1
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Zehra A, Swapnil P. Role of Microbial Bioagents as Elicitors in Plant Defense Regulation. TRANSCRIPTION FACTORS FOR BIOTIC STRESS TOLERANCE IN PLANTS 2022:103-128. [DOI: 10.1007/978-3-031-12990-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
2
|
Najdabbasi N, Mirmajlessi SM, Dewitte K, Ameye M, Mänd M, Audenaert K, Landschoot S, Haesaert G. Green Leaf Volatile Confers Management of Late Blight Disease: A Green Vaccination in Potato. J Fungi (Basel) 2021; 7:jof7040312. [PMID: 33919547 PMCID: PMC8072593 DOI: 10.3390/jof7040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Yield losses of crops due to plant pathogens are a major threat in all agricultural systems. In view of environmental issues and legislative limitations for chemical crop protection products, the need to design new environmentally friendly disease management strategies has gained interest. Despite the unique capability of green leaf volatiles (GLVs) to suppress a broad spectrum of plant pathogens, their capacity to control the potato late-blight-causing agent Phytophthora infestans has not been well studied. This study addresses the potential role of the GLV Z-3-hexenyl acetate (Z-3-HAC) in decreasing the severity of late blight and the underlying gene-based evidence leading to this effect. Nine-week-old potato plants (Solanum tuberosum L.) were exposed to Z-3-HAC before they were inoculated with P. infestans genotypes at different time points. These pre-exposed potato plants exhibited slower disease development after infection with the highly pathogenic genotype of P. infestans (EU-13-A2) over time. Qualitative assessment showed that the exposed, infected plants possessed significantly lower sporulation intensity and disease severity compared to the control plants. Hypersensitive response (HR)-like symptoms were observed on the treated leaves when inoculated with different pathogen genotypes. No HR-like lesions were detected on the untreated leaves after infection. It was shown that the transcript levels of several defense-related genes, especially those that are involved in reactive oxygen species (ROS) production pathways were significantly expressed in plants at 48 and 72 h postexposure to the Z-3-HAC. The current work provides evidence on the role of Z-3-HAC in the increased protection of potato plants against late blight through plant immunity and offers new opportunities for the sustainable control of potato diseases.
Collapse
Affiliation(s)
- Neda Najdabbasi
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
- Institute of Agricultural and Environmental Sciences, Department of Plant Health, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia;
- Correspondence:
| | - Seyed Mahyar Mirmajlessi
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Kevin Dewitte
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Maarten Ameye
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Department of Plant Health, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia;
| | - Kris Audenaert
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Sofie Landschoot
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Geert Haesaert
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| |
Collapse
|
3
|
Balthazar C, Cantin G, Novinscak A, Joly DL, Filion M. Expression of Putative Defense Responses in Cannabis Primed by Pseudomonas and/or Bacillus Strains and Infected by Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2020; 11:572112. [PMID: 33324431 PMCID: PMC7723895 DOI: 10.3389/fpls.2020.572112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 05/06/2023]
Abstract
Cannabis (Cannabis sativa L.) offers many industrial, agricultural, and medicinal applications, but is commonly threatened by the gray mold disease caused by the fungus Botrytis cinerea. With few effective control measures currently available, the use of beneficial rhizobacteria represents a promising biocontrol avenue for cannabis. To counter disease development, plants rely on a complex network of inducible defense pathways, allowing them to respond locally and systemically to pathogens attacks. In this study, we present the first attempt to control gray mold in cannabis using beneficial rhizobacteria, and the first investigation of cannabis defense responses at the molecular level. Four promising Pseudomonas (LBUM223 and WCS417r) and Bacillus strains (LBUM279 and LBUM979) were applied as single or combined root treatments to cannabis seedlings, which were subsequently infected by B. cinerea. Symptoms were recorded and the expression of eight putative defense genes was monitored in leaves by reverse transcription quantitative polymerase chain reaction. The rhizobacteria did not significantly control gray mold and all infected leaves were necrotic after a week, regardless of the treatment. Similarly, no systemic activation of putative cannabis defense genes was reported, neither triggered by the pathogen nor by the rhizobacteria. However, this work identified five putative defense genes (ERF1, HEL, PAL, PR1, and PR2) that were strongly and sustainably induced locally at B. cinerea's infection sites, as well as two stably expressed reference genes (TIP41 and APT1) in cannabis. These markers will be useful in future researches exploring cannabis defense pathways.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Gabrielle Cantin
- Institute of Health Sciences, Collège La Cité, Ottawa, ON, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC, Canada
- *Correspondence: Martin Filion,
| |
Collapse
|
4
|
Chinchilla D, Bruisson S, Meyer S, Zühlke D, Hirschfeld C, Joller C, L'Haridon F, Mène-Saffrané L, Riedel K, Weisskopf L. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Sci Rep 2019; 9:18778. [PMID: 31889050 PMCID: PMC6937334 DOI: 10.1038/s41598-019-55218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host’s health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS’s protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome.
Collapse
Affiliation(s)
- Delphine Chinchilla
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sébastien Bruisson
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Silvan Meyer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Charlotte Joller
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
5
|
Han F, Yan R, Zhang M, Xiang Z, Wu Q, Li J. Synthesis and bioactivities of phenazine-1-carboxylic piperazine derivatives. Nat Prod Res 2019; 34:1282-1287. [PMID: 30698024 DOI: 10.1080/14786419.2018.1556656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenazine-1-carboxylic acid (PCA) as a natural product which has significant inhibition effects against many soil-borne fungal phytopathogens in agricultural application and has been registered in China as the fungicide against rice sheath blight. In order to find new higher fungicidal activities lead compounds and develop new eco-friendly agrochemicals, we introduced substructure piperazines which also have high biological activity into PCA, designed and synthesized a series of phenazine-1-carboxylic piperazine derivatives, and their structures were confirmed by 1H NMR and HRMS. Most compounds exhibited certain in vitro fungicidal activities. In particular, Compounds 5r exhibited the activity against all the tested pathogenic fungi, such as Rhizoctonia solani, Alternaria solani, Fusarium oxysporum, Fusarium graminearum, Pyricularia oryzac Cavgra, with the EC50 value of 24.6μM, 42.9μM, 73.7μM, 73.8μM, 34.2μM, respectively, more potent activities than PCA (33.2μM, 81.5μM, 186.5μM, 176.4μM, 37.3μM). This result provided a highly active lead compound for the further structure optimization design.
Collapse
Affiliation(s)
- Fei Han
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Ru Yan
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Min Zhang
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Zhu Xiang
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Qinglai Wu
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Joglekar S, Suliman M, Bartsch M, Halder V, Maintz J, Bautor J, Zeier J, Parker JE, Kombrink E. Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1592-1607. [PMID: 29931201 DOI: 10.1093/pcp/pcy106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 05/20/2023]
Abstract
In a chemical screen we identified thaxtomin A (TXA), a phytotoxin from plant pathogenic Streptomyces scabies, as a selective and potent activator of FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) expression in Arabidopsis (Arabidopsis thaliana). TXA induction of FMO1 was unrelated to the production of reactive oxygen species (ROS), plant cell death or its known inhibition of cellulose synthesis. TXA-stimulated FMO1 expression was strictly dependent on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) but independent of salicylic acid (SA) synthesis via ISOCHORISMATE SYNTHASE1 (ICS1). TXA induced the expression of several EDS1/PAD4-regulated genes, including EDS1, PAD4, SENESCENCE ASSOCIATED GENE101 (SAG101), ICS1, AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and PATHOGENESIS-RELATED PROTEIN1 (PR1), and accumulation of SA. Notably, enhanced ALD1 expression did not result in accumulation of the product pipecolic acid (PIP), which promotes FMO1 expression during biologically induced systemic acquired resistance. TXA treatment preferentially stimulated expression of PAD4 compared with EDS1, which was mirrored by PAD4 protein accumulation, suggesting that TXA leads to increased PAD4 availability to form EDS1-PAD4 signaling complexes. Also, TXA treatment of Arabidopsis plants led to enhanced disease resistance to bacterial and oomycete infection, which was dependent on EDS1 and PAD4, as well as on FMO1 and ICS1. Collectively, the data identify TXA as a potentially useful chemical tool to conditionally activate and interrogate EDS1- and PAD4-controlled pathways in plant immunity.
Collapse
Affiliation(s)
- Shachi Joglekar
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Michael Bartsch
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jens Maintz
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
7
|
Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 2017; 7:102. [PMID: 28560641 DOI: 10.1007/s13205-017-0736-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.
Collapse
|
8
|
Morrison CK, Arseneault T, Novinscak A, Filion M. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development. PHYTOPATHOLOGY 2017; 107:273-279. [PMID: 27827009 DOI: 10.1094/phyto-06-16-0247-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phytophthora infestans causes late blight of potato, one of the most devastating diseases affecting potato production. Alternative approaches for controlling late blight are being increasingly sought due to increasing environmental concerns over the use of chemical pesticides and the increasing resistance of P. infestans to fungicides. Our research group has isolated a new strain of Pseudomonas fluorescens (LBUM636) of biocontrol interest producing the antibiotic phenazine-1-carboxylic acid (PCA). Wild-type LBUM636 was shown to significantly inhibit the growth of Phytophthora infestans in in vitro confrontational assays whereas its isogenic mutant (phzC-; not producing PCA) only slightly altered the pathogen's growth. Wild-type LBUM636 but not the phzC- mutant also completely repressed disease symptom development on tubers. A pot experiment revealed that wild-type LBUM636 can significantly reduce P. infestans populations in the rhizosphere and in the roots of potato plants, as well as reduce in planta disease symptoms due to PCA production. The expression of eight common plant defense-related genes (ChtA, PR-1b, PR-2, PR-5, LOX, PIN2, PAL-2, and ERF3) was quantified in tubers, roots, and leaves by reverse-transcription quantitative polymerase chain reaction and revealed that the biocontrol observed was not associated with the induction of a plant defense response by LBUM636. Instead, a direct interaction between P. infestans and LBUM636 is required and PCA production appears to be a key factor for LBUM636's biocontrol ability.
Collapse
Affiliation(s)
- Christopher K Morrison
- Department of Biology, Université de Moncton, 18 Antonine-Maillet Ave., Moncton, NB, E1A 3E9 Canada
| | - Tanya Arseneault
- Department of Biology, Université de Moncton, 18 Antonine-Maillet Ave., Moncton, NB, E1A 3E9 Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, 18 Antonine-Maillet Ave., Moncton, NB, E1A 3E9 Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, 18 Antonine-Maillet Ave., Moncton, NB, E1A 3E9 Canada
| |
Collapse
|
9
|
Moroz N, Fritch KR, Marcec MJ, Tripathi D, Smertenko A, Tanaka K. Extracellular Alkalinization as a Defense Response in Potato Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:32. [PMID: 28174578 PMCID: PMC5258701 DOI: 10.3389/fpls.2017.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/06/2017] [Indexed: 05/24/2023]
Abstract
A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.
Collapse
Affiliation(s)
- Natalia Moroz
- Department of Plant Pathology, Washington State University, PullmanWA, USA
| | - Karen R. Fritch
- Agricultural and Food Systems, Washington State University, PullmanWA, USA
| | - Matthew J. Marcec
- Department of Plant Pathology, Washington State University, PullmanWA, USA
- Molecular Plant Sciences Program, Washington State University, PullmanWA, USA
| | - Diwaker Tripathi
- Department of Plant Pathology, Washington State University, PullmanWA, USA
| | - Andrei Smertenko
- Molecular Plant Sciences Program, Washington State University, PullmanWA, USA
- Institute of Biological Chemistry, Washington State University, PullmanWA, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, PullmanWA, USA
- Molecular Plant Sciences Program, Washington State University, PullmanWA, USA
| |
Collapse
|
10
|
Guyer A, De Vrieze M, Bönisch D, Gloor R, Musa T, Bodenhausen N, Bailly A, Weisskopf L. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field. Front Microbiol 2015; 6:1309. [PMID: 26640460 PMCID: PMC4661289 DOI: 10.3389/fmicb.2015.01309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022] Open
Abstract
Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disk assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf disks from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavorable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonize the potato rhizosphere in very high population densities, suggest a potential for field application, e.g., in the form of tuber treatment or leaf spray.
Collapse
Affiliation(s)
- Anouk Guyer
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland
| | - Mout De Vrieze
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland ; Agroscope, Institute of Plant Production Sciences Nyon, Switzerland
| | - Denise Bönisch
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland
| | - Ramona Gloor
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland ; Agroscope, Institute of Plant Production Sciences Nyon, Switzerland
| | - Tomke Musa
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland
| | | | - Aurélien Bailly
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland
| | - Laure Weisskopf
- Agroscope, Institute of Sustainability Sciences Zurich, Switzerland ; Agroscope, Institute of Plant Production Sciences Nyon, Switzerland ; Viticulture and Oenology, CHANGINS, University of Applied Sciences and Arts Western Switzerland Nyon, Switzerland
| |
Collapse
|
11
|
Arseneault T, Goyer C, Filion M. Pseudomonas fluorescens LBUM223 Increases Potato Yield and Reduces Common Scab Symptoms in the Field. PHYTOPATHOLOGY 2015; 105:1311-1317. [PMID: 25961336 DOI: 10.1094/phyto-12-14-0358-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Common scab of potato, caused by pathogenic Streptomyces spp., is an important disease not efficiently controlled by current methods. We previously demonstrated that Pseudomonas fluorescens LBUM223 reduces common scab development under controlled conditions through phenazine-1-carboxylic (PCA) production, leading to reduced thaxtomin A production by the pathogen, a key pathogenicity and virulence factor. Here, we aimed at determining if LBUM223 is able to increase potato yield and control common scab under field conditions, while characterizing the biocontrol mechanisms involved. We investigated if a reduction in pathogen soil populations, activation of induced systemic resistance in potato, and/or changes in txtA gene expression, involved in thaxtomin A biosynthesis in pathogenic Streptomyces spp. were involved in common scab control by LBUM223. Common scab symptoms were significantly reduced and total tuber weight increased by 46% using biweekly applications of LBUM223. LBUM223 did not reduce pathogen soil populations, nor was potato systemic defense-related gene expression significantly altered between treatments. However, a significant down-regulation of txtA expression occurred in the geocaulosphere. This is the first demonstration that a Pseudomonas strain can directly alter the transcriptional activity of a key pathogenesis gene in a plant pathogen under field conditions, contributing to disease control.
Collapse
Affiliation(s)
- Tanya Arseneault
- First and third authors: Université de Moncton, Department of Biology, Moncton, NB, Canada; and second author: Potato Research Center, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Claudia Goyer
- First and third authors: Université de Moncton, Department of Biology, Moncton, NB, Canada; and second author: Potato Research Center, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Martin Filion
- First and third authors: Université de Moncton, Department of Biology, Moncton, NB, Canada; and second author: Potato Research Center, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| |
Collapse
|
12
|
Velivelli SLS, Lojan P, Cranenbrouck S, de Boulois HD, Suarez JP, Declerck S, Franco J, Prestwich BD. The induction of Ethylene response factor 3 (ERF3) in potato as a result of co-inoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 - a possible role in plant defense. PLANT SIGNALING & BEHAVIOR 2015; 10:e988076. [PMID: 25723847 PMCID: PMC4623016 DOI: 10.4161/15592324.2014.988076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 05/19/2023]
Abstract
Colonization of plant rhizosphere/roots by beneficial microorganisms (e.g. plant growth promoting rhizobacteria - PGPR, arbuscular mycorrhizal fungi - AMF) confers broad-spectrum resistance to virulent pathogens and is known as induced systemic resistance (ISR) and mycorrhizal-induced resistance (MIR). ISR or MIR, an indirect mechanism for biocontrol, involves complex signaling networks that are regulated by several plant hormones, the most important of which are salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). In the present study, we investigated if inoculation of potato plantlets with an AMF (Rhizophagus irregularis MUCL 41833) and a PGPR (Pseudomonas sp R41805) either alone or in combination, could elicit host defense response genes in the presence or absence of Rhizoctonia Solani EC-1, a major potato pathogen. RT-qPCR revealed the significant expression of ethylene response factor 3 (EFR3) in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and also in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and challenged with R. solani. The significance of ethylene response factors (ERFs) in pathogen defense has been well documented in the literature. The results of the present study suggest that the dual inoculation of potato with PGPR and AMF may play a part in the activation of plant systemic defense systems via ERF3.
Collapse
Affiliation(s)
- Siva LS Velivelli
- School of Biological Earth and Environmental Sciences; University College Cork; Cork, Ireland
| | - Paul Lojan
- Departamento de Ciencias Naturales; Universidad Técnica Particular de Loja (UTPL); Loja, Ecuador
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Sylvie Cranenbrouck
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Hervé Dupré de Boulois
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Juan Pablo Suarez
- Departamento de Ciencias Naturales; Universidad Técnica Particular de Loja (UTPL); Loja, Ecuador
| | - Stéphane Declerck
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Javier Franco
- Fundación PROINPA Foundation; El Paso, Cochabamba, Bolivia
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences; University College Cork; Cork, Ireland
| |
Collapse
|