1
|
Zhao J, Song J. NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. PLANT COMMUNICATIONS 2021; 2:100236. [PMID: 34778749 PMCID: PMC8577132 DOI: 10.1016/j.xplc.2021.100236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) receptors mediate immune responses by directly or indirectly sensing pathogen-derived effectors. Despite significant advances in the understanding of NLR-mediated immunity, the mechanisms by which pathogens evolve to suppress NLR activation triggered by cognate effectors and gain virulence remain largely unknown. The agronomically important immune receptor RB recognizes the ubiquitous and highly conserved IPI-O RXLR family members (e.g., IPI-O1) from Phytophthora infestans, and this process is suppressed by the rarely present and homologous effector IPI-O4. Here, we report that self-association of RB via the coiled-coil (CC) domain is required for RB activation and is differentially affected by avirulence and virulence effectors. IPI-O1 moderately reduces the self-association of RB CC, potentially leading to changes in the conformation and equilibrium of RB, whereas IPI-O4 dramatically impairs CC self-association to prevent RB activation. We also found that IPI-O1 associates with itself, whereas IPI-O4 does not. Notably, IPI-O4 interacts with IPI-O1 and disrupts its self-association, therefore probably blocking its avirulence function. Furthermore, IPI-O4 enhances the interaction between RB CC and IPI-O1, possibly sequestering RB and IPI-O1 and subsequently blocking their interactions with signaling components. Taken together, these findings considerably extend our understanding of the underlying mechanisms by which emerging virulent pathogens suppress the NLR-mediated recognition of cognate effectors.
Collapse
Affiliation(s)
- Jinping Zhao
- Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Karki HS, Abdullah S, Chen Y, Halterman DA. Natural Genetic Diversity in the Potato Resistance Gene RB Confers Suppression Avoidance from Phytophthora Effector IPI-O4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1048-1056. [PMID: 33970667 DOI: 10.1094/mpmi-11-20-0313-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RB is a potato gene that provides resistance to a broad spectrum of genotypes of the late blight pathogen Phytophthora infestans. RB belongs to the CC-NB-LRR (coiled-coil, nucleotide-binding, leucine-rich repeat) class of resistance (R) genes, a major component of the plant immune system. The RB protein detects the presence of class I and II IPI-O effectors from P. infestans to initiate a hypersensitive resistance response, but this activity is suppressed in the presence of the Class III effector IPI-O4. Using natural genetic variation of RB within potato wild relatives, we identified two amino acids in the CC domain that alter interactions needed for suppression of resistance by IPI-O4. We have found that separate modification of these amino acids in RB can diminish or expand the resistance capability of this protein against P. infestans in both Nicotiana benthamiana and potato. Our results demonstrate that increased knowledge of the molecular mechanisms that determine resistance activation and R protein suppression by effectors can be utilized to tailor-engineer genes with the potential to provide increased durability.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hari S Karki
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | - Sidrat Abdullah
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Dennis A Halterman
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| |
Collapse
|
3
|
Rapid diagnosis of Ralstonia solanacearum infection sweet potato in China by loop-mediated isothermal amplification. Arch Microbiol 2020; 203:777-785. [PMID: 33052451 DOI: 10.1007/s00203-020-02059-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Bacterial wilt of sweet potato is caused by Ralstonia solanacearum, which is distributed in southern China and causes significant economic losses each year. The pathogen is soil- and rhizome-borne, and thus its rapid detection may prevent the occurrence and spread of the disease. R. solanacearum has been listed as a quarantine disease in China. With the advent of molecular biology, many novel tools have been explored for the rapid identification of plant pathogens. In this study, a strain-specific detection method was developed for this specific pathogen that infects sweet potato using loop-mediated isothermal amplification (LAMP). A set of new LAMP-specific primers was designed from the orf428 gene, which can specifically detect the R. solanacearum bacterium that infect sweet potato. The LAMP reaction consisted of 8.0 mmol·L-1Mg2+, 1.4 mmol·L-1 dNTPs, and 0.32U μL-1 Bst 2.0 DNA polymerase and was performed at 65 °C for 1 h. The amplification products were detected by visualizing a mixture of color changes using SYBR Green I dye and assessing ladder-like bands by electrophoresis. Our method has specificity, i.e., it only detected R. solanacearum in sweet potato, and it has high sensitivity, with a detection limit of 100 fg·μL-1 genomic DNA and 103 CFU·mL-1 of bacterial fluid. In addition, R. solanacearum could be directly detected in infected sweet potato tissues without the need for DNA extraction. The LAMP method established in this study is a highly specific, sensitive, and rapid tool for the detection of bacterial wilt in sweet potato caused by R. solanacearum.
Collapse
|
4
|
Wang Y, Xie J, Wu E, Yahuza L, Duan G, Shen L, Liu H, Zhou S, Nkurikiyimfura O, Andersson B, Yang L, Shang L, Zhu W, Zhan J. Lack of gene flow between Phytophthora infestans populations of two neighboring countries with the largest potato production. Evol Appl 2020; 13:318-329. [PMID: 31993079 PMCID: PMC6976962 DOI: 10.1111/eva.12870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Gene flow is an important evolutionary force that enables adaptive responses of plant pathogens in response to changes in the environment and plant disease management strategies. In this study, we made a direct inference concerning gene flow in the Irish famine pathogen Phytophthora infestans between two of its hosts (potato and tomato) as well as between China and India. This was done by comparing sequence characteristics of the eukaryotic translation elongation factor 1 alpha (eEF-1α) gene, generated from 245 P. infestans isolates sampled from two countries and hosts. Consistent with previous results, we found that eEF-1α gene was highly conserved and point mutation was the only mechanism generating any sequence variation. Higher genetic variation was found in the eEF-1α sequences in the P. infestans populations sampled from tomato compared to those sampled from potato. We also found the P. infestans population from India displayed a higher genetic variation in the eEF-1α sequences compared to China. No gene flow was detected between the pathogen populations from the two countries, which is possibly attributed to the geographic barrier caused by Himalaya Plateau and the minimum cross-border trade of potato and tomato products. The implications of these results for a sustainable management of late blight diseases are discussed.
Collapse
Affiliation(s)
- Yan‐Ping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jia‐Hui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lurwanu Yahuza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guo‐Hua Duan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lin‐Lin Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shi‐Hao Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Oswald Nkurikiyimfura
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Björn Andersson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Li‐Na Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
5
|
Gutierrez Sanchez PA, Babujee L, Jaramillo Mesa H, Arcibal E, Gannon M, Halterman D, Jahn M, Jiang J, Rakotondrafara AM. Overexpression of a modified eIF4E regulates potato virus Y resistance at the transcriptional level in potato. BMC Genomics 2020; 21:18. [PMID: 31906869 PMCID: PMC6945410 DOI: 10.1186/s12864-019-6423-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/22/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Potato virus Y (PVY) is a major pathogen of potatoes with major impact on global agricultural production. Resistance to PVY can be achieved by engineering potatoes to express a recessive, resistant allele of eukaryotic translation initiation factor eIF4E, a host dependency factor essential to PVY replication. Here we analyzed transcriptome changes in eIF4E over-expressing potatoes to shed light on the mechanism underpinning eIF4E-mediated recessive PVY resistance. RESULTS As anticipated, modified eIF4E-expressing potatoes demonstrated a high level of resistance, eIF4E expression, and an unexpected suppression of the susceptible allele transcript, likely explaining the bulk of the potent antiviral phenotype. In resistant plants, we also detected marked upregulation of genes involved in cell stress responses. CONCLUSIONS Our results reveal a previously unanticipated second layer of signaling attributable to eIF4E regulatory control, and potentially relevant to establishment of a broader, more systematic antiviral host defense.
Collapse
Affiliation(s)
- Pablo A Gutierrez Sanchez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Calle 59 A N 63-20, Medellín, Colombia
| | - Lavanya Babujee
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Helena Jaramillo Mesa
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Erica Arcibal
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Megan Gannon
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Madison, WI, 53726, USA
| | - Molly Jahn
- Department of Agronomy, University of Wisconsin-Madison, Moore Hall, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Aurélie M Rakotondrafara
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Chowdhury RN, Lasky D, Karki H, Zhang Z, Goyer A, Halterman D, Rakotondrafara AM. HCPro Suppression of Callose Deposition Contributes to Strain-Specific Resistance Against Potato Virus Y. PHYTOPATHOLOGY 2020; 110:164-173. [PMID: 31532352 DOI: 10.1094/phyto-07-19-0229-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Potato virus Y (PVY; Potyviridae) is a continuing challenge for potato production owing to the increasing popularity of strain-specific resistant cultivars. Hypersensitive resistance (HR) is one type of plant defense responses to restrict virus spread. In many potato cultivars, such as cultivar Premier Russet (PR), local necrosis at the site of infection protects against the most common PVYO strain, but the HR often fails to restrain necrotic strains, which spread systemically. Here, we established the role of callose accumulation in the strain-specific resistance responses to PVY infection. We first uncovered that PVY, independent of the strain, is naturally capable of suppressing pathogenesis-related callose formation in a susceptible host. Such activity can be dissociated from viral replication by the transient expression of the viral-encoded helper component proteinase (HCPro) protein, identifying it as the pathogen elicitor. However, unlike the necrotic strain, PVYO and its corresponding HCPro are unable to block callose accumulation in resistant PR potatoes, in which we observed an abundance of callose deposition and the inability of the virus to spread. The substitution of eight amino acid residues within the HCPro C-terminal region that differ between PVYO and PVYN strains and were previously shown to be responsible for eliciting the HR response, are sufficient to restore the ability of HCProO to suppress callose accumulation, despite the resistant host background, in line with a new viral function in pathogenicity.
Collapse
Affiliation(s)
- Rawnaq N Chowdhury
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Danny Lasky
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Hari Karki
- U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | - Zongying Zhang
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, U.S.A
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | | |
Collapse
|
7
|
Ghislain M, Byarugaba AA, Magembe E, Njoroge A, Rivera C, Román ML, Tovar JC, Gamboa S, Forbes GA, Kreuze JF, Barekye A, Kiggundu A. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1119-1129. [PMID: 30467980 PMCID: PMC6523587 DOI: 10.1111/pbi.13042] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 05/09/2023]
Abstract
Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%-30% annual yield loss in sub-Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi-blb2 from Solanum bulbocastanum and Rpi-vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R-gene stack from the potato varieties 'Desiree' and 'Victoria' grew normally without showing pathogen damage and without any fungicide spray, whereas their non-transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long-lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from 'Desiree' and 'Victoria' grown without fungicide to reflect small-scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four-fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers' preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | | | | | - María Lupe Román
- International Potato CenterLimaPeru
- Present address:
Universidad Nacional Agraria La MolinaLima12Peru
| | - José Carlos Tovar
- International Potato CenterLimaPeru
- Present address:
Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | | | | | | | - Alex Barekye
- Kachwekano Zonal Agricultural Research and Development InstituteKabaleUganda
| | - Andrew Kiggundu
- National Agriculture Research Laboratories (NARL)KampalaUganda
| |
Collapse
|
8
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
9
|
Strausbaugh CA, Eujayl IA, Wintermantel WM. Beet curly top virus Strains Associated with Sugar Beet in Idaho, Oregon, and a Western U.S. Collection. PLANT DISEASE 2017; 101:1373-1382. [PMID: 30678603 DOI: 10.1094/pdis-03-17-0381-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Curly top of sugar beet is a serious, yield-limiting disease in semiarid production areas caused by Beet curly top virus (BCTV) and transmitted by the beet leafhopper. One of the primary means of control for BCTV in sugar beet is host resistance but effectiveness of resistance can vary among BCTV strains. Strain prevalence among BCTV populations was last investigated in Idaho and Oregon during a 2006-to-2007 collection but changes in disease severity suggested a need for reevaluation. Therefore, 406 leaf samples symptomatic for curly top were collected from sugar beet plants in commercial sugar beet fields in Idaho and Oregon from 2012 to 2015. DNA was isolated and BCTV strain composition was investigated based on polymerase chain reaction assays with strain-specific primers for the Severe (Svr) and California/Logan (CA/Logan) strains and primers that amplified a group of Worland (Wor)-like strains. The BCTV strain distribution averaged 2% Svr, 30% CA/Logan, and 87% Wor-like (16% had mixed infections), which differed from the previously published 2006-to-2007 collection (87% Svr, 7% CA/Logan, and 60% Wor-like; 59% mixed infections) based on a contingency test (P < 0.0001). Whole-genome sequencing (GenBank accessions KT276895 to KT276920 and KX867015 to KX867057) with overlapping primers found that the Wor-like strains included Wor, Colorado and a previously undescribed strain designated Kimberly1. Results confirm a shift from Svr being one of the dominant BCTV strains in commercial sugar beet fields in 2006 to 2007 to becoming undetectable at times during recent years.
Collapse
Affiliation(s)
- Carl A Strausbaugh
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341
| | - Imad A Eujayl
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341
| | | |
Collapse
|
10
|
Yogendra KN, Kushalappa AC. Integrated transcriptomics and metabolomics reveal induction of hierarchies of resistance genes in potato against late blight. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:766-782. [PMID: 32480502 DOI: 10.1071/fp16028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/15/2016] [Indexed: 05/11/2023]
Abstract
Late blight caused by Phytophthora infestans is a devastating disease affecting potato production worldwide. The quantitative resistance is durable, but the underlying molecular and biochemical mechanisms are poorly understood, limiting its application in breeding. Integrated transcriptomics and metabolomics approach was used for the first time to study the hierarchies of molecular events occurring, following inoculation of resistant and susceptible potato genotypes with P. infestans. RNA sequencing revealed a total of 4216 genes that were differentially expressed in the resistant than in the susceptible genotype. Genes that were highly expressed and associated with their biosynthetic metabolites that were highly accumulated, through metabolic pathway regulation, were selected. Quantitative real-time PCR was performed to confirm the RNA-seq expression levels. The induced leucine-rich repeat receptor-like kinases (LRR-RLKs) are considered to be involved in pathogen recognition. These receptor genes are considered to trigger downstream oxidative burst, phytohormone signalling-related genes, and transcription factors that regulated the resistance genes to produce resistance related metabolites to suppress the pathogen infection. It was noted that several resistance genes in metabolic pathways related to phenylpropanoids, flavonoids, alkaloids and terpenoid biosynthesis were strongly induced in the resistant genotypes. The pathway specific gene induction provided key insights into the metabolic reprogramming of induced defence responses in resistant genotypes.
Collapse
Affiliation(s)
| | - Ajjamada C Kushalappa
- Department of Plant Science, McGill University, Ste. Anne de Bellevue, Québec, Canada
| |
Collapse
|
11
|
Xie Z, Si W, Gao R, Zhang X, Yang S. Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Mol Genet Genomics 2015; 290:2173-86. [PMID: 26008792 DOI: 10.1007/s00438-015-1068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Late blight caused by the oomycete Phytophthora infestans is one of the most severe threats to potato production worldwide. Numerous studies suggest that the most effective protective strategy against the disease would be to provide potato cultivars with durable resistance (R) genes. However, little is known about the origin and evolutional history of these durable R-genes in potato. Addressing this might foster better understanding of the dynamics of these genes in nature and provide clues for identifying potential candidate R-genes. Here, a systematic survey was executed at RB/Rpi-blb1 locus, an exclusive broad-spectrum R-gene locus in potato. As indicated by synteny analysis, RB/Rpi-blb1 homologs were identified in all tested genomes, including potato, tomato, pepper, and Nicotiana, suggesting that the RB/Rpi-blb1 locus has an ancient origin. Two evolutionary patterns, similar to those reported on RGC2 in Lactuca, and Pi2/9 in rice, were detected at this locus. Type I RB/Rpi-blb1 homologs have frequent copy number variations and sequence exchanges, obscured orthologous relationships, considerable nucleotide divergence, and high non-synonymous to synonymous substitutions (Ka/Ks) between or within species, suggesting rapid diversification and balancing selection in response to rapid changes in the oomycete pathogen genomes. These characteristics may serve as signatures for cloning of late blight resistance genes.
Collapse
Affiliation(s)
- Zhengqing Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rongchao Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
12
|
Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct Integr Genomics 2014; 14:285-98. [DOI: 10.1007/s10142-013-0358-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
13
|
Lambert C, Khiook ILK, Lucas S, Télef-Micouleau N, Mérillon JM, Cluzet S. A faster and a stronger defense response: one of the key elements in grapevine explaining its lower level of susceptibility to Esca? PHYTOPATHOLOGY 2013; 103:1028-34. [PMID: 23617335 DOI: 10.1094/phyto-11-12-0305-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Wood diseases like Esca are among the most damaging afflictions in grapevine. The defense mechanisms in this plant-pathogen interaction are not well understood. As some grapevine cultivars have been observed to be less susceptible to Esca than others, understanding the factors involved in this potentially stronger defense response can be of great interest. To lift part of this veil, we elicited Vitis vinifera plants of two cultivars less susceptible to Esca ('Merlot' and 'Carignan') and of one susceptible cultivar ('Cabernet Sauvignon'), and monitored their defense responses at the leaf level. Our model of elicitation consisted in grapevine cuttings absorbing a culture filtrate of one causal agent of Esca, Phaemoniella chlamydospora. This model might reflect the early events occurring in Esca-affected grapevines. The two least susceptible cultivars showed an earlier and stronger defense response than the susceptible one, particularly with regard to induction of the PAL and STS genes, and a higher accumulation of stilbene compounds and some pathogenesis-related proteins.
Collapse
|
14
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
15
|
Gao L, Tu ZJ, Millett BP, Bradeen JM. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics 2013; 14:340. [PMID: 23702331 PMCID: PMC3674932 DOI: 10.1186/1471-2164-14-340] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed ‘Russet Burbank’ (WT) potato develop late blight disease while those of transgenic ‘Russet Burbank’ line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines. Results We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified. Conclusion Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans—even in potato tubers, organs that develop below ground.
Collapse
Affiliation(s)
- Liangliang Gao
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
16
|
Chen Y, Liu Z, Halterman DA. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog 2012; 8:e1002595. [PMID: 22438813 PMCID: PMC3305431 DOI: 10.1371/journal.ppat.1002595] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Despite intensive breeding efforts, potato late blight, caused by the oomycete pathogen Phytophthora infestans, remains a threat to potato production worldwide because newly evolved pathogen strains have consistently overcome major resistance genes. The potato RB gene, derived from the wild species Solanum bulbocastanum, confers resistance to most P. infestans strains through recognition of members of the pathogen effector family IPI-O. While the majority of IPI-O proteins are recognized by RB to elicit resistance (e.g. IPI-O1, IPI-O2), some family members are able to elude detection (e.g. IPI-O4). In addition, IPI-O4 blocks recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death. Here, we report results that elucidate molecular mechanisms governing resistance elicitation or suppression of RB by IPI-O. Our data indicate self-association of the RB coiled coil (CC) domain as well as a physical interaction between this domain and the effectors IPI-O4 and IPI-O1. We identified four amino acids within IPI-O that are critical for interaction with the RB CC domain and one of these amino acids, at position 129, determines hypersensitive response (HR) elicitation in planta. IPI-O1 mutant L129P fails to induce HR in presence of RB while IPI-O4 P129L gains the ability to induce an HR. Like IPI-O4, IPI-O1 L129P is also able to suppress the HR mediated by RB, indicating a critical step in the evolution of this gene family. Our results point to a model in which IPI-O effectors can affect RB function through interaction with the RB CC domain.
Collapse
Affiliation(s)
- Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhenyu Liu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dennis A. Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 2011; 21:567-78. [DOI: 10.1007/s11248-011-9553-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|