L. Mostert & Halleen
- Phomopsis pseudotsugae M. Wilson
- Phyllosticta iridigena Y. Marín & Crous
- Phyllosticta persooniae Y. Marín & Crous
- Pyricularia luzulae Ondřej
- Pyricularia zingiberis Y. Nishik
- Pyriculariomyces Y. Marín, M.J. Wingf. & Crous
- Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous
- Six new typifications
- Utrechtiana arundinacea (Corda) Crous, Quaedvl. & Y. Marín
- Utrechtiana constantinescui (Melnik & Shabunin) Crous & Y. Marín
Collapse
Affiliation(s)
- Y. Marin-Felix
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Akulov
- V.N. Karasin National University of Kharkiv, Svobody sq. 4, Kharkiv 61077, Ukraine
| | - A.J. Carnegie
- Forest Science, NSW Department of Primary Industries, Locked Bag 5123, Parramatta, New South Wales 2124, Australia
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26071 Logroño, La Rioja, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Guarnaccia
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J. Luangsa-ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113, Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Moslemi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - W. Quaedvlieg
- Naktuinbouw, Sotaweg 22, 2371 GD Roelofarendsveen, the Netherlands
| | | | - C.F.J. Spies
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - A.M. Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A.R. Wood
- ARC – Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, South Africa
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Morales-Cruz A, Figueroa-Balderas R, García JF, Tran E, Rolshausen PE, Baumgartner K, Cantu D. Profiling grapevine trunk pathogens in planta: a case for community-targeted DNA metabarcoding. BMC Microbiol 2018; 18:214. [PMID: 30547761 PMCID: PMC6295080 DOI: 10.1186/s12866-018-1343-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA metabarcoding, commonly used in exploratory microbial ecology studies, is a promising method for the simultaneous in planta-detection of multiple pathogens associated with disease complexes, such as the grapevine trunk diseases. Profiling of pathogen communities associated with grapevine trunk diseases is particularly challenging, due to the presence within an individual wood lesion of multiple co-infecting trunk pathogens and other wood-colonizing fungi, which span a broad range of taxa in the fungal kingdom. As such, we designed metabarcoding primers, using as template the ribosomal internal transcribed spacer of grapevine trunk-associated ascomycete fungi (GTAA) and compared them to two universal primer widely used in microbial ecology. RESULTS We first performed in silico simulations and then tested the primers by high-throughput amplicon sequencing of (i) multiple combinations of mock communities, (ii) time-course experiments with controlled inoculations, and (iii) diseased field samples from vineyards under natural levels of infection. All analyses showed that GTAA had greater affinity and sensitivity, compared to those of the universal primers. Importantly, with GTAA, profiling of mock communities and comparisons with shotgun-sequencing metagenomics of field samples gave an accurate representation of genera of important trunk pathogens, namely Phaeomoniella, Phaeoacremonium, and Eutypa, the abundances of which were over- or under-estimated with universal primers. CONCLUSIONS Overall, our findings not only demonstrate that DNA metabarcoding gives qualitatively and quantitatively accurate results when applied to grapevine trunk diseases, but also that primer customization and testing are crucial to ensure the validity of DNA metabarcoding results.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Jadran F. García
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Eric Tran
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - Kendra Baumgartner
- United States Department of Agriculture, Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
18
|
Gramaje D, Úrbez-Torres JR, Sosnowski MR. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. PLANT DISEASE 2018; 102:12-39. [PMID: 30673457 DOI: 10.1094/pdis-04-17-0512-fe] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fungal trunk diseases are some of the most destructive diseases of grapevine in all grape growing areas of the world. Management of GTDs has been intensively studied for decades with some great advances made in our understanding of the causal pathogens, their epidemiology, impact, and control. However, due to the breadth and complexity of the problem, no single effective control measure has been developed. Management of GTD must be holistic and integrated, with an interdisciplinary approach conducted in both nurseries and vineyards that integrates plant pathology, agronomy, viticulture, microbiology, epidemiology, biochemistry, physiology, and genetics. In this review, we identify a number of areas of future prospect for effective management of GTDs worldwide, which, if addressed, will provide a positive outlook on the longevity of vineyards in the future.
Collapse
Affiliation(s)
- David Gramaje
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de la Rioja, Logroño 26007, Spain
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Science and Technology Branch, Summerland, British Columbia V0H1Z0, Canada
| | - Mark R Sosnowski
- South Australian Research and Development Institute, GPO Box 397, Adelaide SA 5001, Australia; and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Premaratne G, Al Mubarak ZH, Senavirathna L, Liu L, Krishnan S. Measuring Ultra-low Levels of Nucleotide Biomarkers Using Quartz Crystal Microbalance and SPR Microarray Imaging Methods: A Comparative Analysis. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 253:368-375. [PMID: 29200660 PMCID: PMC5703433 DOI: 10.1016/j.snb.2017.06.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Circulating serum nucleotide biomarkers are useful indicators for early diagnosis of cancer, respiratory illnesses, and other deadly diseases. In this work, we compared detection performances of a quartz crystal microbalance (QCM), which is a mass sensor, with that of a surface plasmon resonance (SPR) microarray for an oligonucleotide mimic of a microRNA-21 biomarker. A surface immobilized capture oligonucleotide probe was used to hybridize with the target oligonucleotide (i.e., the microRNA-21 mimic) to facilitate selective detection. To obtain ultra-low femtomolar (fM) detection sensitivity, gold nanoparticles (50 nm) were conjugated with the target oligonucleotide. We achieved detection limits of 28and 47 fM for the target oligonucleotide by the QCM and SPRi microarray, respectively. We also conducted sample recovery studies and performed matrix effect analysis. Although the QCM had a lower detection limit, the microarray approach offered better throughput for analysis of up to 16 samples. We confirmed that the designed assay was selective for the target oligonucleotide and did not show signals for the control oligonucleotide with five mismatch sites relative to the target sequence. Combination of the QCM and microarray methods that utilize the same assay chemistry on gold are useful for overcoming clinical sample matrix effects and achieving ultra-low detection of small nucleotide biomarkers with quantitative insights.
Collapse
Affiliation(s)
- Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zainab H Al Mubarak
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lakmini Senavirathna
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
20
|
Pouzoulet J, Rolshausen PE, Schiavon M, Bol S, Travadon R, Lawrence DP, Baumgartner K, Ashworth VE, Comont G, Corio-Costet MF, Pierron RJG, Besson X, Jacques A. A Method to Detect and Quantify Eutypa lata and Diplodia seriata-Complex DNA in Grapevine Pruning Wounds. PLANT DISEASE 2017; 101:1470-1480. [PMID: 30678588 DOI: 10.1094/pdis-03-17-0362-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trunk diseases are factors that limit sustainability of vineyards worldwide. Botryosphaeria and Eutypa diebacks are caused by several fungi belonging to the Botryosphaeriaceae and Diatrypaceae, respectively, with Diplodia seriata and Eutypa lata being two of the most common species. Previous information indicated that the traditional isolation method used to detect these pathogens from plant samples could underestimate their incidence levels. In the present study, we designed two sets of primers that target the β-tubulin gene and that are amenable for quantitative real-time PCR (qPCR) Sybr-Green assays for the detection and quantification of D. seriata-complex (DseCQF/R) and E. lata (ElQF/R) DNA. The design of a species-specific assay was achieved for E. lata. For D. seriata, a species-specific assay could not be designed. The low interspecific diversity across β-tubulin genes resulted in an assay that could not discriminate D. seriata from some closely related species either not yet reported or presenting a low prevalence on grapevine, such as D. intermedia. We validated our technique on grapevine spur samples naturally and artificially infected with D. seriata and E. lata during the dormant season. Experimental grapevines were located in two counties of northern California where the incidence of both pathogens was previously reported. The qPCR assays revealed that a high frequency of pruning wound infections (65%) was achieved naturally by E. lata, while low infection frequency (less than 5%) was observed using the reisolation method. For D. seriata-complex, low (5%) to no natural infection frequencies were observed by the qPCR and the reisolation method, respectively. These results also provided evidence that our qPCR detection methods were more sensitive to assess the incidence of E. lata and D. seriata-complex in plant samples, than traditional isolation techniques. Benefits of molecular methods for the detection of canker pathogens in the field under natural conditions are discussed.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- Physiologie Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France; Department of Botany and Plant Sciences, University of California, Riverside; and Loire Viti Vini Distribution (LVVD), Mozé sur Louet, France
| | | | - Marco Schiavon
- Department of Botany and Plant Sciences, University of California, Riverside
| | - Sebastiaan Bol
- Department of Botany and Plant Sciences, University of California, Riverside
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis
| | | | | | - Vanessa E Ashworth
- Department of Botany and Plant Sciences, University of California, Riverside
| | | | | | - Romain J G Pierron
- Physiologie Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France
| | - Xavier Besson
- Loire Viti Vini Distribution (LVVD), Mozé sur Louet, France
| | - Alban Jacques
- Physiologie Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
21
|
DNA Barcoding for Diagnosis and Monitoring of Fungal Plant Pathogens. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Gramaje D, Mostert L, Groenewald JZ, Crous PW. Phaeoacremonium: from esca disease to phaeohyphomycosis. Fungal Biol 2015; 119:759-83. [PMID: 26321726 DOI: 10.1016/j.funbio.2015.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Phaeoacremonium spp. are commonly isolated from stems and branches of diseased woody hosts, and humans with phaeohyphomycosis. The genus Phaeoacremonium (Togniniaceae, Togniniales) has recently been monographed, and presently contains 46 species, while its sexual morph, Togninia, contains 26 epithets, of which 13 are insufficiently known. In this review we summarise information pertaining to the global distribution, pathology, ecology, and detection of these species, and present a case for retaining the genus Phaeoacremonium over that of Togninia. Furthermore, to obtain a single nomenclature, the following new combinations are also proposed: Phaeoacremonium africanum, P. aquaticum, P. fraxinopennsylvanicum, P. griseo-olivaceum, P. inconspicuum, P. leptorrhynchum, P. minimum, and P. vibratile.
Collapse
Affiliation(s)
- David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
| | - Lizel Mostert
- Department of Plant Pathology, University of Stellenbosch, P/Bag X1, Matieland 7602, South Africa
| | - Johannes Z Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Pedro W Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|