1
|
Martins EC, Teixeira DC, Coletti DAB, Wulff NA. Multiplex Quantitative PCR for the Detection of Bacteria Associated with Huanglongbing ' Candidatus Liberibacter asiaticus,' ' Ca. L. americanus,' and 16Sr IX Group Phytoplasma. PLANT DISEASE 2025; 109:623-632. [PMID: 39352504 DOI: 10.1094/pdis-05-24-0970-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The occurrence of 'Candidatus Liberibacter' spp. and 'Ca. Phytoplasma' spp. associated with blotchy mottle symptoms poses challenges to huanglongbing (HLB) diagnosis using molecular techniques. The ability to detect multiple targets simultaneously and specifically is a key aspect met by quantitative PCR (qPCR). A set of primers and hydrolysis probes useful in either single or multiplex reactions for the detection and quantification of HLB-associated bacteria were developed. Sequences from conserved genes of the ribosomal proteins for Liberibacter and phytoplasma circumvent the lack of specificity and cross-reactivity problems related to 16Sr DNA gene amplification, allowing precise and specific detection of HLB-associated bacteria in citrus and in the Liberibacter vector, Diaphorina citri. The triplex reaction exhibited high quality and precision as a robust tool for quantifying 'Ca. L. asiaticus' (CLas), 'Ca. L. americanus' (CLam), and 16Sr IX phytoplasma. Triplex qPCR showed consistent results and comparable sensitivity to the ribonuclease reductase test, although quantification cycle (Cq) values were higher when compared with 16SrDNA qPCR. Detection tests using field samples indicate that the qPCR triplex can identify HLB-associated bacteria in samples with varying levels of symptoms, ranging from typical to asymptomatic. Assessment of field samples from growers indicated more than 78.6% had Cq lower than 35.0, below the cutoff established for qPCR reactions used in this work. qPCR triplex is a safe, specific, and sufficiently sensitive technique for detecting CLas, CLam, and 16Sr IX phytoplasma simultaneously, in both citrus and D. citri samples. Its application is of importance in assisting growers in making decisions for HLB management.
Collapse
Affiliation(s)
- Elaine C Martins
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Araraquara, Brasil
| | - Diva C Teixeira
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
| | - Daniela A B Coletti
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
| | - Nelson A Wulff
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Araraquara, Brasil
| |
Collapse
|
2
|
Alves MN, Cifuentes-Arenas J, Niñoles R, Raiol-Junior LL, Carvalho E, Quirós-Rodriguez I, Ferro JA, Licciardello C, Alquezar B, Carmona L, Forment J, Bombarely A, Wulff NA, Peña L, Gadea J. Transcriptomic analysis of early stages of ' Candidatus Liberibacter asiaticus' infection in susceptible and resistant species after inoculation by Diaphorina citri feeding on young shoots. FRONTIERS IN PLANT SCIENCE 2025; 16:1502953. [PMID: 40051881 PMCID: PMC11882604 DOI: 10.3389/fpls.2025.1502953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Huanglongbing (HLB) is a devastating disease of citrus plants caused by the non-culturable phloem-inhabiting bacterium Candidatus Liberibacter ssp., being Ca. Liberibacter asiaticus (CLas) the most aggressive species. CLas is vectored by the psyllid Diaphorina citri and introduced into sieve cells, establishing a successful infection in all Citrus species. Partial or complete resistance has been documented in the distant relatives Murraya paniculata and Bergera koenigii, respectively, providing excellent systems to investigate the molecular basis of HLB-resistance. It has been shown previously that the first weeks after bacterial release into the phloem are critical for the establishment of the bacterium. In this study, a thorough transcriptomic analysis of young flushes exposed to CLas-positive and negative psyllids has been performed in Citrus × sinensis, as well as in the aforementioned resistant species, along the first eight weeks after exposure. Our results indicate that the resistant species do not deploy a classical immunity response upon CLas recognition. Instead, transcriptome changes are scarce and only a few genes are differentially expressed when flushes exposed to CLas-positive and negative psyllid are compared. Functional analysis suggests that primary metabolism and other basic cellular functions could be rewired in the resistant species to limit infection. Transcriptomes of young flushes of the three species are very different, supporting the existence of distinct biochemical niches for the bacterium. These findings suggest that both intrinsic metabolic inadequacies to CLas survival, as well as inducible reprogramming of physiological functions upon CLas recognition, could orchestrate together restriction of bacterial multiplication in these resistant hosts.
Collapse
Affiliation(s)
- Mônica N. Alves
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | | | - Regina Niñoles
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Laudecir Lemos Raiol-Junior
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
| | - Everton Carvalho
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
- Helix Sementes e Biotecnologia, Patos de Minas, MG, Brazil
| | - Isabel Quirós-Rodriguez
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Jesus A. Ferro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, Acireale, Italy
| | - Berta Alquezar
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Javier Forment
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Aureliano Bombarely
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Nelson A. Wulff
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - José Gadea
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| |
Collapse
|
3
|
Koh JMJ, Cunniffe NJ, Parnell S. Assessing delimiting strategies to identify the infested zones of quarantine plant pests and diseases. Sci Rep 2025; 15:5610. [PMID: 39955457 PMCID: PMC11829978 DOI: 10.1038/s41598-025-90343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Following the discovery of a quarantine plant pest or disease, delimitation is urgently conducted to define the boundaries of the infested area, typically through surveys that detect the presence or absence of the pest. Swift and accurate delimitation is crucial after a pest or pathogen enters a new region for containment or eradication. Delimiting an area that is too small allows the pest to spread uncontrollably, while delimited areas that are too large can lead to excessive economic costs, making eradication cost-prohibitive. Despite its significance, there is a lack of comprehensive reviews on delimiting strategies and their effectiveness in managing plant pests; many current practices are ad-hoc and not scientifically based. In this study, we used an individual-based model to simulate the spread of Huanglongbing (citrus greening), a priority EU pest, and evaluated three delimiting strategies across various host distribution landscapes. We found that an adaptive strategy was most effective, especially when tailored to the polycyclic nature of the pest. This underscored the need for specific delimiting approaches based on the epidemiological characteristics of the target pest.
Collapse
Affiliation(s)
- Jun Min Joshua Koh
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Stephen Parnell
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Paryavi M, Weiser K, Melzer M, Crook D, Ramadugu C, Jenkins DM. Programmable LED Array for Evaluating Artificial Light Sources to Improve Insect Trapping. INSECTS 2025; 16:170. [PMID: 40003800 PMCID: PMC11856566 DOI: 10.3390/insects16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
We developed a programmable LED array to evaluate different wavelength illumination (UV, blue, green, yellow, amber, and red) and modulation schemes to improve catch rates in insect traps. The device can communicate through Bluetooth® with a simple Android app to update the operational settings to facilitate field experiments, including which LEDs to operate, when to operate (always, night only, or predefined intervals after sunset and/or before sunrise), and to change the LED intensities/modulation during operation. We used the devices to evaluate different wavelengths to improve catches in traps for coconut rhinoceros beetle (CRB; Oryctes rhinoceros Linnaeus) in the field, as well as to evaluate lighting preferences of Asian citrus psyllid (ACP; Diaphorina citri Kuwayama). In both cases, insects were most strongly attracted to constant UV illumination. However, CRB avoided traps with any "visible" wavelength LEDs placed in panels of traps, while ACP was moderately attracted to blue, yellow, and amber. For CRB, UV illumination of cups at the bottom of panel traps reduced catch rates compared to UV illumination higher in the panels of traps, consistent with observations of dorsal orientation towards light observed by other researchers in nocturnal beetles and moths. Finally, we provide some hardware design recommendations to improve the energy efficiency of similar devices for more widespread deployment in insect traps and for controlling the LEDs to evaluate the effects of intensity and modulation with minimal pulsing, which our observations suggest may result in insects avoiding traps.
Collapse
Affiliation(s)
- Mohsen Paryavi
- Department of Electrical & Computer Engineering, University of Hawaii, Holmes Hall 483, Honolulu, HI 96822, USA;
| | - Keith Weiser
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Manoa, 3190 Maile Way Room 305, Honolulu, HI 96822, USA; (K.W.); (M.M.)
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Manoa, 3190 Maile Way Room 305, Honolulu, HI 96822, USA; (K.W.); (M.M.)
| | - Damon Crook
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, 1398 West Truck Road, Buzzards Bay, MA 02542, USA;
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Daniel M. Jenkins
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Manoa, 3190 Maile Way Room 305, Honolulu, HI 96822, USA; (K.W.); (M.M.)
| |
Collapse
|
5
|
Pruvost O, Boyer K, Labbé F, Weishaar M, Vynisale A, Melot C, Hoareau C, Cellier G, Ravigné V. Genetic Signatures of Contrasted Outbreak Histories of " Candidatus Liberibacter asiaticus", the Bacterium That Causes Citrus Huanglongbing, in Three Outermost Regions of the European Union. Evol Appl 2024; 17:e70053. [PMID: 39691746 PMCID: PMC11649586 DOI: 10.1111/eva.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In an era of trade globalization and climate change, crop pathogens and pests are a genuine threat to food security. The detailed characterization of emerging pathogen populations is a prerequisite for managing invasive species pathways and designing sustainable disease control strategies. Huanglongbing is the disease that causes the most damage to citrus, a crop that ranks #1 worldwide in terms of fruit production. Huanglongbing can be caused by three species of the phloem-limited alpha-proteobacterium, "Candidatus Liberibacter," which are transmitted by psyllids. Two of these bacteria are of highest concern, "Ca. Liberibacter asiaticus" and "Ca. Liberibacter africanus," and have distinct thermal optima. These pathogens are unculturable, which complicates their high-throughput genetic characterization. In the present study, we used several genotyping techniques and an extensive sample collection to characterize Ca. Liberibacter populations associated with the emergence of huanglongbing in three French outermost regions of the European Union (Guadeloupe, Martinique and Réunion). The outbreaks were primarily caused by "Ca. Liberibacter asiaticus," as "Ca. Liberibacter africanus" was only found at a single location in Réunion. We emphasize the low diversity and high genetic relatedness between samples from Guadeloupe and Martinique, which suggests the putative movement of the pathogen between the two islands and/or the independent introduction of closely related strains. These samples were markedly different from the samples from Réunion, where the higher genetic diversity revealed by tandem-repeat markers suggests that the disease was probably overlooked for years before being officially identified in 2015. We show that "Ca. Liberibacter asiaticus" occurs from sea level to an altitude of 950 m above sea level and lacks spatial structure. This suggests the pathogen's medium- to long-distance movement. We also suggest that backyard trees acted as relays for disease spread. We discuss the implications of population biology data for surveillance and management of this threatful disease.
Collapse
|
6
|
Cui L, Deng G, Wu J, Ding F, Wang W, Yu H, Song Z, Rui C, Han H, Yuan H. Fabrication of nanogels to improve the toxicity and persistence of cycloxaprid against Diaphorina citri, the vector of citrus huanglongbing. J Adv Res 2024:S2090-1232(24)00379-5. [PMID: 39245339 DOI: 10.1016/j.jare.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri. However, the poor solubility and stability had limited its development. OBJECTIVES In order to improve the insecticidal effect and stability to harsh climatic conditions of Cyc. METHODS Cyc was chosen as the representative pesticide, 4,4'-methylenebis (phenyl isocyanate), PEG-600 and n-butanol were used to prepare sustained-release nano-gelation particles (Cyc@NGs). RESULTS Cyc@NGs enhance the toxicity of Cyc more than 3 folds. Furthermore, Cyc@NGs showed excellent anti-rain and anti-UV capacity. After being exposed to ultraviolet light for 12 h, Cyc decreased by 100 %, while the insecticide content of Cyc@NGs only decreased by 25 %. Additionally, Cyc@NGs possessed better wettability on citrus leaves, mainly benefitting from its lower contact angle on citrus leaves. Moreover, FITC-labeled nano-gelation particles (FITC-NGs) exhibited high capability to penetrate and enrich in citrus leaf tissue and D. citri midgut. Consequently, NGs promoted the translocation and durability of insecticides, thereby, increasing the insecticidal activity. The results suggested that nano-gelation particle is a promising platform to deliver insecticides and Cyc@NGs would be the suitable candidate for the effective management of D. citri.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guiyun Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghong Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Haiyang Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changhui Rui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
A Aksenov A, Blacutt A, Ginnan N, Rolshausen PE, V Melnik A, Lotfi A, C Gentry E, Ramasamy M, Zuniga C, Zengler K, Mandadi KK, McCollum G, Dorrestein PC, Roper MC. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus. Sci Rep 2024; 14:20306. [PMID: 39218988 PMCID: PMC11366753 DOI: 10.1038/s41598-024-70499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that CLas infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to CLas, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA.
- Arome Science Inc., Farmington, CT, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Arome Science Inc., Farmington, CT, USA
| | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Emily C Gentry
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Manikandan Ramasamy
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Cristal Zuniga
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Greg McCollum
- US Dept of Agriculture, Agricultural Research Service US Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
8
|
Graham JH, Bassanezi RB, Dawson WO, Dantzler R. Management of Huanglongbing of Citrus: Lessons from São Paulo and Florida. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:243-262. [PMID: 38691871 DOI: 10.1146/annurev-phyto-121423-041921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
São Paulo, Brazil, and Florida, USA, were the two major orange production areas in the world until Huanglongbing (HLB) was discovered in São Paulo in 2004 and Florida in 2005. In the absence of resistant citrus varieties, HLB is the most destructive citrus disease known because of the lack of effective tools to reduce spread of the vector, Diaphorina citri (Asian citrus psyllid), and transmission of the associated pathogen, Candidatus Liberibacter asiaticus. In both countries, a three-pronged management approach was recommended and begun: planting only disease-free nursery trees, effective psyllid control, and removal of all symptomatic trees. In Brazil, these management procedures were continued and improved and resulted in relatively little overall loss of production. In contrast, in Florida the citrus industry has been devastated with annual production reduced by approximately 80%. This review compares and contrasts various cultural and pest management strategies that have been used to reduce infection by the pathogen and increase tolerance of HLB in the main orange-growing regions in the world.
Collapse
Affiliation(s)
- James H Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA;
| | - Renato B Bassanezi
- Fundecitrus, Fundo de Defesa da Citricultura, Araraquara, São Paulo, Brazil
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA;
| | - Rick Dantzler
- Citrus Research and Development Foundation, Lake Alfred, Florida, USA
| |
Collapse
|
9
|
Zhong Z, Chen Y, Liu J, Wang W, Zhou F, Hu L, Zhang J, Chen T, Xiang J, Li T, Wang Y, Zhang S, Ge S, Zhang J, Xia N. Roots applicable, high sensitivity and specificity assay for the detection of Candidatus Liberibacter asiaticus in citrus roots and fruits. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:27-34. [PMID: 39464864 PMCID: PMC11500590 DOI: 10.5511/plantbiotechnology.23.1129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 10/29/2024]
Abstract
Candidatus Liberibacter asiaticus (CLas), a phloem-limited Gram-negative bacterium, is associated with citrus huanglongbing (HLB), which is one of the most destructive diseases currently threatening citrus production worldwide. No effective treatment for HLB is currently available. Effective prevention and control in the initial stage can block the spread and disease progression of HLB. Herein, we developed a co-detection assay for the 16S rDNA and 16S rRNA of CLas, the sensitivity of the co-detection assay was significantly increased over that of the single CLas DNA detection system. Beyond this, we found that the co-detection assay was a better fit to the root samples with higher population abundance than the previous reported detection system because it has a better specificity. Moreover, we found that the contents of 16S rRNA of CLas in citrus roots and fruits are significantly higher than that in leaves, which suggests that the time of HLB diagnosis is probably earlier by using these special tissues and the replication of CLas may become more active in these tissues, further suggested that the significance of study the mechanism of infection, prevention and control of HLB staring from these tissues.
Collapse
Affiliation(s)
- Zecheng Zhong
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinhua Liu
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Wei Wang
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Feng Zhou
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Liu Hu
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Jinlian Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Tingsu Chen
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiyu Xiang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shiyin Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Volpe HXL, Carmo-Sousa M, Luvizotto RAG, de Freitas R, Esperança V, Darolt JC, Pegoraro AAL, Magalhães DM, Favaris AP, Wulff NA, Miranda MP, Bento JMS, Leal WS. The greening-causing agent alters the behavioral and electrophysiological responses of the Asian citrus psyllid to a putative sex pheromone. Sci Rep 2024; 14:455. [PMID: 38172384 PMCID: PMC10764743 DOI: 10.1038/s41598-023-50983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.
Collapse
Affiliation(s)
- Haroldo X L Volpe
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Michele Carmo-Sousa
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Rejane A G Luvizotto
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Renato de Freitas
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Victoria Esperança
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Josiane C Darolt
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Abner A L Pegoraro
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Diego M Magalhães
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - Arodi P Favaris
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - Nelson A Wulff
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Marcelo P Miranda
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Hajeri S, Olkowski S, Kumagai L, McRoberts N, Yokomi RK. Alternative Tissue Sampling for Improved Detection of Candidatus Liberibacter asiaticus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3364. [PMID: 37836104 PMCID: PMC10574540 DOI: 10.3390/plants12193364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Early detection and prompt response are key factors in the eradication of 'huanglongbing' (HLB) in California. Currently, qPCR testing of leaf tissue guides the removal of infected trees. However, because of the uneven distribution of 'Candidatus Liberibacter asiaticus' (CLas) in an infected tree and asymptomatic infection, selecting the best leaves to sample, from a mature tree with more than 200,000 estimated leaves, is a major hurdle for timely detection. The goal of this study was to address this issue by testing alternative tissues that might improve the CLas detection rate. Using two years of field data, old and young leaves, peduncle bark of fruit, and feeder roots were evaluated for the presence of CLas. Quadrant-peduncle (Q-P) tissue sampling consistently resulted in better CLas detection than any other tissue type. Q-P samples had a 30% higher qPCR positivity rate than quadrant-leaf (Q-L) samples. No significant seasonal patterns were observed. Roots and single peduncles had similar detection rates; both were higher than single leaves or Q-L samples. If symptoms were used to guide sampling, 30% of infected trees would have been missed. Taken together, these results suggest that Q-P tissue sampling is the optimal choice for improved CLas detection under California growing conditions.
Collapse
Affiliation(s)
- Subhas Hajeri
- Citrus Pest Detection Program, Alliance of Pest Control Districts, Tulare, CA 93274, USA
| | - Sandra Olkowski
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Lucita Kumagai
- California Department of Food & Agriculture, Sacramento, CA 95832, USA;
| | - Neil McRoberts
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Raymond K. Yokomi
- Agricultural Research Service, USDA, SJVASC, Parlier, CA 93648, USA;
| |
Collapse
|
12
|
Ebert TA, Shawer D, Brlansky RH, Rogers ME. Seasonal Patterns in the Frequency of Candidatus Liberibacter Asiaticus in Populations of Diaphorina citri (Hemiptera: Psyllidae) in Florida. INSECTS 2023; 14:756. [PMID: 37754724 PMCID: PMC10532026 DOI: 10.3390/insects14090756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is one of the putative causal agents of huanglongbing, which is a serious disease in citrus production. The pathogen is transmitted by Diaphorina citri Kuwayama (Hemiptera: Psyllidae). As an observational study, six groves in central Florida and one grove at the southern tip of Florida were sampled monthly from January 2008 through February 2012 (50 months). The collected psyllids were sorted by sex and abdominal color. Disease prevalence in adults peaked in November, with a minor peak in February. Gray/brown females had the highest prevalence, and blue/green individuals of either sex had the lowest prevalence. CLas prevalence in blue/green females was highly correlated with the prevalence in other sexes and colors. Thus, the underlying causes for seasonal fluctuations in prevalence operated in a similar fashion for all psyllids. The pattern was caused by larger nymphs displacing smaller ones from the optimal feeding sites and immunological robustness in different sex-color morphotypes. Alternative hypotheses were also considered. Improving our understanding of biological interactions and how to sample them will improve management decisions. We agree with other authors that psyllid management is critical year-round.
Collapse
Affiliation(s)
- Timothy A. Ebert
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| | - Dalia Shawer
- Department of Economic Entomology, Faculty of Agriculture, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Ron H. Brlansky
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| | - Michael E. Rogers
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| |
Collapse
|
13
|
Wang F, Zhu C, Zhang R, Huang Y, Wu W, Chen J, Zeng J. Diversity Analysis and Function Prediction of Bacterial Communities in the Different Colored Pericarp of Citrus reticulata cv. 'Shatangju' Due to ' Candidatus Liberibacter asiaticus' Infection. Int J Mol Sci 2023; 24:11472. [PMID: 37511229 PMCID: PMC10380603 DOI: 10.3390/ijms241411472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Huanglongbing (HLB), caused by the Candidatus Liberibacter spp., is the most devastating disease in the citrus industry. HLB significantly affects and alters the microbial community structure or potential function of the microbial community of leaves and roots. However, it is unknown how the microbial community structure of the pericarp with different pigments is affected by Candidatus Liberibacter asiaticus (CLas). This study identified the enriched taxa of the microbial community in the citrus pericarp with normal or abnormal pigment and determine the effects of HLB on the pericarp microbial community using 16S rRNA-seq. The alpha and beta diversity and composition of microbial communities were significantly different between normal and abnormal pigment pericarp tissues of ripe fruits infected by CLas. Firmicutes, Actinobacteriota, Bacteroidota, Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota composition in WDYFs (whole dark yellow fruits) samples. The relative abundance of most genera in WDYFs was higher than 1%, such as Burkholderia, and Pelomonas. However, with the exception of the HLB pathogen, the relative abundance of most genera in the abnormal-colored pericarp samples was less than 1%. CLas decreased the relative abundance of pericarp taxonomic. The predicted function of microbial was more plentiful and functional properties in the WDYF sample, such as translation, ribosomal structure and biogenesis, amino acid transport and metabolism, energy production and conversion, and some other clusters of orthologous groups (COG) except for cell motility. The results of this study offer novel insights into understanding the composition of microbial communities of the CLas-affected citrus pericarps and contribute to the development of biological control strategies for citrus against Huanglongbing.
Collapse
Affiliation(s)
- Feiyan Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Congyi Zhu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruimin Zhang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongjing Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiezhong Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Aidoo OF, Ablormeti FK, Ninsin KD, Antwi-Agyakwa AK, Osei-Owusu J, Heve WK, Dofuor AK, Soto YL, Edusei G, Osabutey AF, Sossah FL, Aryee CO, Alabi OJ, Sétamou M. First report on the presence of huanglongbing vectors (Diaphorina citri and Trioza erytreae) in Ghana. Sci Rep 2023; 13:11366. [PMID: 37443168 PMCID: PMC10344884 DOI: 10.1038/s41598-023-37625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
As significant threats to global citrus production, Diaphorina citri (Kuwayama; Hemiptera: Psyllidae) and Trioza erytreae (Del Guercio; Hemiptera: Triozidae) have caused considerable losses to citrus trees globally. Diaphorina citri vectors "Candidatus Liberibacter asiaticus" and "Ca. L. americanus", whereas T. erytreae transmits "Ca. L. africanus" and "Ca. L. asiaticus", the pathogens responsible for citrus greening disease or Huanglongbing (HLB). Though HLB is a destructive disease of citrus wherever it occurs, information on the occurrence and geographical distribution of its vectors in Africa is limited. In recent surveys to determine if HLB vectors are present in Ghana, we observed eggs, nymphs, and adults of insects suspected to be D. citri and T. erytreae. Using morphological traits and DNA analyses, the identity of the suspected insects was confirmed to be D. citri and T. erytreae. Individuals of D. citri and T. erytreae were examined using qPCR for CLaf, CLam, and CLas, but none of them tested positive for any of the Liberibacter species. Herein we report, for the first time, the presence of D. citri and T. erytreae in Ghana (West Africa). We discuss the implications of this new threat to the citrus industry to formulate appropriate management strategies.
Collapse
Affiliation(s)
- Owusu F Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana.
| | - Fred K Ablormeti
- Council for Scientific Industrial Research, Oil Palm Research Institute, Coconut Research Programme, P. O. Box 245, Sekondi, Ghana
| | - Kodwo D Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | | | - Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - William K Heve
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Aboagye K Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Yovanna L Soto
- Texas A&M University-Kingsville Citrus Center, Weslaco, 78599, USA
| | - George Edusei
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | | | - Frederick L Sossah
- Council for Scientific Industrial Research, Oil Palm Research Institute, Coconut Research Programme, P. O. Box 245, Sekondi, Ghana
| | | | - Olufemi J Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, 78599, USA.
| |
Collapse
|
15
|
Orbović V, Ravanfar SA, Achor DS, Shilts T, Ibanez-Carrasco F, Banerjee R, El-Mohtar C, Stelinski LL, Bonning BC. Cry1Ba1-mediated toxicity of transgenic Bergera koenigii and Citrus sinensis to the Asian citrus psyllid Diaphorina citri. FRONTIERS IN INSECT SCIENCE 2023; 3:1125987. [PMID: 38469526 PMCID: PMC10926525 DOI: 10.3389/finsc.2023.1125987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 03/13/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri, vectors the bacterial causative agent of citrus greening disease, which has severely impacted citrus production on a global scale. As the current repeated application of chemical insecticides is unsustainable for management of this insect and subsequent protection of groves, we investigated the potential use of the bacteria-derived pesticidal protein, Cry1Ba1, when delivered via transgenic citrus plants. Having demonstrated transformation of the Indian curry leaf tree, Bergera koenigii, for Cry1Ba1 expression for use as a trap plant, we produced transgenic plants of Duncan grapefruit, Citrus paridisi, Valencia sweet orange, Citrus sinensis, and Carrizo citrange, C. sinensis x Poncirus trifoliata, for expression of Cry1Ba1. The presence of the cry1ba1 gene, and cry1ba1 transcription were confirmed. Western blot detection of Cry1Ba1 was confirmed in most cases. When compared to those from wild-type plants, leaf discs from transgenic Duncan and Valencia expressing Cry1Ba1 exhibited a "delayed senescence" phenotype, similar to observations made for transgenic B. koenigii. In bioassays, significant reductions in the survival of adult psyllids were noted on transgenic B. koenigii and Valencia sweet orange plants expressing Cry1Ba1, but not on transgenic Duncan grapefruit or Carrizo citrange. In contrast to psyllids fed on wild type plants, the gut epithelium of psyllids fed on transgenic plants was damaged, consistent with the mode of action of Cry1Ba1. These results indicate that the transgenic expression of a bacterial pesticidal protein in B. koenigii and Valencia sweet orange offers a viable option for management of D. citri, that may contribute to solutions that counter citrus greening disease.
Collapse
Affiliation(s)
- Vladimir Orbović
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Seyed Ali Ravanfar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Diann S. Achor
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Turksen Shilts
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Freddy Ibanez-Carrasco
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Rahul Banerjee
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, United States
| | - Choaa El-Mohtar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Bryony C. Bonning
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Xu Q, Cai J, Ma L, Tan B, Li Z, Sun L. Custom-Developed Reflection-Transmission Integrated Vision System for Rapid Detection of Huanglongbing Based on the Features of Blotchy Mottled Texture and Starch Accumulation in Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:616. [PMID: 36771700 PMCID: PMC9921774 DOI: 10.3390/plants12030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB) is a highly contagious and devastating citrus disease that causes huge economic losses to the citrus industry. Because it cannot be cured, timely detection of the HLB infection status of plants and removal of diseased trees are effective ways to reduce losses. However, complex HLB symptoms, such as single HLB-symptomatic or zinc deficiency + HLB-positive, cannot be identified by a single reflection imaging method at present. In this study, a vision system with an integrated reflection-transmission image acquisition module, human-computer interaction module, and power supply module was developed for rapid HLB detection in the field. In reflection imaging mode, 660 nm polarized light was used as the illumination source to enhance the contrast of the HLB symptoms in the images based on the differences in the absorption of narrow-band light by the components within the leaves. In transmission imaging mode, polarization images were obtained in four directions, and the polarization angle images were calculated using the Stokes vector to detect the optical activity of starch. A step-by-step classification model with four steps was used for the identification of six classes of samples (healthy, HLB-symptomatic, zinc deficiency, zinc deficiency + HLB-positive, magnesium deficiency, and boron deficiency). The results showed that the model had an accuracy of 96.92% for the full category of samples and 98.08% for the identification of multiple types of HLB (HLB-symptomatic and zinc deficiency + HLB-positive). In addition, the classification model had good recognition of zinc deficiency and zinc deficiency + HLB-positive samples, at 92.86%.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Correspondence: (J.C.); (L.S.)
| |
Collapse
|
17
|
Britt-Ugartemendia K, Turner D, Sieburth P, Batuman O, Levy A. Survey and detection for citrus tristeza virus in Florida groves with an unconventional tool: The Asian citrus psyllid. FRONTIERS IN PLANT SCIENCE 2022; 13:1050650. [PMID: 36570892 PMCID: PMC9769964 DOI: 10.3389/fpls.2022.1050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The citrus industry of Florida faces insurmountable challenges against the destructive diseases citrus tristeza and Huanglongbing (HLB, or citrus greening). Though the tristeza causal agent, citrus tristeza virus (CTV), has been in Florida decades longer than HLB, growers have concentrated most of their efforts on combating the more detrimental HLB. The Asian citrus psyllid (Diaphorina citri; ACP) is the insect vector of the bacterial pathogen Candidatus Liberibacter asiaticus and transmits the incurable HLB to all commercial citrus. During our searches for biological and viral controls against the ACP, we consistently detected sequences of CTV in Florida field populations of ACP. This unexpected finding led us to investigate whether ACPs collected from young shoots could be used as a tool to survey CTV in Florida citrus groves. We first surveyed for the most common CTV strains in Florida (T30, T36, and VT/T68) in citrus trees on mostly sour orange (Citrus aurantium) rootstock, the rootstock susceptible to CTV decline. Out of 968 trees sampled across five years (2018-2022), approximately 8.2% were positive for CTV, with more than half of the CTV-positive trees infected with strain T30. Simultaneously, we looked at CTV strains in ACPs during this time and found that approximately 88% of pooled adult and nymph ACPs also had CTV, with over half the positive samples having the T36 strain. As a result of the much higher CTV incidences in the ACPs, we conducted a second investigation into whether we could more easily detect the same CTV strains in ACP nymphs as in CTV-infected citrus tissue. After individually sampling 43 trees and pooling the nymphs from each tree, we detected CTV at about the same incidence in the citrus tissue and the nymphs, but with much less ACP tissue, time, and resources required for detection compared to citrus tissue. Results from this study illustrate the sustained threat of CTV to Florida citrus and demonstrate the ACP as a potential bioindicator for CTV.
Collapse
Affiliation(s)
- Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Donielle Turner
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Peggy Sieburth
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Amit Levy
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
18
|
Influence of daily temperature maximums on the development and short-distance movement of the Asian citrus psyllid. J Therm Biol 2022; 110:103354. [DOI: 10.1016/j.jtherbio.2022.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022]
|
19
|
Aidoo OF, Souza PGC, da Silva RS, Júnior PAS, Picanço MC, Kyerematen R, Sétamou M, Ekesi S, Borgemeister C. Predicting the potential global distribution of an invasive alien pest Trioza erytreae (Del Guercio) (Hemiptera: Triozidae). Sci Rep 2022; 12:20312. [PMID: 36434029 PMCID: PMC9700837 DOI: 10.1038/s41598-022-23213-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
The impact of invasive alien pests on agriculture, food security, and biodiversity conservation has been worsened by climate change caused by the rising earth's atmospheric greenhouse gases. The African citrus triozid, Trioza erytreae (Del Guercio; Hemiptera: Triozidae), is an invasive pest of all citrus species. It vectors the phloem-limited bacterium "Candidatus Liberibacter africanus", a causal agent of citrus greening disease or African Huanglongbing (HLB). Understanding the global distribution of T. erytreae is critical for surveillance, monitoring, and eradication programs. Therefore, we combined geospatial and physiological data of T. erytreae to predict its global distribution using the CLIMEX model. The model's prediction matches T. erytreae present-day distribution and shows that parts of the Mediterranean region have moderate (0 < EI < 30) to high (EI > 30) suitability for the pest. The model predicts habitat suitability in the major citrus-producing countries, such as Mexico, Brazil, China, India, and the USA. In the Special Report on Emissions Scenarios (SRES) A1B and A2 scenarios, the model predicts a reduction in habitat suitability from the current time to 2070. The findings show that global citrus production will continue to be threatened by T. erytreae. However, our study provides relevant information for biosecurity and risk assessment.
Collapse
Affiliation(s)
- Owusu Fordjour Aidoo
- Department of Biological, Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Philipe Guilherme Corcino Souza
- grid.411287.90000 0004 0643 9823Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000 Brazil
| | - Ricardo Siqueira da Silva
- grid.411287.90000 0004 0643 9823Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000 Brazil
| | - Paulo Antonio Santana Júnior
- grid.12799.340000 0000 8338 6359Department of Entomology, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Marcelo Coutinho Picanço
- grid.12799.340000 0000 8338 6359Department of Entomology, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Rosina Kyerematen
- grid.8652.90000 0004 1937 1485Department of Animal Biology and Conservation Sciences (DABCS), University of Ghana, P.O. Box LG 67, Legon-Accra, Ghana
| | - Mamoudou Sétamou
- grid.264760.10000 0004 0387 0036Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599 USA
| | - Sunday Ekesi
- grid.419326.b0000 0004 1794 5158Plant Health Theme, International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Christian Borgemeister
- grid.10388.320000 0001 2240 3300Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany
| |
Collapse
|
20
|
Hu Y, Meng Y, Yao L, Wang E, Tang T, Wang Y, Dai L, Zhao M, Zhang HE, Fan X, Luo L, Xiang W, Zhang Z. Citrus Huanglongbing correlated with incidence of Diaphorina citri carrying Candidatus Liberibacter asiaticus and citrus phyllosphere microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:964193. [PMID: 36466264 PMCID: PMC9716883 DOI: 10.3389/fpls.2022.964193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
In China, citrus Huanglongbing (HLB) disease is caused by the Candidatus Liberibacter asiaticus bacterium, which is carried by the Asian citrus psyllid Diaphorina citri Kuwayama. It was hypothesized that the epidemic of the HLB may related with the rate of bacterium presence in the insect vector and bacterium content in plant tissues, as well as the phyllosphere microbe communities changes. This study systematically analyzed the presence or absence of Ca. L. asiaticus in citrus tree leaves and in the insect vector D. citri over a 6-year period using real-time PCR. In addition, changes in the number of bacteria carried by D. citri over 12 months were quantified, as well as the relationship between the proportion of D. citri carrying Ca. L. asiaticus and the proportion of plants infected with Ca. L. asiaticus were analyzed. Results showed that the proportion of D. citri carrying bacteria was stable and relatively low from January to September. The bacteria in citrus leaves relatively low in spring and summer, then peaked in December. The proportion of D. citri carrying bacteria gradually declined from 2014 to 2019. The proportion of D. citri carrying Ca. L. asiaticus showed a significant positive correlation with the proportion of diseased citrus. The phyllosphere bacterial and fungal communities on the healthy citrus leaf were significantly different with the disease leaf in April and December. Pathogenic invasions change the citrus phyllosphere microbial community structure. It could be summarized that citrus Huanglongbing correlated with incidence of Diaphorina citri carrying Candidatus Liberibacter asiaticus and citrus phyllosphere microbiome.
Collapse
Affiliation(s)
- Yang Hu
- Department of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou, China
| | - Youqing Meng
- Zhejiang Provincial General Station of Plant Protection, Quarantine and Pesticide Management, Hangzhou, China
| | - Liangjin Yao
- Department of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou, China
| | - Enguo Wang
- Department of Plant Protection, Zhejiang Linhai Agricultural Technology Extension Center, Taizhou, China
| | - Tao Tang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Mingping Zhao
- Plant Protection and Quarantine Station, Bureau of Agriculture and Rural Affairs of Jianghua Yao Autonomous County, Yongzhou, China
| | - Hong-en Zhang
- School of Mathematical, Nankai University, Tianjin, China
| | - Xiaoyan Fan
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Luyun Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Wei Xiang
- Hunan Crop Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| |
Collapse
|
21
|
Pentylamine inhibits humidity detection in insect vectors of human and plant borne pathogens. Sci Rep 2022; 12:16732. [PMID: 36202886 PMCID: PMC9537525 DOI: 10.1038/s41598-022-20488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Insects house humidity-sensing neurons in the antenna, which is presumed to be important for a variety of behaviors and survival since water is a crucial component of the environment. Here we use the simple olfactory system of the Asian Citrus Psyllid (ACP), a citrus pest that transmits a deadly bacterium, to identify volatile amines that significantly inhibited humidity-induced activation of antennal neurons. The inhibition of action potentials is observed by single sensillum recordings and mixing these odorants with humid air abolished the humidity avoidance behavior of ACP. The inhibition is conserved in the humidity-sensing coeloconic neurons of dipteran Drosophila melanogaster that are known to detect humidity, but it is not seen in other coeloconic neurons that are not sensitive to humidity. Dipteran mosquitoes Aedes aegypti and Anopheles gambiae oviposit in water, and the addition of the humidity-inhibiting odorants in a two-choice oviposition assay significantly reduces oviposition. Our results demonstrate that a naturally occurring volatile compound can effectively “mask” detection of an important environmental cue and modify behavior of important vectors of plant and human disease pathogens. Odorants targeting the conserved humidity sensing system of insects, therefore, offer a novel strategy for modifying their behavior.
Collapse
|
22
|
Alves MN, Raiol-Junior LL, Girardi EA, Miranda M, Wulff NA, Carvalho EV, Lopes SA, Ferro JA, Ollitrault P, Peña L. Insight into resistance to ' Candidatus Liberibacter asiaticus,' associated with Huanglongbing, in Oceanian citrus genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1009350. [PMID: 36160987 PMCID: PMC9500433 DOI: 10.3389/fpls.2022.1009350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Huanglongbing (HLB), the most destructive citrus disease, is associated with unculturable, phloem-limited Candidatus Liberibacter species, mainly Ca. L. asiaticus (Las). Las is transmitted naturally by the insect Diaphorina citri. In a previous study, we determined that the Oceanian citrus relatives Eremocitrus glauca, Microcitrus warburgiana, Microcitrus papuana, and Microcitrus australis and three hybrids among them and Citrus were full-resistant to Las. After 2 years of evaluations, leaves of those seven genotypes remained Las-free even with their susceptible rootstock being infected. However, Las was detected in their stem bark above the scion-rootstock graft union. Aiming to gain an understanding of the full-resistance phenotype, new experiments were carried out with the challenge-inoculated Oceanian citrus genotypes through which we evaluated: (1) Las acquisition by D. citri fed onto them; (2) Las infection in sweet orange plants grafted with bark or budwood from them; (3) Las infection in sweet orange plants top-grafted onto them; (4) Las infection in new shoots from rooted plants of them; and (5) Las infection in new shoots of them after drastic back-pruning. Overall, results showed that insects that fed on plants from the Oceanian citrus genotypes, their canopies, new flushes, and leaves from rooted cuttings evaluated remained quantitative real-time polymerase chain reaction (qPCR)-negative. Moreover, their budwood pieces were unable to infect sweet orange through grafting. Furthermore, sweet orange control leaves resulted infected when insects fed onto them and graft-receptor susceptible plants. Genomic and morphological analysis of the Oceanian genotypes corroborated that E. glauca and M. warburgiana are pure species while our M. australis accession is an M. australis × M. inodora hybrid and M. papuana is probably a M. papuana × M. warburgiana hybrid. E. glauca × C. sinensis hybrid was found coming from a cross between E. glauca and mandarin or tangor. Eremocitrus × Microcitrus hybrid is a complex admixture of M. australasica, M. australis, and E. glauca while the last hybrid is an M. australasica × M. australis admixture. Confirmation of consistent full resistance in these genotypes with proper validation of their genomic parentages is essential to map properly genomic regions for breeding programs aimed to generate new Citrus-like cultivars yielding immunity to HLB.
Collapse
Affiliation(s)
- Mônica N. Alves
- Fundo de Defesa da Citricultura, Araraquara, Brazil
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Laudecir L. Raiol-Junior
- Fundo de Defesa da Citricultura, Araraquara, Brazil
- Empresa Brasileira de Pesquisa Agropecuária, Cruz das Almas, Brazil
| | - Eduardo A. Girardi
- Fundo de Defesa da Citricultura, Araraquara, Brazil
- Empresa Brasileira de Pesquisa Agropecuária, Cruz das Almas, Brazil
| | - Maéva Miranda
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Everton V. Carvalho
- Fundo de Defesa da Citricultura, Araraquara, Brazil
- Empresa Brasileira de Pesquisa Agropecuária, Cruz das Almas, Brazil
| | | | - Jesus A. Ferro
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Patrick Ollitrault
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Leandro Peña
- Fundo de Defesa da Citricultura, Araraquara, Brazil
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
23
|
Quintana M, de-León L, Cubero J, Siverio F. Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of ‘Candidatus Liberibacter Solanacearum’ by qPCR. Microorganisms 2022; 10:microorganisms10061104. [PMID: 35744622 PMCID: PMC9230594 DOI: 10.3390/microorganisms10061104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
‘Candidatus Liberibacter solanacearum’ (CaLsol) is an uncultured bacterium, transmitted by psyllids and associated with several diseases in Solanaceae and Apiaceae crops. CaLsol detection in psyllids often requires insect destruction, preventing a subsequent morphological identification. In this work, we have assessed the influence on the detection of CaLsol by PCR in Bactericera trigonica (Hemiptera: Psyllidae), of four specimen preparations (entire body, ground, cut-off head, and punctured abdomen) and seven DNA extraction methods (PBS suspension, squashing on membrane, CTAB, Chelex, TRIsureTM, HotSHOT, and DNeasy®). DNA yield and purity ratios, time consumption, cost, and residues generated were also evaluated. Optimum results were obtained through grinding, but it is suggested that destructive procedures are not essential in order to detect CaLsol. Although CaLsol was detected by qPCR with DNA obtained by the different procedures, HotSHOT was the most sensitive method. In terms of time consumption and cost, squashed on membrane, HotSHOT, and PBS were the fastest, while HotSHOT and PBS were the cheapest. In summary, HotSHOT was accurate, fast, simple, and sufficiently sensitive to detect this bacterium within the vector. Additionally, cross-contamination with CaLsol was assessed in the ethanol solutions where B. trigonica specimens were usually collected and preserved. CaLsol-free psyllids were CaLsol-positive after incubation with CaLsol-positive specimens. This work provides a valuable guide when choosing a method to detect CaLsol in vectors according to the purpose of the study.
Collapse
Affiliation(s)
- María Quintana
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, 38270 San Cristóbal de La Laguna, Spain;
- Correspondence:
| | - Leandro de-León
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain;
| | - Jaime Cubero
- Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain;
| | - Felipe Siverio
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, 38270 San Cristóbal de La Laguna, Spain;
- Sección de Laboratorio de Sanidad Vegetal, Consejería de Agricultura, Ganadería, Pesca y Aguas del Gobierno de Canarias, 38270 San Cristóbal de La Laguna, Spain
| |
Collapse
|
24
|
Zhang F, Qiu Z, Huang A, Cheng Y, Fan G. Global dynamics and bifurcation analysis of an insect-borne plant disease model with two transmission routes. INT J BIOMATH 2022. [DOI: 10.1142/s1793524522500553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huanglongbing (HLB) is a plant disease mainly spread by the insect-borne citrus psyllid. It is the most destructive citrus pathosystem worldwide. To understand the impact of sexual transmission on HLB dynamics, we propose a host–vector–HLB compartment model incorporating two transmission routes. The basic reproduction number [Formula: see text] is derived. Various interventions of the disease are assessed. We also investigate the effect of different incidence functions to simulate sexual transmission. For the case of sublinear incidence functions, the disease-free equilibrium is globally asymptotically stable (GAS) provided [Formula: see text]. For mass action incidence of sexual transmission, the endemic equilibrium is GAS provided [Formula: see text]. However, under nonlinear incidence, it is proved that the model may exhibit backward bifurcation. Theoretical and numerical studies reveal that (i) different forces of infection between heterosexual psyllids in the model may have a distinct impact on disease dynamics; (ii) sensitivity analysis shows that for [Formula: see text], the transmission rate between host and vector is more sensitive parameter than that between heterosexual psyllids; (iii) if the sexual transmission is ignored, the disease burden is likely to be underestimated in comparison with realistic scenarios; (iv) in the absence of chemical insecticides, the combined use of yellow sticky traps and injection of nutrient solutions can be more effective in suppressing the spread of HLB. These findings provide valuable insights for public policymakers to determine the long-term viability of implemented HLB management strategies and highlight the urgency of finding sustainable HLB solutions.
Collapse
Affiliation(s)
- Fumin Zhang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, P. R. China
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, P. R. China
| | - Zhipeng Qiu
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, P. R. China
| | - Aijun Huang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, P. R. China
| | - Yan Cheng
- College of Mathematics, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Guihong Fan
- Department of Mathematics, Columbus State University, Columbus, GA, USA
| |
Collapse
|
25
|
Snyder J, Dickens KL, Halbert SE, Dowling S, Russell D, Henderson R, Rohrig E, Ramadugu C. The Development and Evaluation of Insect Traps for the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae), Vector of Citrus Huanglongbing. INSECTS 2022; 13:insects13030295. [PMID: 35323593 PMCID: PMC8954215 DOI: 10.3390/insects13030295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Citrus cultivation is affected in many parts of the world because of a devastating disease, huanglongbing (HLB) or citrus greening. In Florida, nearly all commercial citrus is compromised due to HLB, and the disease has spread to other citrus-growing regions of the United States, California and Texas. In California, testing Asian citrus psyllids (ACPs) for the HLB pathogen has been an essential part of integrated pest management. ACP and HLB surveys are essential for disease management in areas where HLB is not widespread. We developed improved ACP traps that can be deployed in the field along with the standard yellow sticky traps. The reusable traps were designed with Rhinoceros computer software and a 3D printer. These traps can be deployed for several months and provide a dynamic sampling mechanism for an improved disease survey strategy. In the present study, ACPs from the 3D-printed traps are collected in a preservative and appear suitable for HLB testing. The evaluation of traps in Florida and California under laboratory, greenhouse, and field conditions indicates that the 3D-printed traps can capture ACPs with about the same efficiency as the sticky traps. They are easy to handle and provide an important field tool for HLB management. Abstract Citrus huanglongbing (HLB) is a severe problem for citrus cultivation. The disease management programs benefit from improved field tools suitable for surveying the ACP vector (Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae)) and the associated pathogen. In the present study, we utilize three-dimensional (3D) printers and design tools to develop traps that can capture and preserve ACPs. Three novel, 3D-printed traps were designed and evaluated: stem trap, and cylinder traps 1 and 2. The traps and yellow sticky cards were deployed weekly for 8 months in 2 non-commercial citrus groves in Florida; in California, the traps were evaluated for 12 months in field cages and 4 citrus groves. The stem traps captured lower numbers of ACPs at all experimental sites compared to the cylinder traps. Capture rates in the cylinder traps were comparable to the sticky trap, making the device a viable tool for monitoring field ACPs. The two main advantages of using the reusable 3D traps over standard methods of ACP and HLB surveys include dynamic sampling that can be conducted year-round and the capture of ACPs that can be preserved and tested. Improved trapping may facilitate quick management decisions and mitigate HLB.
Collapse
Affiliation(s)
- James Snyder
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32608, USA; (J.S.); (K.L.D.); (S.E.H.); (S.D.); (D.R.); (E.R.)
| | - Katrina L. Dickens
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32608, USA; (J.S.); (K.L.D.); (S.E.H.); (S.D.); (D.R.); (E.R.)
| | - Susan E. Halbert
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32608, USA; (J.S.); (K.L.D.); (S.E.H.); (S.D.); (D.R.); (E.R.)
| | - Stefanie Dowling
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32608, USA; (J.S.); (K.L.D.); (S.E.H.); (S.D.); (D.R.); (E.R.)
| | - Dyrana Russell
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32608, USA; (J.S.); (K.L.D.); (S.E.H.); (S.D.); (D.R.); (E.R.)
| | | | - Eric Rohrig
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32608, USA; (J.S.); (K.L.D.); (S.E.H.); (S.D.); (D.R.); (E.R.)
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Correspondence:
| |
Collapse
|
26
|
Ibanez F, Suh JH, Wang Y, Rivera M, Setamou M, Stelinski LL. Salicylic acid mediated immune response of Citrus sinensis to varying frequencies of herbivory and pathogen inoculation. BMC PLANT BIOLOGY 2022; 22:7. [PMID: 34979915 PMCID: PMC8722004 DOI: 10.1186/s12870-021-03389-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant immunity against pathogens and pests is comprised of complex mechanisms orchestrated by signaling pathways regulated by plant hormones [Salicylic acid (SA) and Jasmonic acid (JA)]. Investigations of plant immune response to phytopathogens and phloem-feeders have revealed that SA plays a critical role in reprogramming of the activity and/or localization of transcriptional regulators via post-translational modifications. We explored the contributing effects of herbivory by a phytopathogen vector [Asian citrus psyllid, Diaphorina citri] and pathogen [Candidatus Liberibacter asiaticus (CaLas)] infection on response of sweet orange [Citrus sinensis (L.) Osbeck] using manipulative treatments designed to mimic the types of infestations/infections that citrus growers experience when cultivating citrus in the face of Huanglongbing (HLB) disease. RESULTS A one-time (7 days) inoculation access period with CaLas-infected vectors caused SA-associated upregulation of PR-1, stimulating defense response after a long period of infection without herbivory (270 and 360 days). In contrast, while repeated (monthly) 'pulses' of 7 day feeding injury by psyllids stimulated immunity in CaLas-infected citrus by increasing SA in leaves initially (up to 120 days), long-term (270 and 360 days) repeated herbivory caused SA to decrease coincident with upregulation of genes associated with SA metabolism (BMST and DMR6). Similarly, transcriptional responses and metabolite (SA and its analytes) accumulation in citrus leaves exposed to a continuously reproducing population of D. citri exhibited a transitory upregulation of genes associated with SA signaling at 120 days and a posterior downregulation after long-term psyllid (adults and nymphs) feeding (270 and 360 days). CONCLUSIONS Herbivory played an important role in regulation of SA accumulation in mature leaves of C. sinensis, whether or not those trees were coincidentally infected with CaLas. Our results indicate that prevention of feeding injury inflicted by D. citri from the tritrophic interaction may allow citrus plants to better cope with the consequences of CaLas infection, highlighting the importance of vector suppression as a component of managing this cosmopolitan disease.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, 33850 USA
- Present address: Texas A&M University-AgriLife Research, 2415 E Highway 83 –, Weslaco, TX 78596 USA
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, 33850 USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, 33850 USA
| | - Monique Rivera
- Department of Entomology, University of California Riverside, Riverside, California, 92521 USA
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, 312 N International Blvd, Weslaco, TX 78599 USA
| | - Lukasz L. Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, 33850 USA
| |
Collapse
|
27
|
Rashidi M, Lin CY, Britt K, Batuman O, Al Rwahnih M, Achor D, Levy A. Diaphorina citri flavi-like virus localization, transmission, and association with Candidatus Liberibacter asiaticus in its psyllid host. Virology 2021; 567:47-56. [PMID: 34998225 DOI: 10.1016/j.virol.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.
Collapse
Affiliation(s)
- Mahnaz Rashidi
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Kellee Britt
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Ozgur Batuman
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
28
|
Guo CF, Ahmed MZ, Ou D, Zhang LH, Lu ZT, Sang W, McKenzie CL, Shatters RG, Qiu BL. Parasitoid vectors a plant pathogen, potentially diminishing the benefits it confers as a biological control agent. Commun Biol 2021; 4:1331. [PMID: 34824370 PMCID: PMC8617049 DOI: 10.1038/s42003-021-02851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is a destructive disease of citrus primarily transmitted by the Asian citrus psyllid (ACP). Biocontrol of ACP is an environmentally sustainable alternative to chemicals. However, the risk of parasitoid rational application in ACP biocontrol has never been evaluated. Here we show, the dominant parasitoid of ACP, Tamarixia radiata, can acquire the HLB pathogen Candidatus Liberibacter asiaticus (CLas) and transmit it horizontally when probing ACP nymphs. If these ACP nymphs survive the probing, develop to adults and move to healthy plants, CLas can be transmitted to citrus leaves during feeding. We illustrate the formerly unrecognized risk that a parasitoid can potentially serve as a phoretic vector of the pathogen transmitted by its host, thus potentially diminishing some of the benefits it confers via biocontrol. Our findings present a significant caution to the strategy of using parasitoids in orchards with different infection status of insect-vectored pathogens.
Collapse
Affiliation(s)
- Chang-Fei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China
| | - Muhammad Z Ahmed
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, USDA, Fort Pierce, FL, 34945, USA
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China
| | - Li-He Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
| | - Zi-Tong Lu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China
| | - Cindy L McKenzie
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, USDA, Fort Pierce, FL, 34945, USA
| | - Robert G Shatters
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, USDA, Fort Pierce, FL, 34945, USA
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China.
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China.
- College of Life Sciences, Chongqing Normal University, Chongqing, 401300, China.
| |
Collapse
|
29
|
Chen XD, Kaur N, Horton DR, Cooper WR, Qureshi JA, Stelinski LL. Crude Extracts and Alkaloids Derived from Ipomoea-Periglandula Symbiotic Association Cause Mortality of Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). INSECTS 2021; 12:insects12100929. [PMID: 34680698 PMCID: PMC8539733 DOI: 10.3390/insects12100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Fungi in the genus Periglandula (Clavicipitaceae) are endosymbionts of plants in the Convolvulaceae family (morning glories and relatives) where they may help protect plants from herbivory by production of bioactive compounds known as ergot alkaloids. We investigated mortality and behavior of nymphs and adults of Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) exposed to crude extracts from morning glories and to synthetic ergot alkaloids known to be produced in Convolvulaceae-Periglandula symbioses. We monitored effects of extracts or synthetic compounds on survival, host settling, and feeding. Several ergot alkaloids reduced survival of D. citri on treated surfaces. Crude extracts and synthetic ergot alkaloids reduced D. citri adult settling on treated host plants compared with water controls. We observed an antifeedant effect of the crude extracts at concentrations which otherwise caused minimal adult mortality. Our results indicate that ergot alkaloids produce both toxic and sub-lethal effects on D. citri that could be useful for management of this pest. Abstract Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is an important economic pest of citrus crops because it vectors the causal pathogen of huanglongbing (HLB; aka citrus greening). Population suppression of D. citri with insecticides has been disproportionally relied on for HLB management and a greater diversity of more sustainable tools is needed. Periglandula spp. is a fungal endosymbiont (family Clavicipitaceae) that forms a mutualistic relationship with members of plants in family Convolvulaceae. This association results in the production of ergot alkaloids that were previously documented as having psyllicidal properties. We investigated the mortality and behavior of D. citri exposed to crude extracts from morning glories in the plant family Convolvulaceae, as well as synthetic ergot alkaloids. Nymphs and adults were exposed to the crude plant extracts from Periglandula positive species of Convolvulaceae, as well as five synthetic ergot alkaloids. Treatments were prepared by exposing clippings of citrus to 100 ng/µL of crude extract from Periglandula-positive species of Ipomoea (I. imperati, I. leptophylla, I. pandurata and I. tricolor), and Turbina corymbosa, and from one Periglandula-negative species (I. alba) (100 ng/µL). Mortality of adult and nymphal D. citri was significantly higher than the control after exposure to extracts from I. tricolor and I. imperati. The synthetic ergot alkaloids, lysergol (10–100 ng/µL), ergonovine maleate (100 ng/µL), agroclavine (10–100 ng/µL), and ergosine (10–100 ng/µL) increased mortality of D. citri nymphs, while ergosine (100 ng/µL) and agroclavine (100 ng/µL) increased mortality of adults compared to water controls. Fewer D. citri adults settled on plants treated with crude extracts or synthetic ergot alkaloids than on water controls at 48 h after release. D. citri that fed on citrus leaves treated with 10 ng/μL solution of crude extract from the Periglandula-positive species Ipomoea (I. imperati, I. leptophylla, I. pandurata, I. tricolor), and Turbina corymbosa excreted significantly less honeydew compared with a negative water control and extract from Periglandula-negative species (I. alba). Our results indicate that crude extracts and ergot alkaloids exhibit toxic and sub-lethal effects on D. citri that could be useful for management of this pest.
Collapse
Affiliation(s)
- Xue-Dong Chen
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA;
- Southwest Florida Research and Education Center, Entomology and Nematology Department, University of Florida, 2685 SR 29 North, Immokalee, FL 34142, USA;
- Correspondence: ; Tel.: +1-239-658-3400
| | - Navneet Kaur
- Department of Crop and Soil Science, Oregon State University, 3050 Campus Way, 107 Crop Science Building, Corvallis, OR 97331, USA;
| | - David R. Horton
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA; (D.R.H.); (W.R.C.)
| | - W. Rodney Cooper
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA; (D.R.H.); (W.R.C.)
| | - Jawwad A. Qureshi
- Southwest Florida Research and Education Center, Entomology and Nematology Department, University of Florida, 2685 SR 29 North, Immokalee, FL 34142, USA;
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA;
| |
Collapse
|
30
|
Keremane ML, McCollum TG, Roose ML, Lee RF, Ramadugu C. An Improved Reference Gene for Detection of " Candidatus Liberibacter asiaticus" Associated with Citrus Huanglongbing by qPCR and Digital Droplet PCR Assays. PLANTS 2021; 10:plants10102111. [PMID: 34685920 PMCID: PMC8540500 DOI: 10.3390/plants10102111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Citrus huanglongbing (HLB) disease associated with the 'Candidatus Liberibacter asiaticus' (CLas) bacterium has caused significant financial damage to many citrus industries. Large-scale pathogen surveys are routinely conducted in California to detect CLas early in the disease cycle by lab-based qPCR assays. We have developed an improved reference gene for the sensitive detection of CLas from plants in diagnostic duplex qPCR and analytical digital droplet PCR (ddPCR) assays. The mitochondrial cytochrome oxidase gene (COX), widely used as a reference, is not ideal because its high copy number can inhibit amplification of small quantities of target genes. In ddPCRs, oversaturation of droplets complicates data normalization and quantification. The variable copy numbers of COX gene in metabolically active young tissue, greenhouse plants, and citrus relatives suggest the need for a non-variable, nuclear, low copy, universal reference gene for analysis of HLB hosts. The single-copy nuclear gene, malate dehydrogenase (MDH), developed here as a reference gene, is amenable to data normalization, suitable for duplex qPCR and ddPCR assays. The sequence of MDH fragment selected is conserved in most HLB hosts in the taxonomic group Aurantioideae. This study emphasizes the need to develop standard guidelines for reference genes in DNA-based PCR assays.
Collapse
Affiliation(s)
- Manjunath L. Keremane
- USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA; (M.L.K.); (R.F.L.)
| | | | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Richard F. Lee
- USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA; (M.L.K.); (R.F.L.)
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
- Correspondence:
| |
Collapse
|
31
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
32
|
Avery PB, Duren EB, Qureshi JA, Adair RC, Adair MM, Cave RD. Field Efficacy of Cordyceps javanica, White Oil and Spinetoram for the Management of the Asian Citrus Psyllid, Diaphorina citri. INSECTS 2021; 12:824. [PMID: 34564264 PMCID: PMC8467585 DOI: 10.3390/insects12090824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Citrus greening disease is devastating the citrus industry in Florida, and the conventional synthetic pesticide applications used to control the vector, the Asian citrus psyllid (AsCP), Diaphorina citri, are rapidly becoming unsustainable. Various laboratory experiments indicate that the entomopathogenic fungus Cordyceps javanica, alone and in combination with horticultural oils, may offer a more sustainable strategy for the management of AsCP. Field studies conducted in 2018 and 2019 in mature citrus indicated that C. javanica alone, C. javanica mixed with white oil, and the chemical standard spinetoram mixed with white oil significantly suppressed AsCP adult populations by 61-83% up to 14 days after treatment in 2018, although colony-forming units of C. javanica were still present on the leaves 21 days after treatment (DAT). Only spinetoram + oil significantly suppressed AsCP, by 100%, up to 7 DAT in 2019. Natural enemies of AsCP, including lady beetles, lacewing larvae and the parasitoid Tamarixia radiata, were observed in the fungal treatments and the untreated control. The AsCP suppression by C. javanica and its compatibility with beneficial organisms suggest the potential use of this entomopathogenic fungus in citrus-integrated pest management.
Collapse
Affiliation(s)
- Pasco B. Avery
- Indian River Research and Education Center, Department of Entomology and Nematology, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; (E.B.D.); (R.D.C.)
| | - Emily B. Duren
- Indian River Research and Education Center, Department of Entomology and Nematology, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; (E.B.D.); (R.D.C.)
| | - Jawwad A. Qureshi
- Southwest Florida Research and Education Center, Department of Entomology and Nematology, University of Florida, 2685 State Road 29 N, Immokalee, FL 34142, USA;
| | - Robert C. Adair
- The Florida Research Center for Agricultural Sustainability, 7055 33rd Street, Vero Beach, FL 32966, USA; (R.C.A.J.); (M.M.A.)
| | - Matthew M. Adair
- The Florida Research Center for Agricultural Sustainability, 7055 33rd Street, Vero Beach, FL 32966, USA; (R.C.A.J.); (M.M.A.)
| | - Ronald D. Cave
- Indian River Research and Education Center, Department of Entomology and Nematology, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; (E.B.D.); (R.D.C.)
| |
Collapse
|
33
|
Wu B, Li N, Deng Z, Luo F, Duan Y. Selection and Evaluation of a Thornless and HLB-Tolerant Bud-Sport of Pummelo Citrus With an Emphasis on Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:739108. [PMID: 34531892 PMCID: PMC8438139 DOI: 10.3389/fpls.2021.739108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 06/01/2023]
Abstract
The selection of elite bud-sports is an important breeding approach in horticulture. We discovered and evaluated a thornless pummelo bud-sport (TL) that grew more vigorously and was more tolerant to Huanglongbing (HLB) than the thorny wild type (W). To reveal the underlying molecular mechanisms, we carried out whole-genome sequencing of W, and transcriptome comparisons of W, TL, and partially recovered thorny "mutants" (T). The results showed W, TL, and T varied in gene expression, allelic expression, and alternative splicing. Most genes/pathways with significantly altered expression in TL compared to W remained similarly altered in T. Pathway and gene ontology enrichment analysis revealed that the expression of multiple pathways, including photosynthesis and cell wall biosynthesis, was altered among the three genotypes. Remarkably, two polar auxin transporter genes, PIN7 and LAX3, were expressed at a significantly lower level in TL than in both W and T, implying alternation of polar auxin transport in TL may be responsible for the vigorous growth and thornless phenotype. Furthermore, 131 and 68 plant defense-related genes were significantly upregulated and downregulated, respectively, in TL and T compared with W. These genes may be involved in enhanced salicylic acid (SA) dependent defense and repression of defense inducing callose deposition and programmed cell death. Overall, these results indicated that the phenotype changes of the TL bud-sport were associated with tremendous transcriptome alterations, providing new clues and targets for breeding and gene editing for citrus improvement.
Collapse
Affiliation(s)
- Bo Wu
- School of Computing, Clemson University, Clemson, SC, United States
| | - Na Li
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL, United States
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL, United States
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Yongping Duan
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL, United States
| |
Collapse
|
34
|
Darolt JC, Bento FDMM, Merlin BL, Peña L, Cônsoli FL, Wulff NA. The Genome of " Candidatus Liberibacter asiaticus" Is Highly Transcribed When Infecting the Gut of Diaphorina citri. Front Microbiol 2021; 12:687725. [PMID: 34322103 PMCID: PMC8312247 DOI: 10.3389/fmicb.2021.687725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is the vector of the bacterium "Candidatus Liberibacter asiaticus" (Las), associated with the devastating, worldwide citrus disease huanglongbing. In order to explore the molecular interactions of this bacterium with D. citri during the vector acquisition process, cDNA libraries were sequenced on an Illumina platform, obtained from the gut of adult psyllids confined in healthy (H) and in Las-infected young shoots (Las) for different periods of times (I = 1/2 days, II = 3/4 days, and III = 5/6 days). In each sampling time, three biological replicates were collected, containing 100 guts each, totaling 18 libraries depleted in ribosomal RNA. Reads were quality-filtered and mapped against the Chinese JXGC Las strain and the Floridian strain UF506 for the analysis of the activity of Las genome and SC1, SC2, and type 3 (P-JXGC-3) prophages of the studied Las strain. Gene activity was considered only if reads of at least two replicates for each acquisition access period mapped against the selected genomes, which resulted in coverages of 44.4, 79.9, and 94.5% of the JXGC predicted coding sequences in Las I, Las II, and Las III, respectively. These genes indicate an active metabolism and increased expression according to the feeding time in the following functional categories: energy production, amino acid metabolism, signal translation, cell wall, and replication and repair of genetic material. Pilins were among the most highly expressed genes regardless of the acquisition time, while only a few genes from cluster I of flagella were not expressed. Furthermore, the prophage region had a greater coverage of reads for SC1 and P-JXGC-3 prophages and low coverage in SC2 and no indication of activity for the lysis cycle. This research presents the first descriptive analysis of Las transcriptome in the initial steps of the D. citri gut colonization, where 95% of Las genes were active.
Collapse
Affiliation(s)
- Josiane Cecília Darolt
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| | - Flavia de Moura Manoel Bento
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Bruna Laís Merlin
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Leandro Peña
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidade Politécnica de Valencia, Valencia, Spain
| | - Fernando Luis Cônsoli
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Nelson Arno Wulff
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| |
Collapse
|
35
|
Alves MN, Cifuentes-Arenas JC, Raiol-Junior LL, Ferro JA, Peña L. Early Population Dynamics of " Candidatus Liberibacter asiaticus" in Susceptible and Resistant Genotypes After Inoculation With Infected Diaphorina citri Feeding on Young Shoots. Front Microbiol 2021; 12:683923. [PMID: 34177870 PMCID: PMC8219961 DOI: 10.3389/fmicb.2021.683923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/14/2022] Open
Abstract
Huanglongbing is a highly destructive citrus disease associated with "Candidatus Liberibacter asiaticus" (Las), a phloem-limited and non-culturable bacterium, naturally transmitted by the psyllid Diaphorina citri. Although diverse approaches have been used to understand the molecular mechanisms involved in the pathogen-host interaction, such approaches have focused on already infected and/or symptomatic plants, missing early events in the initial days post-inoculation. This study aimed to identify the time course of Las multiplication and whole-plant colonization immediately following inoculation by infected psyllids feeding for 2 days. Thus, the experimental approach was to track Las titers after psyllid inoculation in new shoots (NS) of Citrus × sinensis (susceptible), Murraya paniculata (partially resistant), and Bergera koenigii (fully resistant). Soon after psyllid removal, Las titers dropped until the 10-12th days in all three species. Following this, Las titers increased exponentially only in C. × sinensis and M. paniculata, indicating active bacterial multiplication. In C. × sinensis, Las reached a stationary phase at ∼5 log Las cells/g of tissue from the 40th day onward, while in M. paniculata, Las increased at a lower rate of up to ∼3 log Las cells/g of tissue between the 40th and 60th days, decreasing gradually thereafter and becoming undetectable from the 160th day onward. In B. koenigii, Las titers decreased from the start and remained undetectable. In C. × sinensis, an average of 2.6 log of Las cells/g of tissue was necessary for Las to move out of 50% of the NS in 23.6 days and to colonize the rest of the plant, causing a successful infection. Conversely, the probability of Las moving out of the NS remained below 50% in M. paniculata and zero in B. koenigii. To our knowledge, this is the first study on Las dynamics and whole-plant colonization during the earliest stages of infection. Identification of critical time-points for either successful multiplication or Las resistance may help to elucidate initial events of Las-host interactions that may be missed due to longer sampling intervals and at later stages of infection.
Collapse
Affiliation(s)
- Mônica Neli Alves
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | | | | | - Jesus Aparecido Ferro
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
36
|
Alquézar B, Volpe HXL, Magnani RF, de Miranda MP, Santos MA, Marques VV, de Almeida MR, Wulff NA, Ting HM, de Vries M, Schuurink R, Bouwmeester H, Peña L. Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2021; 12:641457. [PMID: 33763099 PMCID: PMC7982956 DOI: 10.3389/fpls.2021.641457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Huanglongbing (HLB) is a destructive disease, associated with psyllid-transmitted phloem-restricted pathogenic bacteria, which is seriously endangering citriculture worldwide. It affects all citrus species and cultivars regardless of the rootstock used, and despite intensive research in the last decades, there is no effective cure to control either the bacterial species (Candidatus Liberibacter spp.) or their insect vectors (Diaphorina citri and Trioza erytreae). Currently, the best attempts to manage HLB are based on three approaches: (i) reducing the psyllid population by intensive insecticide treatments; (ii) reducing inoculum sources by removing infected trees, and (iii) using nursery-certified healthy plants for replanting. The economic losses caused by HLB (decreased fruit quality, reduced yield, and tree destruction) and the huge environmental costs of disease management seriously threaten the sustainability of the citrus industry in affected regions. Here, we have generated genetically modified sweet orange lines to constitutively emit (E)-β-caryophyllene, a sesquiterpene repellent to D. citri, the main HLB psyllid vector. We demonstrate that this alteration in volatile emission affects behavioral responses of the psyllid in olfactometric and no-choice assays, making them repellent/less attractant to the HLB vector, opening a new alternative for possible HLB control in the field.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Haroldo Xavier Linhares Volpe
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Rodrigo Facchini Magnani
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Chemistry Department, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Pedreira de Miranda
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Mateus Almeida Santos
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Viviani Vieira Marques
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Márcia Rodrigues de Almeida
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Nelson Arno Wulff
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
37
|
Bragard C, Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Kertesz V, Streissl F, MacLeod A. Pest categorisation of Diaphorina citri. EFSA J 2021; 19:e06357. [PMID: 33437319 PMCID: PMC7786542 DOI: 10.2903/j.efsa.2021.6357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EFSA Panel on Plant Health performed a pest categorisation of Diaphorina citri (Hemiptera: Liviidae) (Asian citrus psyllid) for the EU. D. citri is a key pest of citrus in several countries as it is a vector of serious bacterial pathogens, the putative causal agents of Huanglongbing (HLB) also known as citrus greening. Eggs are laid on tips of growing shoots on and between unfurling leaves. Females may lay more than 800 eggs during their lives. Nymphs pass through five instars. The life cycle requires from 14 to 49 days, depending upon the season. There is no diapause, but populations are low in winter. It overwinters as an adult which may live for several months. The species completes 9-10 generations/year; however, under protected conditions, up to 16 generations have been recorded. Commission Implementing Regulation (EU) 2019/2072 (Annex IIA) regulates D. citri, as a quarantine pest not known to occur in the EU territory. Fruits and plants for planting provide potential pathways for entry into the EU. Climatic conditions and the availability of host plants provide conditions to support establishment in the EU. The introduction of D. citri would have an economic impact in the EU through direct but mainly indirect effects due to potential transmission of HLB. Phytosanitary measures are available to reduce the likelihood of entry. D. citri satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. D. citri does not meet the criteria of occurring in the EU, nor plants for planting being the principal means of spread, for it to be regarded as a potential Union regulated non-quarantine pest.
Collapse
|
38
|
Root samples provide early and improved detection of Candidatus Liberibacter asiaticus in Citrus. Sci Rep 2020; 10:16982. [PMID: 33046775 PMCID: PMC7550583 DOI: 10.1038/s41598-020-74093-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Huanglongbing (HLB), or Citrus Greening, is one of the most devastating diseases affecting agriculture today. Widespread throughout Citrus growing regions of the world, it has had severe economic consequences in all areas it has invaded. With no treatment available, management strategies focus on suppression and containment. Effective use of these costly control strategies relies on rapid and accurate identification of infected plants. Unfortunately, symptoms of the disease are slow to develop and indistinct from symptoms of other biotic/abiotic stressors. As a result, diagnosticians have focused on detecting the pathogen, Candidatus Liberibacter asiaticus, by DNA-based detection strategies utilizing leaf midribs for sampling. Recent work has shown that fibrous root decline occurs in HLB-affected trees before symptom development among leaves. Moreover, the pathogen, Ca. Liberibacter asiaticus, has been shown to be more evenly distributed within roots than within the canopy. Motivated by these observations, a longitudinal study of young asymptomatic trees was established to observe the spread of disease through time and test the relative effectiveness of leaf- and root-based detection strategies. Detection of the pathogen occurred earlier, more consistently, and more often in root samples than in leaf samples. Moreover, little influence of geography or host variety was found on the probability of detection.
Collapse
|
39
|
Incidence of Diaphorina citri Carrying Candidatus Liberibacter asiaticus in Brazil's Citrus Belt. INSECTS 2020; 11:insects11100672. [PMID: 33022967 PMCID: PMC7650542 DOI: 10.3390/insects11100672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Huanglongbing (HLB) is a citrus disease of worldwide importance, associated with the presence of Candidatus Liberibacter asiaticus (Las) and vectored by the psyllid Diaphorina citri in Asia and the Americas. To properly manage HLB, removal of inoculum sources and control of the psyllid are undertaken. We evaluated the percentage of the psyllid population with Las, sampled from yellow sticky traps over a three-year period and its relationship with insect population, regions, season of the year, and HLB management in citrus areas in the southwestern, central, and northern regions of São Paulo (SP) and southwestern region of Minas Gerais states, Brazil. In each reading, up to 50 psyllids per region were collected and detection of Las in individual psyllids were made by quantitative polymerase chain reaction. The percentage of psyllids with Las-an average of 65.3%-was constant throughout the year in the southwestern region of SP state, while showing an increase from spring to autumn when sampled from central to northern regions. The proportion of psyllids carrying Las from each region and year period were compared by a proportion test and spectral density analysis. The proportion of psyllids carrying Las evaluated in the same region in different seasons presented statistical differences in central (Araraquara) and southwestern (Santa Cruz do Rio Pardo) regions in 2015, with higher values in the first semester (summer and autumn) than in the second semester (winter and spring). Orchards with poor HLB management had higher incidence of psyllids with Las. Spectral density analysis indicated that good management areas had 50% less relevant peaks of psyllids with Las than in areas with poor HLB management practices. The relationship between the percentage of psyllids carrying Las and the number of captured psyllids in the region in a given time denotes the most critical intake time for HLB spread in citrus orchards. The reduction in the population of psyllids carrying Las is a direct benefit from the use of good management practices.
Collapse
|
40
|
Abreu EFM, Lopes AC, Fernandes AM, Silva SXB, Barbosa CJ, Nascimento AS, Laranjeira FF, Andrade EC. First Report of HLB Causal Agent in Psyllid in State of Bahia, Brazil. NEOTROPICAL ENTOMOLOGY 2020; 49:780-782. [PMID: 32557201 DOI: 10.1007/s13744-020-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The state of Bahia ranks fourth in the national rank for citrus production, and the region of Chapada Diamantina is emerging an important producer of orange for fresh fruit market. Huanglongbing (HLB) is the major phytosanitary threat to Bahia citriculture. In Brazil, the disease was first reported in 2004 in São Paulo state. The bacterium Candidatus Liberibacter asiaticus (CLas) is one of the causal agents of HLB, which is transmitted by the insect vector Diaphorina citri Kuwayama (Hemiptera: Liviidae). Bahia is a HLB-free area; therefore, it is essential to monitor its citrus-producing areas to early detect any possible introduction of the CLas. This study aimed to monitor the presence of the bacteria in the insect vector. Diaphorina citri samples were collected from 2011 to 2014 in different cities located at Chapada Diamantina region and tested by qPCR for the presence of CLas. Three samples were considered positive to bacterium, and all from psyllids collected on Murraya paniculata in the city of Seabra.
Collapse
Affiliation(s)
- E F M Abreu
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil.
| | - A C Lopes
- Agência de Defesa Agropecuária da Bahia, Salvador, Bahia, Brasil
| | - A M Fernandes
- Faculdade Maria Milza, Cruz das Almas, Bahia, Brazil
| | - S X B Silva
- Agência de Defesa Agropecuária da Bahia, Salvador, Bahia, Brasil
| | - C J Barbosa
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brasil
| | - A S Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brasil
| | - F F Laranjeira
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brasil
| | - E C Andrade
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brasil
| |
Collapse
|
41
|
Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios. Sci Rep 2020; 10:9202. [PMID: 32513980 PMCID: PMC7280263 DOI: 10.1038/s41598-020-66274-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/11/2020] [Indexed: 11/09/2022] Open
Abstract
Climate change significantly affects geographic distribution of plants pests and diseases worldwide. Understanding the influence of future climate change on the suitable areas of Diaphorina citri (Kuwayama) in our country and taking timely countermeasures are crucial for improving the effectiveness of control of pest. Based on the occurrence points of D. citri and the selected environmental variables, the potential suitable areas of this pest under climate change scenarios in China were predicted by using MaxEnt and GIS tools. Our results showed that the higly suitable area were mainly located in Guangxi, Guangdong, Fujian, Southern Zhejiang, Southern Jiangxi, Eastern Hunan, Southwestern Guizhou, and the area was 43.7 × 104 km2. Areas of moderate and low suitability were centered on areas of high suitability and radiate to the North successively, with an area of 59.28 × 104 km2 and 93.46 × 104 km2 respectively. From current to 2070 s, the areas of the highly suitable areas will increase, and the geometric center of the highly and total suitable areas will move to north under three climate change scenarios.
Collapse
|
42
|
Guz N, Arshad M, Cagatay NS, Dageri A, Ullah MI. Detection of Wolbachia (Rickettsiales: Anaplasmataceae) and Candidatus Liberibacter asiaticus (Rhizobiales: Rhizobiaceae) Associated With Diaphorina citri (Hemiptera: Liviidae) Collected From Citrus reticulata (Sapindales: Rutaceae) and Alternate Host, Cordia myxa (Boraginales: Boraginaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1486-1492. [PMID: 32207826 DOI: 10.1093/jee/toaa043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of the citrus crop worldwide. It vectors the pathogen 'Candidatus Liberibacter asiaticus' (CLas) that causes a serious disease known as citrus greening. Here, we tested the infection frequency of Wolbachia and CLas from 100 D. citri individuals collected from two host plants belonging to families Rutaceae (Citrus reticulata Blanco) and Boraginaceae (Cordia myxa L.) using molecular methods. The following trend of endosymbionts infection in adult D. citri was found; 85.4% (35/41) by Wolbachia, and 19.5% (8/41) by CLas collected from C. reticulata plants and 65.4% (17/26) by Wolbachia, and 15.4% (4/26) by CLas in case of C. myxa plant. However, 61.5% (8/13) nymphs collected from C. reticulata and 20.0% (4/20) collected from C. myxa plants were infected by Wolbachia, while no nymph was infected by CLas collected from either host plants. Findings from this work represent the first report of CLas presence in D. citri feeding on C. myxa plants. By studying the presence of CLas with other endosymbiotic bacteria, future basic and applied research to develop control strategies can be prioritized.
Collapse
Affiliation(s)
- Nurper Guz
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
| | - Muhammad Arshad
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Naciye Sena Cagatay
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
| | | |
Collapse
|
43
|
Ibanez F, Stelinski LL. Temporal Dynamics of Candidatus Liberibacter asiaticus Titer in Mature Leaves from Citrus sinensis cv Valencia Are Associated with Vegetative Growth. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:589-595. [PMID: 31742603 DOI: 10.1093/jee/toz307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Huanglongbing, a highly destructive disease of citrus species, is associated with a fastidious, gram-negative, phloem-limited bacteria (Candidatus Liberibacter spp.). In Florida, the causative agent of Huanglongbing (HLB) is C. Liberibacter asiaticus (CLas) and it is transmitted by the insect vector, Asian citrus psyllid (Diaphorina citri Kuwayama). Previous investigations have revealed systemic infection of CLas with an erratic and uneven distribution of pathogen in tree phloem. However, previous investigations did not consider the potential impact of plant vegetative growth on presence/absence of CLas in planta. Our objectives were to determine: 1) the effect of vegetative growth of Citrus sinensis (L.) Osbeck cv Valencia on detection of CLas in mature leaves, and 2) the impact of CLas inoculation frequency on progression of CLas titer in citrus leaves through the first year of infection. Temporal dynamics of CLas detection were associated with vegetative flush growth. Surprisingly, there was no difference in CLas titer detected between plants exposed to infected vectors for a one-time 7 d inoculation access period, as compared with plants exposed to continuously breeding CLas-infected insects over the course of an entire year of plant infection. Our results suggest that the CLas bacterium is transported through phloem during annual movement of carbon compounds needed for vegetative plant growth, including transportation from roots to mature leaves. These results highlight the importance of vegetative growth on temporal dynamics of CLas in citrus, and suggest a critical role of the sink-source interaction on presence/absence of CLas in leaves.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| |
Collapse
|
44
|
Ajene IJ, Khamis FM, van Asch B, Pietersen G, Seid N, Rwomushana I, Ombura FLO, Momanyi G, Finyange P, Rasowo BA, Tanga CM, Mohammed S, Ekesi S. Distribution of Candidatus Liberibacter species in Eastern Africa, and the First Report of Candidatus Liberibacter asiaticus in Kenya. Sci Rep 2020; 10:3919. [PMID: 32127552 PMCID: PMC7054587 DOI: 10.1038/s41598-020-60712-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
Huanglongbing (HLB) is a serious disease of Citrus sp. worldwide. In Africa and the Mascarene Islands, a similar disease is known as African citrus greening (ACG) and is associated with the bacterium Candidatus Liberibacter africanus (Laf). In recent years, Candidatus Liberibacter asiaticus (Las) associated with the severe HLB has been reported in Ethiopia. Thus, we aimed to identify the Liberibacter species affecting citrus, the associated vectors in Eastern Africa and their ecological distribution. We assessed the presence of generic Liberibacter in symptomatic leaf samples by quantitative PCR. Subsequently, we sequenced the 50 S ribosomal protein L10 (rplJ) gene region in samples positive for Liberibacters and identified the species by comparison with public sequence data using phylogenetic reconstruction and genetic distances. We detected generic Liberibacter in 26%, 21% and 66% of plants tested from Uganda, Ethiopia and Kenya, respectively. The rplJ sequences revealed the most prevalent Liberibacters in Uganda and Ethiopia were LafCl (22%) and Las (17%), respectively. We detected Las in Kenya for the first time from three sites in the coastal region. Finally, we modelled the potential habitat suitability of Las in Eastern Africa using MaxEnt. The projection showed large areas of suitability for the pathogen in the three countries surveyed. Moreover, the potential distribution in Eastern Africa covered important citrus-producing parts of Ethiopia, Kenya, Uganda and Tanzania, and included regions where the disease has not been reported. These findings will guide in the development of an integrated pest management strategy to ACG/HLB management in Africa.
Collapse
Affiliation(s)
- Inusa J Ajene
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Department of Crop Protection, Faculty of Agriculture Ahmadu Bello University, Zaria, Nigeria
| | - Fathiya M Khamis
- International Center of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | | - Pole Finyange
- Kenya Agricultural and Livestock Research Organization, Matuga, Kenya
| | - Brenda A Rasowo
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Samira Mohammed
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Sunday Ekesi
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
45
|
Chen Y, Bendix C, Lewis JD. Comparative Genomics Screen Identifies Microbe-Associated Molecular Patterns from ' Candidatus Liberibacter' spp. That Elicit Immune Responses in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:539-552. [PMID: 31790346 DOI: 10.1094/mpmi-11-19-0309-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Claire Bendix
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Jennifer D Lewis
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| |
Collapse
|
46
|
Ajene IJ, Khamis F, van Asch B, Pietersen G, Rasowo BA, Ekesi S, Mohammed S. Habitat suitability and distribution potential of Liberibacter species (
“Candidatus
Liberibacter asiaticus
”
and
“Candidatus
Liberibacter africanus
”
) associated with citrus greening disease. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Inusa Jacob Ajene
- International Center of Insect Physiology and Ecology Nairobi Kenya
- Department of Genetics Stellenbosch University Stellenbosch South Africa
- Department of Crop Protection Faculty of Agriculture Ahmadu Bello University Zaria Nigeria
| | - Fathiya Khamis
- International Center of Insect Physiology and Ecology Nairobi Kenya
| | - Barbara van Asch
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | - Gerhard Pietersen
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | | | - Sunday Ekesi
- International Center of Insect Physiology and Ecology Nairobi Kenya
| | - Samira Mohammed
- International Center of Insect Physiology and Ecology Nairobi Kenya
| |
Collapse
|
47
|
Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C. Effects of "Candidatus Liberibacter solanacearum" (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. INSECT SCIENCE 2020; 27:58-68. [PMID: 29676854 DOI: 10.1111/1744-7917.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Liberibacter solanacearum" (Lso) are phloem-restricted and unculturable Gram-negative bacteria. Presently five haplotypes have been identified worldwide; but only haplotypes A and B are associated with the vector Bactericera cockerelli (Šulc.) in the Americas. Previous studies showed that Lso-infection reduces B. cockerelli reproductive output and that Lso haplotype B is more pathogenic than Lso haplotype A. To understand the interaction of Lso haplotype B and B. cockerelli, the fitness of Lso-free and Lso B-infected insects, and the expression of vitellogenin (BcVg1-like), a gene involved directly in the insect reproduction were analyzed. Statistical differences in the number of eggs oviposited, and the total number of progeny nymphs and adults were found among crosses of insects with or without Lso. Significant differences in sex proportions were found between Lso B-infected and Lso-free crosses: a higher proportion of F1 adult females were obtained from Lso B-infected mothers. A significant reduction of BcVg1-like was observed in crosses performed with Lso B-infected females compared to the Lso-free insects. In female cohorts of different age, a significant reduction of BcVg1-like expression was measured in 7-d-old Lso B-infected females (virgin and mated) compared with 7-d-old Lso-free females (virgin and mated), respectively. The reduction of BcVg1-like transcript was associated with a lower number of developing oocytes observed in female's reproductive systems. Overall, this study represents the first step to understand the interaction of Lso B with B. cockerelli, highlighting the effect of Lso B infection on egg production, BcVg1-like expression, and oocyte development.
Collapse
Affiliation(s)
- Angélica Albuquerque Tomilhero Frias
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
- UEM-Depto. de Agronomia, Núcleo de Pesquisa em Biotecnologia Aplicada, Maringá, Brazil
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | - Azucena Mendoza
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | | | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| |
Collapse
|
48
|
Kelley AJ, Pelz-Stelinski KS. Maternal Contribution of Candidatus Liberibacter asiaticus to Asian Citrus Psyllid (Hemiptera: Liviidae) Nymphs Through Oviposition Site Inoculation and Transovarial Transmission. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2565-2568. [PMID: 31298703 DOI: 10.1093/jee/toz197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Indexed: 05/27/2023]
Abstract
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits Candidatus Liberibacter asiaticus (Las), the bacterial pathogen putatively responsible for citrus huanglongbing. Multiple studies have shown psyllids acquire Las more frequently, and are more likely to inoculate susceptible plants, when they acquire Las as nymphs. Understanding the transmission of Las to nymphs is critical to the Las lifecycle. The objective of this study was to determine the transmission Las by female D. citri to their offspring. Two transmission pathways were quantified: horizontal transmission (acquisition of Las via feeding at the oviposition site) and vertical transmission (transovarial). Eggs of individual, infected females were transferred to an uninfected seedling to assess vertical transmission. In a second experiment, horizontal transmission was evaluated by replacing eggs laid by infected females with uninfected nymphs. Nymphs exposed to Las via horizontal transmission of the oviposition site were more likely to acquire Las than from vertical transmission. Las deposited in flush by an infected adult female feeding during oviposition was sufficient for infecting nymphs. Combined results of both experiments suggest that vertical transmission allows Las to spread in low amounts even when infected plant hosts are not available and that inoculation of the oviposition site provides a source of Las to developing nymphs via the plant phloem. These data support the hypothesis that transmission through infected plant material via maternal inoculation is a primary pathway of Las transmission between vector and host.
Collapse
Affiliation(s)
- Alicia J Kelley
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| |
Collapse
|
49
|
Cifuentes-Arenas JC, Beattie GAC, Peña L, Lopes SA. Murraya paniculata and Swinglea glutinosa as Short-Term Transient Hosts of ' Candidatus Liberibacter asiaticus' and Implications for the Spread of Huanglongbing. PHYTOPATHOLOGY 2019; 109:2064-2073. [PMID: 31425000 DOI: 10.1094/phyto-06-19-0216-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Murraya paniculata and Swinglea glutinosa are aurantioid hosts of the Asian citrus psyllid (ACP) Diaphorina citri, the principal vector of 'Candidatus Liberibacter asiaticus' (Las). Las is the pathogen associated with huanglongbing (HLB), the Asian form of which is the most devastating disease of Citrus species and cultivars (Rutaceae: Aurantioideae). M. paniculata is a common ornamental and S. glutinosa is grown as an ornamental, a citrus rootstock, and a hedgerow fence plant. Because of the uncertain status of these plants as reservoirs of Las, a series of cross-inoculation bioassays were carried out in different environments, using infected Valencia sweet orange (Citrus × aurantium) infected shoot tops as a source of inoculum and D. citri nymphs and adults reared on M. paniculata and S. glutinosa to inoculate pathogen-free Valencia orange plantlets. In contrast to sweet orange, Las was more unevenly distributed and reached much lower titers in M. paniculata and S. glutinosa. Infections in M. paniculata and S. glutinosa were also transient. Very few insects that successfully acquired Las from M. paniculata and S. glutinosa were able to transmit the pathogen to healthy citrus. Transmission rates were low from M. paniculata (1.0%) and S. glutinosa (2.0%) and occurred only in a controlled environment highly favorable to Las and ACP using 10-day-old adults that completed their life cycle on Las-positive plants. Our study showed that in HLB-endemic areas, M. paniculata and S. glutinosa can be deemed as epidemiologically dead-end hosts for Las and are not important alternative hosts of the pathogen for transmission to citrus. However, under a combination of conditions highly favorable to Las infection and transmission and in the absence of effective quarantine procedures, these plants could eventually serve as carriers of Las to regions currently free from HLB.
Collapse
Affiliation(s)
- Juan Camilo Cifuentes-Arenas
- School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- Departamento Científico, Fundecitrus, Araraquara, São Paulo, Brazil
| | | | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa and Desenvolvimento, Fundecitrus, Araraquara, São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, España
| | - Silvio Aparecido Lopes
- School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- Departamento Científico, Fundecitrus, Araraquara, São Paulo, Brazil
| |
Collapse
|
50
|
The Power of Electropenetrography in Enhancing Our Understanding of Host Plant-Vector Interactions. INSECTS 2019; 10:insects10110407. [PMID: 31731698 PMCID: PMC6920982 DOI: 10.3390/insects10110407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
The invasive Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), is the primary vector of the phloem-infecting bacterium, Candidatus Liberibacter asiaticus. Candidatus L. asiaticus is the putative causal agent of Huanglongbing (HLB) disease, a destructive disease of Citrus. While many Citrus species are susceptible to D. citri probing and HLB disease, there are marked behavioral differences in D. citri probing responses and Ca. Liberibacter asiaticus infection severity among Citrus species. Using four mandarin hybrid selections and pummelo plants variably resistant to D. citri probing, oviposition, and survival, we explored probing differences using electropenetrography (EPG), conducted an oviposition and survival study, and determined host plant metabolites using gas-chromatography mass-spectroscopy (GC-MS). We found thirty-seven D. citri probing variables to be significantly different among tested mandarin selections and pummelo, in addition to differential oviposition and survivorship abilities on tested plants. We found sixty-three leaf metabolites with eight being significantly different among tested mandarin selections and pummelo. Detailed analysis of probing behavior, oviposition, survivorship, and host plant metabolite concentrations reveals the complex, layered resistance mechanisms utilized by resistant Citrus against D. citri probing. EPG is a powerful technology for screening Asian citrus psyllid resistant Citrus to elucidate host plant-vector interactions, with an aim to minimize vector probing and eliminate the spread of the bacterial pathogen, Ca. L. asiaticus.
Collapse
|