1
|
Li M, Li H, Ding X, Wang L, Wang X, Chen F. The Detection of Pine Wilt Disease: A Literature Review. Int J Mol Sci 2022; 23:ijms231810797. [PMID: 36142710 PMCID: PMC9505960 DOI: 10.3390/ijms231810797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pine wilt disease (PWD) is a global quarantine disease of forests that mainly affects Pinaceae species. The disease spreads rapidly. Once infected, pine trees have an extremely high mortality rate. This paper provides a summary of the common techniques used to detect PWD, including morphological-, molecular-, chemical- and physical-based methods. By comprehending the complex relationship among pinewood nematodes, vectors and host pine trees and employing the available approaches for nematode detection, we can improve the implementation of intervention and control measures to effectively reduce the damage caused by PWD. Although conventional techniques allow a reliable diagnosis of the symptomatic phase, the volatile compound detection and remote sensing technology facilitate a rapid diagnosis during asymptomatic stages. Moreover, the remote sensing technology is capable of monitoring PWD over large areas. Therefore, multiple perspective evaluations based on these technologies are crucial for the rapid and effective detection of PWD.
Collapse
|
2
|
Wen TY, Wu XQ, Ye JR, Qiu YJ, Rui L, Zhang Y. A Bursaphelenchus xylophilus pathogenic protein Bx-FAR-1, as potential control target, mediates the jasmonic acid pathway in pines. PEST MANAGEMENT SCIENCE 2022; 78:1870-1880. [PMID: 35060311 DOI: 10.1002/ps.6805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is a devastating forest disease and its pathogenesis remains unclear. Secreted enzymes and proteins are important pathogenicity determinants and Bx-FAR-1 is an important pathogenic protein involved in the interaction between pine and B. xylophilus. However, the function of the Bx-FAR-1 protein in monitoring and prevention PWD remains unknown. RESULTS We found a small peptide of B. xylophilus effector Bx-FAR-1 is sufficient for immunosuppression function in Nicotiana benthamiana. Transient expression of Bx-FAR-1 in N. benthamiana revealed that nuclear localization is required for its function. The results of the ligand binding test showed that Bx-FAR-1 protein had the ability to bind fatty acid and retinol. We demonstrated that Bx-FAR-1 targeted to the nuclei of Pinus thunbergii using the polyclonal antibody by immunologic approach. The content of jasmonic acid (JA) was significantly increased in P. thunbergii infected with B. xylophilus when Bx-FAR-1 was silenced. We identified an F-box protein as the host target of Bx-FAR-1 by yeast two-hybrid and co-immunoprecipitation. Moreover, we found that Pt-F-box-1 was up-regulated during B. xylophilus infection and the expression of Pt-F-box-1 was increased in Bx-FAR-1 double-stranded RNA (dsRNA)-treated host pines. CONCLUSION This study illustrated that Bx-FAR-1 might mediate the JA pathway to destroy the immune system of P. thunbergii, indicating that PWN likely secretes effectors to facilitate parasitism and promote infection, which could better reveal the pathogenesis mechanisms of B. xylophilus and would be beneficial for developing disease control strategies.
Collapse
Affiliation(s)
- Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Shinya R, Kirino H, Morisaka H, Takeuchi-Kaneko Y, Futai K, Ueda M. Comparative Secretome and Functional Analyses Reveal Glycoside Hydrolase Family 30 and Cysteine Peptidase as Virulence Determinants in the Pinewood Nematode Bursaphelenchus xylophilus. FRONTIERS IN PLANT SCIENCE 2021; 12:640459. [PMID: 33763098 PMCID: PMC7982738 DOI: 10.3389/fpls.2021.640459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Pine wilt disease, caused by the pinewood nematode, Bursaphelenchus xylophilus, is one of the world's most serious tree diseases. Although the B. xylophilus whole-genome sequence and comprehensive secretome profile have been determined over the past decade, it remains unclear what molecules are critical in pine wilt disease and govern B. xylophilus virulence in host pine trees. Here, a comparative secretome analysis among four isolates of B. xylophilus with distinct virulence levels was performed to identify virulence determinants. The four candidate virulence determinants of B. xylophilus highly secreted in virulent isolates included lipase (Bx-lip1), glycoside hydrolase family 30 (Bx-GH30), and two C1A family cysteine peptidases (Bx-CAT1 and Bx-CAT2). To validate the quantitative differences in the four potential virulence determinants among virulence groups at the protein level, we used real-time reverse-transcription polymerase chain reaction analysis to investigate these determinants at the transcript level at three time points: pre-inoculation, 3 days after inoculation (dai), and 7 dai into pine seedlings. The transcript levels of Bx-CAT1, Bx-CAT2, and Bx-GH30 were significantly higher in virulent isolates than in avirulent isolates at pre-inoculation and 3 dai. A subsequent leaf-disk assay based on transient overexpression in Nicotiana benthamiana revealed that the GH30 candidate virulent factor caused cell death in the plant. Furthermore, we demonstrated that Bx-CAT2 was involved in nutrient uptake for fungal feeding via soaking-mediated RNA interference. These findings indicate that the secreted proteins Bx-GH30 and Bx-CAT2 contribute to B. xylophilus virulence in host pine trees and may be involved in pine wilt disease.
Collapse
Affiliation(s)
- Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
- *Correspondence: Ryoji Shinya,
| | - Haru Kirino
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | | | - Kazuyoshi Futai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
|
5
|
Molecular variation among virulent and avirulent strains of the quarantine nematode Bursaphelenchus xylophilus. Mol Genet Genomics 2020; 296:259-269. [PMID: 33169231 PMCID: PMC7895788 DOI: 10.1007/s00438-020-01739-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Bursaphelenchus xylophilus is an emerging pathogenic nematode that is responsible for a devastating epidemic of pine wilt disease worldwide, causing severe ecological damage and economic losses to forestry. Two forms of this nematode have been reported, i.e., with strong and weak virulence, commonly referred as virulent and avirulent strains. However, the pathogenicity-related genes of B. xylophilus are not sufficiently characterized. In this study, to find pathogenesis related genes we re-sequenced and compared genomes of two virulent and two avirulent populations. We identified genes affected by genomic variation, and functional annotation of those genes indicated that some of them might play potential roles in pathogenesis. The performed analysis showed that both avirulent populations differed from the virulent ones by 1576 genes with high impact variants. Demonstration of genetic differences between virulent and avirulent strains will provide effective methods to distinguish these two nematode virulence forms at the molecular level. The reported results provide basic information that can facilitate development of a better diagnosis for B. xylophilus isolates/strains which present different levels of virulence and better understanding of the molecular mechanism involved in the development of the PWD.
Collapse
|
6
|
Ekino T, Kirino H, Kanzaki N, Shinya R. Ultrastructural plasticity in the plant-parasitic nematode, Bursaphelenchus xylophilus. Sci Rep 2020; 10:11576. [PMID: 32665657 PMCID: PMC7360551 DOI: 10.1038/s41598-020-68503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 01/27/2023] Open
Abstract
Phenotypic plasticity is one of the most important strategies used by organisms with low mobility to survive in fluctuating environments. Phenotypic plasticity plays a vital role in nematodes because they have small bodies and lack wings or legs and thus, cannot move far by themselves. Bursaphelenchus xylophilus, the pathogenic nematode species that causes pine wilt disease, experiences fluctuating conditions throughout their life history; i.e., in both the phytophagous and mycetophagous phases. However, whether the functional morphology changes between the life phases of B. xylophilus remains unknown. Our study revealed differences in the ultrastructure of B. xylophilus between the two phases. Well-developed lateral alae and atrophied intestinal microvilli were observed in the phytophagous phase compared with the mycetophagous phase. The ultrastructure in the phytophagous phase was morphologically similar to that at the dauer stage, which enables the larvae to survive in harsh environments. It suggests that the living tree represents a harsh environment for B. xylophilus, and ultrastructural phenotypic plasticity is a key strategy for B. xylophilus to survive in a living tree. In addition, ultrastructural observations of obligate plant-parasitic species closely related to B. xylophilus revealed that B. xylophilus may be in the process of adapting to feed on plant cells.
Collapse
Affiliation(s)
- Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Haru Kirino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), Kyoto, Kyoto, 612-0855, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
- JST PRESTO, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
7
|
Tanaka SE, Dayi M, Maeda Y, Tsai IJ, Tanaka R, Bligh M, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N, Kikuchi T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep 2019; 9:6080. [PMID: 30988401 PMCID: PMC6465311 DOI: 10.1038/s41598-019-42570-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.
Collapse
Affiliation(s)
- Suguru E Tanaka
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Mehmet Dayi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Bligh
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuko Takeuchi-Kaneko
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, 612-0855, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
8
|
Zhang L, Wu Z, Wang X, Tan G, Song J. Insights into the Draft Genome Sequence of the Kiwifruit-Associated Pathogenic Isolate Pseudomonas fluorescens AHK-1. Curr Microbiol 2019; 76:552-557. [PMID: 30824950 DOI: 10.1007/s00284-019-01655-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas fluorescens is a physiologically diverse species of bacteria present in many habitats, which possesses multifunctional traits that provide it with the capability to exhibit biological control activities, promote plant health or cause plant disease. Here, we present the draft genome sequence of the kiwifruit-associated pathogenic isolate AHK-1 of P. fluorescens, which was isolated from the diseased leaves of kiwifruit plants. The genome size of AHK-1 was found to be 7,035,786 bp, with a G + C content of 60.88%. It is predicted to contain a total of 6327 genes, of which 3998 were homologous to genes in the other two sequenced P. fluorescens isolates (SBW25 and GcM5-1A) and 946 were unique to AHK-1 based on comparative genomic analysis. Furthermore, we identified several candidate virulence factors in the genome of AHK-1, including the fliA gene encoding flagellar biosynthetic protein for biosynthesis, and the genes for components of type VI, III, and IV secretion systems. This genomic resource will serve as a reference for better understanding the genetics of pathogenic and non-pathogenic strains, and will help to elucidate the pathogenic mechanisms of P. fluorescens associated with plant disease.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiran Wu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xia Wang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Genjia Tan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jianghua Song
- College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Ekino T, Tanaka SE, Kanzaki N, Takeuchi-Kaneko Y. Tolerance to oxidative stress of inbred strains of the pine wood nematode, Bursaphelenchus xylophilus, differing in terms of virulence. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The virulence of Bursaphelenchus xylophilus, the pine wood nematode, varies greatly among different populations. Two inbred strains, called P3 and P9, were recently established via repeated full-sib mating. They exhibited remarkable differences in pathogenicity-related traits. Although their propagation did not differ when cultured on fungal lawns, P9 reproduced better in host seedlings and exhibited higher virulence. In the present study, we obtained fundamental information about P3 and P9 in terms of tolerance to oxidative stress and examined this tolerance and the cuticular ultrastructure. P9 survived better under hydrogen peroxide (H2O2)-stressed conditions than did P3. In addition, P9 had a thicker cuticle than P3. Although further studies are needed, these results suggest that the difference in tolerance in P3 and P9 was due not only to physiological features, such as H2O2-degrading ability, but also to physical factors (cuticle thickness).
Collapse
Affiliation(s)
- Taisuke Ekino
- 1Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- 2Present address: Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan/The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Suguru E. Tanaka
- 1Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- 3Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsumi Kanzaki
- 4Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi-ku, Kyoto 612-0855, Japan
| | - Yuko Takeuchi-Kaneko
- 1Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Wu F, Deng LN, Wu XQ, Liu HB, Ye JR. Expression Profiling of Autophagy Genes BxATG1 and BxATG8 under Biotic and Abiotic Stresses in Pine Wood Nematode Bursaphelenchus xylophilus. Int J Mol Sci 2017; 18:ijms18122639. [PMID: 29211016 PMCID: PMC5751242 DOI: 10.3390/ijms18122639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023] Open
Abstract
The pine wood nematode (PWN), Bursaphelenchusxylophilus, is the pathogen of pine wilt disease (PWD) and causes huge economic losses in pine forests and shows a remarkable ability to survive under unfavorable and changing environmental conditions. This ability may be related to autophagy, which is still poorly understood in B.xylophilus. Our previous studies showed that autophagy exists in PWN. Therefore, we tested the effects of autophagy inducer rapamycin on PWN and the results revealed that the feeding rate and reproduction were significantly promoted on fungal mats. The gene expression patterns of BxATG1 and BxATG8 under the different stress were determined by quantitative reverse transcription PCR (qRT-PCR). We tested the effects of RNA interference on BxATG1 and BxATG8 in PWN during different periods of infection in Pinus thunbergii. The results revealed that BxATG1 and BxATG8 may play roles in allowing PWN to adapt to changing environmental conditions and the virulence of PWN was influenced by the silence of autophagy-related genes BxATG1 and BxATG8. These results provided fundamental information on the relationship between autophagy and PWN, and on better understanding of gene function of BxATG1 and BxATG8 in PWN.
Collapse
Affiliation(s)
- Fan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Li-Na Deng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, China.
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Hong-Bin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Gillet FX, Bournaud C, Antonino de Souza Júnior JD, Grossi-de-Sa MF. Plant-parasitic nematodes: towards understanding molecular players in stress responses. ANNALS OF BOTANY 2017; 119:775-789. [PMID: 28087659 PMCID: PMC5378187 DOI: 10.1093/aob/mcw260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.
Collapse
Affiliation(s)
- François-Xavier Gillet
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | - Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
- Catholic University of Brasilia, Brasília-DF, Brazil
| |
Collapse
|
12
|
Vicente CSL, Nascimento FX, Barbosa P, Ke HM, Tsai IJ, Hirao T, Cock PJA, Kikuchi T, Hasegawa K, Mota M. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster. MICROBIAL ECOLOGY 2016; 72:669-681. [PMID: 27461253 DOI: 10.1007/s00248-016-0820-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.
Collapse
Affiliation(s)
- Cláudia S L Vicente
- NemaLab/ICAAM-Institute of Mediterranean Agricultural and Environmental Sciences, Biology Department, University of Évora, Évora, Portugal.
- Department of Environmental Biology, Chubu University, Kasugai, Japan.
| | - Francisco X Nascimento
- NemaLab/ICAAM-Institute of Mediterranean Agricultural and Environmental Sciences, Biology Department, University of Évora, Évora, Portugal
- Departamento de Microbiologia, Laboratório de Microbiologia do Solo, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pedro Barbosa
- NemaLab/ICAAM-Institute of Mediterranean Agricultural and Environmental Sciences, Biology Department, University of Évora, Évora, Portugal
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tomonori Hirao
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, Japan
| | - Peter J A Cock
- Information and Computer Sciences group, The James Hutton Institute, Invergowrie, DD2 5DA, Dundee, UK
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, Chubu University, Kasugai, Japan
| | - Manuel Mota
- NemaLab/ICAAM-Institute of Mediterranean Agricultural and Environmental Sciences, Biology Department, University of Évora, Évora, Portugal
- Departamento de Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
13
|
Vicente CSL, Nascimento FX, Ikuyo Y, Cock PJA, Mota M, Hasegawa K. The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus. BMC Genomics 2016; 17:301. [PMID: 27108223 PMCID: PMC4841953 DOI: 10.1186/s12864-016-2626-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. RESULTS Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. CONCLUSIONS This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.
Collapse
Affiliation(s)
- Claudia S L Vicente
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal.,Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Francisco X Nascimento
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal
| | - Yoriko Ikuyo
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Peter J A Cock
- Information and Computational Sciences group (PJAC), The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Manuel Mota
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal.,Departamento de Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
14
|
Tsai IJ, Tanaka R, Kanzaki N, Akiba M, Yokoi T, Espada M, Jones JT, Kikuchi T. Transcriptional and morphological changes in the transition from mycetophagous to phytophagous phase in the plant-parasitic nematode Bursaphelenchus xylophilus. MOLECULAR PLANT PATHOLOGY 2016; 17:77-83. [PMID: 25831996 PMCID: PMC6638504 DOI: 10.1111/mpp.12261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drastic physiological and morphological changes in parasites are crucial for the establishment of a successful infection. The nematode Bursaphelenchus xylophilus is the pathogenic agent of pine wilt disease, and little is known about the physiology and morphology in this nematode at the initial stage of infection. In this study, we devised an infection system using pine stem cuttings that allowed us to observe transcriptional and morphological changes in the host-infecting phytophagous phase. We found that 60 genes enriched in xenobiotic detoxification were up-regulated in two independent post-inoculation events, whereas down-regulation was observed in multiple members of collagen gene families. After 48 h of inoculation, the tails in some of the adult females exposed to the host changed in morphology. These results suggest that B. xylophilus may change its physiology and morphology to protect itself and to adapt to the host pine wood environment.
Collapse
Affiliation(s)
- Isheng J Tsai
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Natsumi Kanzaki
- Forestry and Forest Products Research Institute, Tsukuba, 305-8689, Japan
| | - Mitsuteru Akiba
- Forestry and Forest Products Research Institute, Tsukuba, 305-8689, Japan
| | - Toshiro Yokoi
- Forestry and Forest Products Research Institute, Tsukuba, 305-8689, Japan
| | - Margarida Espada
- Cell and Molecular Sciences Group, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Nemalab-ICAAM, Universidade de Évora, Pólo da Mitra, 7002-554, Évora, Portugal
| | - John T Jones
- Cell and Molecular Sciences Group, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
15
|
Feng K, Li R, Chen Y, Zhao B, Yin T. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus. PLoS One 2015; 10:e0141515. [PMID: 26517369 PMCID: PMC4627797 DOI: 10.1371/journal.pone.0141515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/27/2022] Open
Abstract
It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ronggui Li
- Department of Biology, Qingdao University, Qingdao, 266071, China
| | - Yingnan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Boguang Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- * E-mail: (BZ); (TY)
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- * E-mail: (BZ); (TY)
| |
Collapse
|
16
|
Vicente CSL, Ikuyo Y, Shinya R, Mota M, Hasegawa K. Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress. PLoS One 2015; 10:e0123839. [PMID: 25894519 PMCID: PMC4404050 DOI: 10.1371/journal.pone.0123839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022] Open
Abstract
Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Évora, Portugal
| | - Yoriko Ikuyo
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Ryoji Shinya
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
- HHMI and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Manuel Mota
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Évora, Portugal
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
17
|
Screening and functional analysis of the peroxiredoxin specifically expressed in Bursaphelenchus xylophilus--the causative agent of pine wilt disease. Int J Mol Sci 2014; 15:10215-32. [PMID: 24918285 PMCID: PMC4100149 DOI: 10.3390/ijms150610215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 12/18/2022] Open
Abstract
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease. Accurately differentiating B. xylophilus from other nematodes species, especially its related species B. mucronatus, is important for pine wood nematode detection. Thus, we attempted to identify a specific protein in the pine wood nematode using proteomics technology. Here, we compared the proteomes of B. xylophilus and B. mucronatus using Two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF-MS) technologies. In total, 15 highly expressed proteins were identified in B. xylophilus compared with B. mucronatus. Subsequently, the specificity of the proteins identified was confirmed by PCR using the genomic DNA of other nematode species. Finally, a gene encoding a specific protein (Bx-Prx) was obtained. This gene was cloned and expressed in E. coli. The in situ hybridisation pattern of Bx-Prx showed that it was expressed strongly in the tail of B. xylophilus. RNAi was used to assess the function of Bx-Prx, the results indicated that the gene was associated with the reproduction and pathogenicity of B. xylophilus. This discovery provides fundamental information for identifying B. xylophilus via a molecular approach. Moreover, the purified recombinant protein has potential as a candidate diagnostic antigen of pine wilt disease, which may lead to a new immunological detection method for the pine wood nematode.
Collapse
|
18
|
Gao Y, Gao Y, Yuan D, Gao Y, Yuan D, Li R, Gao Y, Yuan D, Li R, Guo D, Gao Y, Yuan D, Li R, Guo D, Ju Y, Gao Y, Yuan D, Li R, Guo D, Ju Y, Lin F, Gao Y, Yuan D, Li R, Guo D, Ju Y, Lin F, Ye J, Gao Y, Yuan D, Li R, Guo D, Ju Y, Lin F, Ye J, Zhao B. Nutritional substances for mutualistic symbiosis between Busaphelenchus xylophilus and its associated bacterium, Pseudomonas fluorescens GcM5-1A isolate. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Crude extracts of the surface coat (SC) proteins of the pine wood nematode (PWN), Bursaphelenchus xylophilus, and purified flagellin from Pseudomonas fluorescens (GcM5-1A) isolate were bioassayed using symbiontic GcM5-1A and axenic PWNs, respectively. The results showed that the flagellin significantly increased the reproduction of axenic PWN and the SC protein extracts of the PWN promoted GcM5-1A multiplication. The finding is a new step to further elucidate the symbiotic mechanism between the PWN and its associated bacteria and the SC protein function in pine wilt disease.
Collapse
Affiliation(s)
- Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Ronggui Li
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Ronggui Li
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Daosen Guo
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Ronggui Li
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Daosen Guo
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Yunwei Ju
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Ronggui Li
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Daosen Guo
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Yunwei Ju
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Feng Lin
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Ronggui Li
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Daosen Guo
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Yunwei Ju
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Feng Lin
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Jianling Ye
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
- 3Animal, Plant and Food Inspection Center, Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing, P.R. China
| | - Yan Gao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Dongju Yuan
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Ronggui Li
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Daosen Guo
- 2Department of Biology, Qingdao University, Qingdao, P.R. China
| | - Yunwei Ju
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Feng Lin
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| | - Jianling Ye
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
- 3Animal, Plant and Food Inspection Center, Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing, P.R. China
| | - Boguang Zhao
- 1Department of Forest Protection, Nanjing Forestry University, Nanjing, P.R. China
| |
Collapse
|
19
|
Vicente CSL, Ikuyo Y, Mota M, Hasegawa K. Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus. BMC Microbiol 2013; 13:299. [PMID: 24365493 PMCID: PMC3880045 DOI: 10.1186/1471-2180-13-299] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022] Open
Abstract
Background Pine wilt disease (PWD) caused by the pinewood nematode Bursaphelenchus xylophilus is one of the most serious forest diseases in the world. The role of B. xylophilus-associated bacteria in PWD and their interaction with the nematode, have recently been under substantial investigation. Several studies report a potential contribution of the bacteria for the PWD development, either as a helper to enhance the pathogenicity of the nematode or as a pathogenic agent expressing interesting traits related to lifestyle host-adaptation. Results We investigated the nematode-bacteria interaction under a severe oxidative stress (OS) condition using a pro-oxidant hydrogen peroxide and explored the adhesion ability of these bacteria to the cuticle surface of the nematodes. Our results clearly demonstrated a beneficial effect of the Serratia spp. (isolates LCN-4, LCN-16 and PWN-146) to B. xylophilus under the OS condition. Serratia spp. was found to be extremely OS-resistant, and promote survival of B. xylophilus and down-regulate two B. xylophilus catalase genes (Bxy-ctl-1 and Bxy-ctl-2). In addition, we show that the virulent isolate (Ka4) of B. xylophilus survives better than the avirulent (C14-5) isolate under the OS condition. The bacterial effect was transverse for both B. xylophilus isolates. We could not observe a strong and specific adhesion of these bacteria on the B. xylophilus cuticle surface. Conclusions We report, for the first time, that B. xylophilus associated bacteria may assist the nematode opportunistically in the disease, and that a virulent B. xylophilus isolate displayed a higher tolerance towards the OS conditions than an avirulent isolate.
Collapse
Affiliation(s)
| | | | | | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
20
|
Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K. Secretome Analysis of the Pine Wood Nematode Bursaphelenchus xylophilus Reveals the Tangled Roots of Parasitism and Its Potential for Molecular Mimicry. PLoS One 2013; 8:e67377. [PMID: 23805310 PMCID: PMC3689755 DOI: 10.1371/journal.pone.0067377] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/16/2013] [Indexed: 01/12/2023] Open
Abstract
Since it was first introduced into Asia from North America in the early 20(th) century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine's proteins. These proteins could have been acquired by host-parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.
Collapse
Affiliation(s)
- Ryoji Shinya
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | | | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Yuko Takeuchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuyoshi Futai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Shinya R, Morisaka H, Takeuchi Y, Futai K, Ueda M. Making headway in understanding pine wilt disease: what do we perceive in the postgenomic era? J Biosci Bioeng 2013; 116:1-8. [PMID: 23474098 DOI: 10.1016/j.jbiosc.2013.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/13/2012] [Accepted: 01/10/2013] [Indexed: 12/17/2022]
Abstract
The advent of next generation sequencing has revolutionized research approaches to biology by making entire genome sequences available and marking a new age in biology that has the potential to open innovative research avenues in various fields. Genome sequencing is now being applied in the fields of forest ecology and forest pathology, which previously had limited access to molecular techniques. One of the most advanced areas of progress is the study of "pine wilt disease", which is caused by the parasitic nematode, Bursaphelenchus xylophilus. The entire genome sequence of B. xylophilus was determined in 2011, and since then, proteomic studies have been conducted to understand the molecular basis of the parasitism and pathogenicity of B. xylophilus. These postgenomic studies have provided numerous molecular insights and greatly changed our understanding of the pathogenesis of pine wilt disease. Here, we review the recent advances in genomic and proteomic approaches that address some of the longstanding questions behind the pathogenesis of pine wilt disease and have identified future questions and directions in this regard.
Collapse
Affiliation(s)
- Ryoji Shinya
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | | | | | | | |
Collapse
|
22
|
Kang JS, Kim E, Lee SH, Park IK. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 105:50-56. [PMID: 24238290 DOI: 10.1016/j.pestbp.2012.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/01/2012] [Accepted: 11/19/2012] [Indexed: 06/02/2023]
Abstract
To understand the nematicidal mode of action of phytochemicals derived from plant essential oils against the pinewood nematode (Bursaphelenchus xylophilus), we evaluated 97 compounds (49 monoterpenes, 17 phenylpropenes, 16 sesquiterpenes, and 15 sulfides) for their inhibitory effects on B. xylophilus acetylcholinesterases (BxACEs). In the primary inhibition assay using B. xylophilus crude protein, more than 50% BxACE inhibition activity was observed with 3 monoterpenes, (+)-α-pinene, (-)-α-pinene, and 3-carene; 2 phenylpropenes, ο-anisaldehyde, and coniferyl alcohol; and 1 sesquiterpene, cis-nerolidol. Other compounds showed moderate or weak inhibitory activity. The inhibitory activities against 3 recombinant BxACEs were subsequently estimated using the identified active compounds in a primary inhibition assay. (+)-α-Pinene showed the strongest inhibition of BxACE-1 followed by 3-carene, coniferyl alcohol, (-)-α-pinene, o-anisaldehyde, and cis-nerolidol. The half maximal inhibitory concentration (IC50) values of (+)-α-pinene, 3-carene, o-anisaldehyde, cis-nerolidol, and (-)-α-pinene against BxACE-2 were found to be 0.64, 1.41, 8.18, 8.53, 15.28, and 18.03mM, respectively. Coniferyl alcohol showed the strongest inhibition of BxACE-3 followed by (+)-α-pinene and cis-nerolidol.
Collapse
Affiliation(s)
- Jae Soon Kang
- Division of Forest Insect Pests and Diseases, Korea Forest Research Institute, Seoul 130-712, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Abstract
After devastating vast areas of pine forests in Asian countries, the pine wilt disease spread into European forests in 1999 and is causing worldwide concern. This disease involves very complicated interactions between a pathogenic nematode, its vector beetle, host pine species, and fungi in dead hosts. Pathogenicity of the pine wood nematode is determined not only by its physical and chemical traits but also by its behavioral traits. Most life history traits of the pine wood nematode, such as its phoretic relationship with vector beetles, seem to be more effective in virulent than in avirulent isolates or species. As the pathogenicity determinants, secreted enzymes, and surface coat proteins are very important, they have therefore been studied intensively. The mechanism of quick death of a large pine tree as a result of infection by a tiny nematode could be ascribed to the dysfunction of the water-conducting system caused by the death of parenchyma cells, which must have originally evolved as an inherent resistant system.
Collapse
Affiliation(s)
- Kazuyoshi Futai
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
24
|
Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. EUKARYOTIC CELL 2012; 11:1075-82. [PMID: 22753847 DOI: 10.1128/ec.00075-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycolytic enzymes are cytosolic proteins, but they also play important extracellular roles in cell-cell communication and infection. We used Saccharomyces cerevisiae to analyze the secretory pathway of some of these enzymes, including enolase, phosphoglucose isomerase, triose phosphate isomerase, and fructose 1,6-bisphosphate aldolase. Enolase, phosphoglucose isomerase, and an N-terminal 28-amino-acid-long fragment of enolase were secreted in a sec23-independent manner. The enhanced green fluorescent protein (EGFP)-conjugated enolase fragment formed cellular foci, some of which were found at the cell periphery. Therefore, we speculated that an overview of the secretory pathway could be gained by investigating the colocalization of the enolase fragment with intracellular proteins. The DsRed-conjugated enolase fragment colocalized with membrane proteins at the cis-Golgi complex, nucleus, endosome, and plasma membrane, but not the mitochondria. In addition, the secretion of full-length enolase was inhibited in a knockout mutant of the intracellular SNARE protein-coding gene TLG2. Our results suggest that enolase is secreted via a SNARE-dependent secretory pathway in S. cerevisiae.
Collapse
|