1
|
Mojerlou S, Moeller M, Schwessinger B, Rodriguez-Algaba J. Beyond Asexual: Genomics-Driven Progress in Unveiling Sexual Reproduction in Cereal Rust Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:206-212. [PMID: 39616556 DOI: 10.1094/mpmi-10-24-0122-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Recent advances in genomics technologies have revolutionized our understanding of cereal rust fungi, providing unprecedented insights into the complexities of their sexual life cycle. Genomic approaches, including long-read sequencing, genome assembly, and haplotype phasing technologies, have revealed critical insights into mating systems, genetic diversity, virulence evolution, and host adaptation. Population genomics studies have uncovered diverse reproductive strategies across different cereal rust species and geographic regions, highlighting the interplay between sexual recombination and asexual reproduction. Transcriptomics have begun to unravel the gene expression networks driving sexual reproduction, and complementary omics approaches such as proteomics and metabolomics offer potential insights into the underlying molecular processes. Despite this progress, many aspects of cereal rust sexual reproduction remain elusive. Integrating multiple omics approaches with advanced cell biology techniques can help address these knowledge gaps, particularly in understanding sexual reproduction and its role in pathogen evolution. This comprehensive approach will be crucial for developing more targeted and resilient crop protection strategies, ultimately contributing to global food security. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Shideh Mojerlou
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse 4200, Denmark
| | - Mareike Moeller
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse 4200, Denmark
| |
Collapse
|
2
|
Upadhaya A, Upadhaya SGC, Brueggeman R. Identification of Candidate Avirulence and Virulence Genes Corresponding to Stem Rust ( Puccinia graminis f. sp. tritici) Resistance Genes in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:635-649. [PMID: 38780476 DOI: 10.1094/mpmi-05-24-0056-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Stem rust, caused by the biotrophic fungal pathogen Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat. However, the majority of Pgt virulence/avirulence loci and underlying genes remain uncharacterized due to the constraints of developing bi-parental populations with this obligate biotroph. Genome-wide association studies (GWAS) using a sexual Pgt population mainly collected from the Pacific Northwestern United States were used to identify candidate virulence/avirulence effector genes corresponding to the six wheat Sr genes: Sr5, Sr21, Sr8a, Sr17, Sr9a, and Sr9d. The Pgt isolates were genotyped using whole-genome shotgun sequencing that identified approximately 1.2 million single nucleotide polymorphisms (SNPs) and were phenotyped at the seedling stage on six Sr gene differential lines. Association mapping analyses identified 17 Pgt loci associated with virulence or avirulence phenotypes on six Pgt resistance genes. Among these loci, 16 interacted with a specific Sr gene, indicating Sr-gene specific interactions. However, one avirulence locus interacted with two separate Sr genes (Sr9a and Sr17), suggesting two distinct Sr genes identifying a single avirulence effector. A total of 24 unique effector gene candidates were identified, and haplotype analysis suggests that within this population, AvrSr5, AvrSr21, AvrSr8a, AvrSr17, and AvrSr9a are dominant avirulence genes, while avrSr9d is a dominant virulence gene. The putative effector genes will be fundamental for future effector gene cloning efforts, allowing for further understanding of rust effector biology and the mechanisms underlying virulence evolution in Pgt with respect to race-specific R-genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Sudha G C Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| |
Collapse
|
3
|
Guo Y, Betzen B, Salcedo A, He F, Bowden RL, Fellers JP, Jordan KW, Akhunova A, Rouse MN, Szabo LJ, Akhunov E. Population genomics of Puccinia graminis f.sp. tritici highlights the role of admixture in the origin of virulent wheat rust races. Nat Commun 2022; 13:6287. [PMID: 36271077 PMCID: PMC9587050 DOI: 10.1038/s41467-022-34050-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Puccinia graminis f.sp. tritici (Pgt) causes stem rust disease in wheat that can result in severe yield losses. The factors driving the evolution of its virulence and adaptation remain poorly characterized. We utilize long-read sequencing to develop a haplotype-resolved genome assembly of a U.S. isolate of Pgt. Using Pgt haplotypes as a reference, we characterize the structural variants (SVs) and single nucleotide polymorphisms in a diverse panel of isolates. SVs impact the repertoire of predicted effectors, secreted proteins involved in host-pathogen interaction, and show evidence of purifying selection. By analyzing global and local genomic ancestry we demonstrate that the origin of 8 out of 12 Pgt clades is linked with either somatic hybridization or sexual recombination between the diverged donor populations. Our study shows that SVs and admixture events appear to play an important role in broadening Pgt virulence and the origin of highly virulent races, creating a resource for studying the evolution of Pgt virulence and preventing future epidemic outbreaks.
Collapse
Affiliation(s)
- Yuanwen Guo
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA
| | - Bliss Betzen
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.36567.310000 0001 0737 1259Present Address: USDA-APHIS-PPQ Field Operations, Kansas State University, Manhattan, KS USA
| | - Andres Salcedo
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.40803.3f0000 0001 2173 6074Present Address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Fei He
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.9227.e0000000119573309Present Address: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Robert L. Bowden
- grid.512831.cUSDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS USA
| | - John P. Fellers
- grid.512831.cUSDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS USA
| | - Katherine W. Jordan
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.512831.cUSDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS USA
| | - Alina Akhunova
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.36567.310000 0001 0737 1259Integrated Genomics Facility, Kansas State University, Manhattan, KS USA
| | - Mathew N. Rouse
- grid.512864.c0000 0000 8881 3436Department of Plant Pathology, University of Minnesota & USDA-ARS, Cereal Disease Lab, St. Paul, MN USA
| | - Les J. Szabo
- grid.512864.c0000 0000 8881 3436Department of Plant Pathology, University of Minnesota & USDA-ARS, Cereal Disease Lab, St. Paul, MN USA
| | - Eduard Akhunov
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.36567.310000 0001 0737 1259Wheat Genetics Resource Center, Kansas State University, Manhattan, KS USA
| |
Collapse
|
4
|
Rodriguez-Algaba J, Hovmøller MS, Schulz P, Hansen JG, Lezáun JA, Joaquim J, Randazzo B, Czembor P, Zemeca L, Slikova S, Hanzalová A, Holdgate S, Wilderspin S, Mascher F, Suffert F, Leconte M, Flath K, Justesen AF. Stem rust on barberry species in Europe: Host specificities and genetic diversity. Front Genet 2022; 13:988031. [PMID: 36246643 PMCID: PMC9554944 DOI: 10.3389/fgene.2022.988031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.
Collapse
Affiliation(s)
- Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
- *Correspondence: Julian Rodriguez-Algaba,
| | - Mogens S. Hovmøller
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Philipp Schulz
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Kleinmachnow, Germany
| | - Jens G. Hansen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Juan Antonio Lezáun
- INTIA, Institute for Agrifood Technology and Infrastructures of Navarra, Villava, Navarra, Spain
| | - Jessica Joaquim
- Agroscope, Crop Plant Breeding and Genetic Ressources, Nyon, Switzerland
| | | | - Paweł Czembor
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Liga Zemeca
- Institute of Plant Protection Research “Agrihorts”, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | | | - Alena Hanzalová
- Crop Research Institute, Department of Genetics and Plant Breeding Methods, Prague, Czech Republic
| | - Sarah Holdgate
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Sarah Wilderspin
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Fabio Mascher
- Agroscope, Crop Plant Breeding and Genetic Ressources, Nyon, Switzerland
| | - Frederic Suffert
- INRAE (French National Institute for Agriculture Food and Environment), Université Paris-Saclay, Thiverval-Grignon, France
| | - Marc Leconte
- INRAE (French National Institute for Agriculture Food and Environment), Université Paris-Saclay, Thiverval-Grignon, France
| | - Kerstin Flath
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Kleinmachnow, Germany
| | - Annemarie F. Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
5
|
Louet C, Saubin M, Andrieux A, Persoons A, Gorse M, Pétrowski J, Fabre B, De Mita S, Duplessis S, Frey P, Halkett F. A point mutation and large deletion at the candidate avirulence locus AvrMlp7 in the poplar rust fungus correlate with poplar RMlp7 resistance breakdown. Mol Ecol 2021; 32:2472-2483. [PMID: 34843142 DOI: 10.1111/mec.16294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 01/29/2023]
Abstract
The deployment of plant varieties carrying resistance genes (R) exerts strong selection pressure on pathogen populations. Rapidly evolving avirulence genes (Avr) allow pathogens to escape R-mediated plant immunity through a variety of mechanisms, leading to virulence. The poplar rust fungus Melampsora larici-populina is a damaging pathogen of poplars in Europe. It underwent a major adaptive event in 1994, with the breakdown of the poplar RMlp7 resistance gene. Population genomics studies identified a locus in the genome of M. larici-populina that probably corresponds to the candidate avirulence gene AvrMlp7. Here, to further characterize this effector, we used a population genetics approach on a comprehensive set of 281 individuals recovered throughout a 28-year period encompassing the resistance breakdown event. Using two dedicated molecular tools, genotyping at the candidate locus highlighted two different alterations of a predominant allele found mainly before the resistance breakdown: a nonsynonymous mutation and a complete deletion of this locus. This results in six diploid genotypes: three genotypes related to the avirulent phenotype and three related to the virulent phenotype. The temporal survey of the candidate locus revealed that both alterations were found in association during the resistance breakdown event. They pre-existed before the breakdown in a heterozygous state with the predominant allele cited above. Altogether, these results suggest that the association of both alterations at the candidate locus AvrMlp7 drove the poplar rust adaptation to RMlp7-mediated immunity. This study demonstrates for the first time a case of adaptation from standing genetic variation in rust fungi during a qualitative resistance breakdown.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pascal Frey
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | |
Collapse
|
6
|
Della Coletta R, Lavell AA, Garvin DF. A Homolog of the Arabidopsis TIME FOR COFFEE Gene Is Involved in Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1298-1306. [PMID: 34340534 DOI: 10.1094/mpmi-06-21-0137-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plants resist infection by pathogens using both preexisting barriers and inducible defense responses. Inducible responses are governed in a complex manner by various hormone signaling pathways. The relative contribution of hormone signaling pathways to nonhost resistance to pathogens is not well understood. In this study, we examined the molecular basis of disrupted nonhost resistance to the fungal species Puccinia graminis, which causes stem rust of wheat, in an induced mutant of the model grass Brachypodium distachyon. Through bioinformatic analysis, a 1-bp deletion in the mutant genotype was identified that introduces a premature stop codon in the gene Bradi1g24100, which is a homolog of the Arabidopsis thaliana gene TIME FOR COFFEE (TIC). In Arabidopsis, TIC is central to the regulation of the circadian clock and plays a crucial role in jasmonate signaling by attenuating levels of the transcription factor protein MYC2, and its mutational disruption results in enhanced susceptibility to the hemibiotroph Pseudomonas syringae. Our similar finding for an obligate biotroph suggests that the biochemical role of TIC in mediating disease resistance to biotrophs is conserved in grasses, and that the correct modulation of jasmonate signaling during infection by Puccinia graminis may be essential for nonhost resistance to wheat stem rust in B. distachyon.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Anastasiya A Lavell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - David F Garvin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN 55108, U.S.A
| |
Collapse
|
7
|
Duplessis S, Lorrain C, Petre B, Figueroa M, Dodds PN, Aime MC. Host Adaptation and Virulence in Heteroecious Rust Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:403-422. [PMID: 34077239 DOI: 10.1146/annurev-phyto-020620-121149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rust fungi (Pucciniales, Basidiomycota) are obligate biotrophic pathogens that cause rust diseases in plants, inflicting severe damage to agricultural crops. Pucciniales possess the most complex life cycles known in fungi. These include an alternation of generations, the development of up to five different sporulating stages, and, for many species, the requirement of infecting two unrelated host plants during different parts of their life cycle, termed heteroecism. These fungi have been extensively studied in the past century through microscopy and inoculation studies, providing precise descriptions of their infection processes, although the molecular mechanisms underlying their unique biology are poorly understood. In this review, we cover recent genomic and life cycle transcriptomic studies in several heteroecious rust species, which provide insights into the genetic tool kits associated with host adaptation and virulence, opening new avenues for unraveling their unique evolution.
Collapse
Affiliation(s)
- Sebastien Duplessis
- Université de Lorraine, INRAE, UMR 1136 IAM, Interactions Arbres-Microorganismes, 54000 Nancy, France; ,
| | - Cecile Lorrain
- Plant Pathology Group, ETH Zurich, 8092 Zurich, Switzerland;
| | - Benjamin Petre
- Université de Lorraine, INRAE, UMR 1136 IAM, Interactions Arbres-Microorganismes, 54000 Nancy, France; ,
| | - Melania Figueroa
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; ,
| | - Peter N Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; ,
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
8
|
Henningsen EC, Omidvar V, Della Coletta R, Michno JM, Gilbert E, Li F, Miller ME, Myers CL, Gordon SP, Vogel JP, Steffenson BJ, Kianian SF, Hirsch CD, Figueroa M. Identification of Candidate Susceptibility Genes to Puccinia graminis f. sp. tritici in Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:657796. [PMID: 33968112 PMCID: PMC8097158 DOI: 10.3389/fpls.2021.657796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 05/30/2023]
Abstract
Wheat stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) is a global threat to wheat production. Fast evolving populations of Pgt limit the efficacy of plant genetic resistance and constrain disease management strategies. Understanding molecular mechanisms that lead to rust infection and disease susceptibility could deliver novel strategies to deploy crop resistance through genetic loss of disease susceptibility. We used comparative transcriptome-based and orthology-guided approaches to characterize gene expression changes associated with Pgt infection in susceptible and resistant Triticum aestivum genotypes as well as the non-host Brachypodium distachyon. We targeted our analysis to genes with differential expression in T. aestivum and genes suppressed or not affected in B. distachyon and report several processes potentially linked to susceptibility to Pgt, such as cell death suppression and impairment of photosynthesis. We complemented our approach with a gene co-expression network analysis to identify wheat targets to deliver resistance to Pgt through removal or modification of putative susceptibility genes.
Collapse
Affiliation(s)
- Eva C. Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Vahid Omidvar
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Jean-Michel Michno
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Erin Gilbert
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Marisa E. Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Chad L. Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | - John P. Vogel
- Joint Genome Institute, Walnut Creek, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Shahryar F. Kianian
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, United States
| | - Cory D. Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
9
|
An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) Identified through Genetic Mapping and Whole-Genome Sequencing of a Sexual Population. mSphere 2020; 5:5/3/e00128-20. [PMID: 32554716 PMCID: PMC7300351 DOI: 10.1128/msphere.00128-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe (yellow) rust, is an obligate, biotrophic fungus. It was difficult to study the genetics of the pathogen due to the lack of sexual reproduction. The recent discovery of alternate hosts for P. striiformis f. sp. tritici makes it possible to study inheritance and map genes involved in its interaction with plant hosts. To identify avirulence (Avr) genes in P. striiformis f. sp. tritici, we developed a segregating population by selfing isolate 12-368 on barberry (Berberis vulgaris) plants under controlled conditions. The dikaryotic sexual population segregated for avirulent/virulent phenotypes on nine Yr single-gene lines. The parental and progeny isolates were whole-genome sequenced at >30× coverage using Illumina HiSeq PE150 technology. A total of 2,637 high-quality markers were discovered by mapping the whole-genome sequencing (WGS) reads to the reference genome of strain 93-210 and used to construct a genetic map, consisting of 41 linkage groups, spanning 7,715.0 centimorgans (cM) and covering 68 Mb of the reference genome. The recombination rate was estimated to be 1.81 ± 2.32 cM/10 kb. Quantitative trait locus analysis mapped six Avr gene loci to the genetic map, including an Avr cluster harboring four Avr genes, AvYr7, AvYr43, AvYr44, and AvYrExp2 Aligning the genetic map to the reference genome identified Avr candidates and narrowed them to a small genomic region (<200 kb). The discovery of the Avr gene cluster is useful for understanding pathogen evolution, and the identification of candidate genes is an important step toward cloning Avr genes for studying molecular mechanisms of pathogen-host interactions.IMPORTANCE Stripe rust is a destructive disease of wheat worldwide. Growing resistant cultivars is the most effective, easy-to-use, economical, and environmentally friendly strategy for the control of the disease. However, P. striiformis f. sp. tritici can produce new virulent races that may circumvent race-specific resistance. Therefore, understanding the genetic basis of the interactions between wheat genes for resistance and P. striiformis f. sp. tritici genes for avirulence is useful for improving cultivar resistance for more effective control of the disease. This study developed a high-quality map that facilitates genomic and genetic studies of important traits related to pathogen pathogenicity and adaptation to different environments and crop cultivars carrying different resistance genes. The information on avirulence/virulence genes identified in this study can be used for guiding breeding programs to select combinations of genes for developing new cultivars with effective resistance to mitigate this devastating disease.
Collapse
|
10
|
Development of a specific AFLP-based SCAR marker for Chinese Race 34MKG of Puccinia graminis f. sp. tritici. Mol Biol Rep 2020; 47:4303-4309. [PMID: 32418113 DOI: 10.1007/s11033-020-05513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a fungus that causes the devastating fungalwheat stem rust disease in wheat production. Rapid identification of the physiological races of Pgt are very importance for the prevention of wheat stem rust. In this paper we developed a molecular method to identify the most prevalent race of Pgt, as a supplement for traditionally used host-specific methods. Amplified fragment length polymorphism (AFLP) was employed as a means of analyzing DNA polymorphisms in six common physiological races of Pgt in China and Ug99. In total, 64 pairs of primers were used for AFLP screening of race-specific molecular markers. One primer pair-namely, E7/M7 (5'-GACTGCGTACCAATTCG G-3'/5'-GATGAGTCCTGAGTAACGG-3')-yielded a unique band for the race 34MKG that was purified and cloned into the pGEM-T vector for sequencing. We then designed a new primer pairs (sequence-characterized amplified region marker) to amplify the 171-bp fragment and confirmed that the marker was highly specific for 34MKG. These results provide a new tool for monitoring different races of Pgt for improved control of wheat stem rust in China.
Collapse
|
11
|
Abstract
Among the thousands of rust species described, many are known for their devastating effects on their hosts, which include major agriculture crops and trees. Hence, for over a century, these basidiomycete pathogenic fungi have been researched and experimented with. However, due to their biotrophic nature, they are challenging organisms to work with and, needing their hosts for propagation, represent pathosystems that are not easily experimentally accessible. Indeed, efforts to perform genetics have been few and far apart for the rust fungi, though one study performed in the 1940s was famously instrumental in formulating the gene-for-gene hypothesis describing pathogen-host interactions. By taking full advantage of the molecular genetic tools developed in the 1980s, research on many plant pathogenic microbes thrived, yet similar work on the rusts remained very challenging though not without some successes. However, the genomics era brought real breakthrough research for the biotrophic fungi and with innovative experimentation and the use of heterologous systems, molecular genetic analyses over the last 2 decades have significantly advanced our insight into the function of many rust fungus genes and their role in the interaction with their hosts. This has allowed optimizing efforts for resistance breeding and the design and testing of various novel strategies to reduce the devastating diseases they cause.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0
| | - Les J Szabo
- U.S. Department of Agriculture-Agriculture Research Service, Cereal Disease Laboratory and University of Minnesota, 1551 Lindig Street, St. Paul, MN 55108, U.S.A
| |
Collapse
|
12
|
Della Coletta R, Hirsch CN, Rouse MN, Lorenz A, Garvin DF. Genomic Dissection of Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:392-400. [PMID: 30261155 DOI: 10.1094/mpmi-08-18-0220-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.
Collapse
Affiliation(s)
- Rafael Della Coletta
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
- 2 CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Candice N Hirsch
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
| | - Matthew N Rouse
- 3 USDA-ARS Cereal Disease Laboratory, St. Paul, MN, U.S.A
- 4 Department of Plant Pathology, University of Minnesota; and
| | - Aaron Lorenz
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
| | - David F Garvin
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
- 5 USDA-ARS Plant Science Research Unit, St. Paul, MN, U.S.A
| |
Collapse
|
13
|
Figueroa M, Hammond‐Kosack KE, Solomon PS. A review of wheat diseases-a field perspective. MOLECULAR PLANT PATHOLOGY 2018; 19:1523-1536. [PMID: 29045052 PMCID: PMC6638159 DOI: 10.1111/mpp.12618] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Accepted: 09/22/2017] [Indexed: 05/19/2023]
Abstract
Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant PathologyStakman‐Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. PaulMN 55108USA
| | - Kim E. Hammond‐Kosack
- Department of Biointeractions and Crop ProtectionRothamsted Research, West CommonHarpendenHertfordshire AL5 2JQUK
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
14
|
Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R, Newell K, Xia X, Bernoux M, Taylor JM, Steffenson B, Jin Y, Zhang P, Kanyuka K, Figueroa M, Ellis JG, Park RF, Dodds PN. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 2018; 358:1607-1610. [PMID: 29269475 DOI: 10.1126/science.aao4810] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023]
Abstract
Race-specific resistance genes protect the global wheat crop from stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) but are often overcome owing to evolution of new virulent races of the pathogen. To understand virulence evolution in Pgt, we identified the protein ligand (AvrSr50) recognized by the Sr50 resistance protein. A spontaneous mutant of Pgt virulent to Sr50 contained a 2.5 mega-base pair loss-of-heterozygosity event. A haustorial secreted protein from this region triggers Sr50-dependent defense responses in planta and interacts directly with the Sr50 protein. Virulence alleles of AvrSr50 have arisen through DNA insertion and sequence divergence, and our data provide molecular evidence that in addition to sexual recombination, somatic exchange can play a role in the emergence of new virulence traits in Pgt.
Collapse
Affiliation(s)
- Jiapeng Chen
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia.,Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia.,Judith and David Coffey Life Lab, Charles Perkins Centre, University of Sydney
| | - Narayana M Upadhyaya
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Diana Ortiz
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Jana Sperschneider
- Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Perth, WA, Australia
| | - Feng Li
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Clement Bouton
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Susan Breen
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Chongmei Dong
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | - Bo Xu
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Xiaoxiao Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Kim Newell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Brian Steffenson
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Yue Jin
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA.,United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Melania Figueroa
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Jeffrey G Ellis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Robert F Park
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
15
|
Yuan C, Wang M, Skinner DZ, See DR, Xia C, Guo X, Chen X. Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in Puccinia striiformis f. sp. tritici Through Characterization of a Sexual Population with Genotyping-by-Sequencing. PHYTOPATHOLOGY 2018; 108:133-141. [PMID: 28876207 DOI: 10.1094/phyto-04-17-0139-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, is a dikaryotic, biotrophic, and macrocyclic fungus. Genetic study of P. striiformis f. sp. tritici virulence was not possible until the recent discovery of Berberis spp. and Mahonia spp. as alternate hosts. To determine inheritance of virulence and map virulence genes, a segregating population of 119 isolates was developed by self-fertilizing P. striiformis f. sp. tritici isolate 08-220 (race PSTv-11) on barberry leaves under controlled greenhouse conditions. The progeny isolates were phenotyped on a set of 29 wheat lines with single genes for race-specific resistance and genotyped with simple sequence repeat (SSR) markers, single nucleotide polymorphism (SNP) markers derived from secreted protein genes, and SNP markers from genotyping-by-sequencing (GBS). Using the GBS technique, 10,163 polymorphic GBS-SNP markers were identified. Clustering and principal component analysis grouped these markers into six genetic groups, and a genetic map, consisting of six linkage groups, was constructed with 805 markers. The six clusters or linkage groups resulting from these analyses indicated a haploid chromosome number of six in P. striiformis f. sp. tritici. Through virulence testing of the progeny isolates, the parental isolate was found to be homozygous for the avirulence loci corresponding to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, Yr45, and Yr53 and homozygous for the virulence locus corresponding to resistance gene Yr41. Segregation was observed for virulence phenotypes in response to the remaining 19 single-gene lines. A single dominant gene or two dominant genes with different nonallelic gene interactions were identified for each of the segregating virulence phenotypes. Of 27 dominant virulence genes identified, 17 were mapped to two chromosomes. Markers tightly linked to some of the virulence loci may facilitate further studies to clone these genes. The virulence genes and their inheritance information are useful for understanding the host-pathogen interactions and for selecting effective resistance genes or gene combinations for developing stripe rust resistant wheat cultivars.
Collapse
Affiliation(s)
- Congying Yuan
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Meinan Wang
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Danniel Z Skinner
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Deven R See
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Chongjing Xia
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Xinhong Guo
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Xianming Chen
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
16
|
Nirmala J, Saini J, Newcomb M, Olivera P, Gale S, Klindworth D, Elias E, Talbert L, Chao S, Faris J, Xu S, Jin Y, Rouse MN. Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates. G3 (BETHESDA, MD.) 2017; 7:3481-3490. [PMID: 28855282 PMCID: PMC5633396 DOI: 10.1534/g3.117.300209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/24/2017] [Indexed: 11/18/2022]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24 However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1, to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558, cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13 The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b.
Collapse
Affiliation(s)
- Jayaveeramuthu Nirmala
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, Minnesota 55108
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Jyoti Saini
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108
| | - Maria Newcomb
- The School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Pablo Olivera
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Sam Gale
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, Minnesota 55108
| | - Daryl Klindworth
- Cereal Crops Research, United States Department of Agriculture-Agricultural Research Service, Fargo, North Dakota 58102
| | - Elias Elias
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108
| | - Luther Talbert
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Shiaoman Chao
- Cereal Crops Research, United States Department of Agriculture-Agricultural Research Service, Fargo, North Dakota 58102
| | - Justin Faris
- Cereal Crops Research, United States Department of Agriculture-Agricultural Research Service, Fargo, North Dakota 58102
| | - Steven Xu
- Cereal Crops Research, United States Department of Agriculture-Agricultural Research Service, Fargo, North Dakota 58102
| | - Yue Jin
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, Minnesota 55108
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, Minnesota 55108
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
17
|
Rodriguez-Algaba J, Sørensen CK, Labouriau R, Justesen AF, Hovmøller MS. Genetic diversity within and among aecia of the wheat rust fungus Puccinia striiformis on the alternate host Berberis vulgaris. Fungal Biol 2017; 121:541-549. [PMID: 28606349 DOI: 10.1016/j.funbio.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
An isolate of the fungus Puccinia striiformis, causing yellow (stripe) rust on cereals and grasses, was selfed on the alternate (sexual) host, Berberis vulgaris. This enabled us to investigate genetic variability of progeny isolates within and among aecia. Nine aecial clusters each consisting of an aecium (single aecial cup) and nine clusters containing multiple aecial cups were selected from 18 B. vulgaris leaves. Aeciospores from each cluster were inoculated on susceptible wheat seedlings and 64 progeny isolates were recovered. Molecular genotyping using 37 simple sequence repeat markers confirmed the parental origin of all progeny isolates. Thirteen molecular markers, which were heterozygous in the parental isolate, were used to analyse genetic diversity within and among aecial cups. The 64 progeny isolates resulted in 22 unique recombinant multilocus genotypes and none of them were resampled in different aecial clusters. Isolates derived from a single cup were always of the same genotype whereas isolates originating from clusters containing up to nine aecial cups revealed one to three genotypes per cluster. These results implied that each aecium was the result of a successful fertilization in a corresponding pycnium and that an aecium consisted of genetically identical aeciospores probably multiplied via repetitive mitotic divisions. Furthermore, the results suggested that aecia within a cluster were the result of independent fertilization events often involving genetically different pycniospores. The application of molecular markers represented a major advance in comparison to previous studies depending on phenotypic responses on host plants. The study allowed significant conclusions about fundamental aspects of the biology and genetics of an important cereal rust fungus.
Collapse
Affiliation(s)
- Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Chris K Sørensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Rodrigo Labouriau
- Department of Mathematics, Faculty of Science and Technology, Aarhus University, Ny Munkegade 118, 8000 Aarhus, Denmark
| | - Annemarie F Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Mogens S Hovmøller
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
18
|
Phylogenetics and Phylogenomics of Rust Fungi. FUNGAL PHYLOGENETICS AND PHYLOGENOMICS 2017; 100:267-307. [DOI: 10.1016/bs.adgen.2017.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A, Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, Dodds PN, Jones DA. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 2016; 17:667. [PMID: 27550217 PMCID: PMC4994203 DOI: 10.1186/s12864-016-3011-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. RESULTS To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. CONCLUSIONS The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.
Collapse
Affiliation(s)
- Claire Anderson
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Muhammad Adil Khan
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
- Current address: ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Ann-Maree Catanzariti
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Cameron A. Jack
- ANU Bioinformatics Consulting Unit, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton, ACT 2601 Australia
| | - Adnane Nemri
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
- Current address: KWS SAAT SE, Grimsehlstraße 31, Einbeck, 37574 Germany
| | | | | | - Adrienne R. Hardham
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | | | - Peter N. Dodds
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
| | - David A. Jones
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| |
Collapse
|
20
|
Zhao J, Wang M, Chen X, Kang Z. Role of Alternate Hosts in Epidemiology and Pathogen Variation of Cereal Rusts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:207-28. [PMID: 27296143 DOI: 10.1146/annurev-phyto-080615-095851] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cereal rusts, caused by obligate and biotrophic fungi in the genus Puccinia, are important diseases that threaten world food security. With the recent discovery of alternate hosts for the stripe rust fungus (Puccinia striiformis), all cereal rust fungi are now known to be heteroecious, requiring two distinct plant species serving as primary or alternate hosts to complete their sexual life cycle. The roles of the alternate hosts in disease epidemiology and pathogen variation vary greatly from species to species and from region to region because of different climatic and cropping conditions. We focus this review on rust fungi of small grains, mainly stripe rust, stem rust, leaf rust, and crown rust of wheat, barley, oat, rye, and triticale, with emphases on the contributions of alternate hosts to the development and management of rust diseases.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430;
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
| |
Collapse
|
21
|
Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN. Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2016; 7:205. [PMID: 26941766 PMCID: PMC4764693 DOI: 10.3389/fpls.2016.00205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
| | - Narayana M. Upadhyaya
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Jana Sperschneider
- Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research OrganisationPerth, WA, Australia
| | - Robert F. Park
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| | - Les J. Szabo
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN, USA
| | - Brian Steffenson
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
| | - Jeff G. Ellis
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Peter N. Dodds
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| |
Collapse
|
22
|
Tian Y, Zhan G, Chen X, Tungruentragoon A, Lu X, Zhao J, Huang L, Kang Z. Virulence and Simple Sequence Repeat Marker Segregation in a Puccinia striiformis f. sp. tritici Population Produced by Selfing a Chinese Isolate on Berberis shensiana. PHYTOPATHOLOGY 2016; 106:185-91. [PMID: 26551448 DOI: 10.1094/phyto-07-15-0162-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, frequently produces new races overcoming resistance in wheat cultivars. A recently identified race, V26 with virulence to Yr26 and many other stripe rust resistance genes, has a high potential to cause epidemics in China. In this study, teliospores from a single-urediniospore isolate of V26 (Pinglan 17-7) produced on the wheat line 92R137 (Yr26) were used to produce a sexual population through selfing by infecting Berberis shensiana plants under controlled conditions. One hundred and eighteen progeny isolates and the parental isolate were phenotyped for virulence/avirulence on 24 Yr gene lines of wheat. These progeny isolates were all avirulent to Yr5, Yr8, Yr15, and YrTr1 and virulent to Yr1, Yr2, Yr7, Yr9, Yr10, Yr17, Yr24, Yr25, Yr26, YrA, YrExp2, and YrV23, indicating that the parental isolate is homozygous avirulent or homozygous virulent at these loci. The progeny population segregated for avirulence to Yr6, Yr43, and YrSP at one locus (3 avirulent:1 virulent ratio); for virulence to Yr27 and Yr28 at one locus (3 virulent:1 avirulent); and for Yr4, Yr32, and Yr44 at two loci (15 virulent:1 avirulent). Among the eight segregating avirulence/virulence loci, association was found between virulence to Yr4 and Yr32, as well as between virulence to Yr6 and Yr43 based on χ(2) tests. From 82 genotypically different progeny isolates, 24 pathotypes and 82 multilocus genotypes were identified. The results show that a highly diverse population can be produced from a single isolate by selfing on a barberry plant and sexually produced population can be used to genetically characterize virulence of the stripe rust pathogen.
Collapse
Affiliation(s)
- Yuan Tian
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Gangming Zhan
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Xianming Chen
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Angkana Tungruentragoon
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Xia Lu
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Jie Zhao
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Lili Huang
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Zhensheng Kang
- First, second, fourth, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and third author: USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| |
Collapse
|
23
|
Pernaci M, De Mita S, Andrieux A, Pétrowski J, Halkett F, Duplessis S, Frey P. Genome-wide patterns of segregation and linkage disequilibrium: the construction of a linkage genetic map of the poplar rust fungus Melampsora larici-populina. FRONTIERS IN PLANT SCIENCE 2014; 5:454. [PMID: 25309554 PMCID: PMC4159982 DOI: 10.3389/fpls.2014.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/21/2014] [Indexed: 05/16/2023]
Abstract
The poplar rust fungus Melampsora larici-populina causes significant yield reduction and severe economic losses in commercial poplar plantations. After several decades of breeding for qualitative resistance and subsequent breakdown of the released resistance genes, breeders now focus on quantitative resistance, perceived to be more durable. But quantitative resistance also can be challenged by an increase of aggressiveness in the pathogen. Thus, it is of primary importance to better understand the genetic architecture of aggressiveness traits. To this aim, our goal is to build a genetic linkage map for M. larici-populina in order to map quantitative trait loci related to aggressiveness. First, a large progeny of M. larici-populina was generated through selfing of the reference strain 98AG31 (which genome sequence is available) on larch plants, the alternate host of the poplar rust fungus. The progeny's meiotic origin was validated through a segregation analysis of 115 offspring with 14 polymorphic microsatellite markers, of which 12 segregated in the expected 1:2:1 Mendelian ratio. A microsatellite-based linkage disequilibrium analysis allowed us to identify one potential linkage group comprising two scaffolds. The whole genome of a subset of 47 offspring was resequenced using the Illumina HiSeq 2000 technology at a mean sequencing depth of 6X. The reads were mapped onto the reference genome of the parental strain and 144,566 SNPs were identified across the genome. Analysis of distribution and polymorphism of the SNPs along the genome led to the identification of 2580 recombination blocks. A second linkage disequilibrium analysis, using the recombination blocks as markers, allowed us to group 81 scaffolds into 23 potential linkage groups. These preliminary results showed that a high-density linkage map could be constructed by using high-quality SNPs based on low-coverage resequencing of a larger number of M. larici-populina offspring.
Collapse
Affiliation(s)
- Michaël Pernaci
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Stéphane De Mita
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Axelle Andrieux
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Jérémy Pétrowski
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Fabien Halkett
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Pascal Frey
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| |
Collapse
|
24
|
Rodriguez-Algaba J, Walter S, Sørensen CK, Hovmøller MS, Justesen AF. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genet Biol 2014; 70:77-85. [DOI: 10.1016/j.fgb.2014.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/07/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
|
25
|
Gonzalez-Martin C, Teigell-Perez N, Valladares B, Griffin DW. The Global Dispersion of Pathogenic Microorganisms by Dust Storms and Its Relevance to Agriculture. ADVANCES IN AGRONOMY 2014; 127. [PMCID: PMC7150032 DOI: 10.1016/b978-0-12-800131-8.00001-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dust storms move an estimated 500–5000 Tg of soil through Earth’s atmosphere every year. Dust-storm transport of topsoils may have positive effects such as fertilization of aquatic and terrestrial ecosystems and the evolution of soils in proximal and distal environments. Negative effects may include the stripping of nutrient-rich topsoils from source regions, sandblasting of plant life in downwind environments, the fertilization of harmful algal blooms, and the transport of toxins (e.g., metals, pesticides, herbicides, etc.) and pathogenic microorganisms. With respect to the long-range dispersion of microorganisms and more specifically pathogens, research is just beginning to demonstrate the quantity and diversity of organisms that can survive this type of transport. Most studies to date have utilized different assays to identify microorganisms and microbial communities using predominately culture-based, and more recently nonculture-based, methodologies. There is a clear need for international-scale research efforts that apply standardized methods to advance this field of science. Here we present a review of dust-borne microorganisms with a focus on their relevance to agronomy.
Collapse
Affiliation(s)
- Cristina Gonzalez-Martin
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda, Astrofisico Francisco Sanchez, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Corresponding author: e-mail address:
| | - Nuria Teigell-Perez
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda, Astrofisico Francisco Sanchez, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Basilio Valladares
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda, Astrofisico Francisco Sanchez, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | | |
Collapse
|
26
|
Fellers JP, Soltani BM, Bruce M, Linning R, Cuomo CA, Szabo LJ, Bakkeren G. Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements. BMC Genomics 2013; 14:60. [PMID: 23356831 PMCID: PMC3579696 DOI: 10.1186/1471-2164-14-60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/11/2013] [Indexed: 12/26/2022] Open
Abstract
Background Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust fungi (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at 88 Mb, but the reason for the expansion is unknown. Three genomic loci of Pt conserved proteins were characterized to gain insight into gene content, genome complexity and expansion. Results A bacterial artificial chromosome (BAC) library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny) was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also found; these proteins are high in lysine and similar to multiple proteins in Pgt. Conclusions The three Pt loci are conserved in gene order, with a range of gene sequence divergence. Conservation of predicted haustoria expressed secreted protein genes between Pt and Pgt is extended to the more distant poplar rust, Melampsora larici-populina. The loci also reveal that genome expansion in Pt is in part due to higher occurrence of repeat-elements in this species.
Collapse
Affiliation(s)
- John P Fellers
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 2012; 95:891-904. [PMID: 22743715 DOI: 10.1007/s00253-012-4228-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.
Collapse
|
28
|
Kubisiak TL, Anderson CL, Amerson HV, Smith JA, Davis JM, Nelson CD. A genomic map enriched for markers linked to Avr1 in Cronartium quercuum f.sp. fusiforme. Fungal Genet Biol 2010; 48:266-74. [PMID: 20888926 DOI: 10.1016/j.fgb.2010.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
Abstract
A novel approach is presented to map avirulence gene Avr1 in the basidiomycete Cronartium quercuum f.sp. fusiforme, the causal agent of fusiform rust disease in pines. DNA markers tightly linked to resistance gene Fr1 in loblolly pine tree 10-5 were used to classify 10-5 seedling progeny as either resistant or susceptible. A single dikaryotic isolate (P2) heterozygous at the corresponding Avr1 gene was developed by crossing Fr1 avirulent isolate SC20-21 with Fr1 virulent isolate NC2-40. Bulk basidiospore inoculum derived from isolate P2 was used to challenge the pine progeny. The ability to unambiguously marker classify 10-5 progeny as resistant (selecting for virulence) or susceptible (non-selecting) permitted the genetic mapping of the corresponding Avr1 gene by bulked segregant analysis. Using this approach, 14 genetic markers significantly linked to Avr1 were identified and placed within the context of a genome-wide linkage map produced for isolate P2 using samples from susceptible seedlings.
Collapse
Affiliation(s)
- Thomas L Kubisiak
- USDA Forest Service, Southern Research Station, Southern Institute of Forest Genetics, U.S. Department of Agriculture, 23332 Success Road, Saucier, MS 39574, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Lawrence GJ, Dodds PN, Ellis JG. Transformation of the flax rust fungus, Melampsora lini: selection via silencing of an avirulence gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:364-9. [PMID: 19874543 PMCID: PMC3142615 DOI: 10.1111/j.1365-313x.2009.04052.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rust fungi cause devastating diseases on many important food crops, with a damaging stem rust epidemic currently affecting wheat production in Africa and the Middle East. These parasitic fungi propagate exclusively on plants, precluding the use of many biotechnological tools available for other culturable fungi. In particular the lack of a stable transformation system has been an impediment to the genetic manipulation required for molecular analysis of rust pathogenicity. We have developed an Agrobacterium-mediated genetic transformation procedure for the model flax rust fungus Melampsora lini, which infects flax (Linum usitatissimum). Selection of transgenic rust lines is based on silencing of AvrL567, which encodes a rust effector protein that is recognised by the flax L6 immune receptor. The non-transgenic rust line is unable to infect flax plants expressing L6, while silenced transgenic lines are virulent on these plants, providing an effective selection system. This directly confirms that the cloned AvrL567 gene is responsible for flax rust virulence phenotypes, and demonstrates the utility of this system to probe rust gene function.
Collapse
|
30
|
Zhong S, Leng Y, Friesen TL, Faris JD, Szabo LJ. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. PHYTOPATHOLOGY 2009; 99:282-289. [PMID: 19203281 DOI: 10.1094/phyto-99-3-0282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Puccinia graminis f. sp. tritici is the causal agent of stem rust disease in wheat. The rust fungus has caused devastating disease epidemics throughout history and is still posing a potential threat to wheat production in some regions of the world due to the appearance of new races. To develop microsatellite or simple sequence repeat (SSR) markers for use in population genetics studies, a total of 60,579 expressed sequence tag (EST) sequences (reads) generated from P. graminis f. sp. tritici were screened for tandemly repeated di- and tri-nucleotide units using a bioinformatics approach and 708 unisequences containing putative SSR loci with six or more repeat units were identified. Flanking primers were designed for 384 unique SSR loci, which mapped to different locations of the draft genome sequence of the fungus. Of the 384 primer pairs tested, 72 EST-SSR markers were eventually developed, which showed polymorphism among 19 isolates of P. graminis f. sp. tritici and 4 isolates of P. graminis f. sp. secalis evaluated. Thirty-two of the SSR loci were also evaluated in three other rust fungi (P. triticina, P. hordei, and P. coronata f. sp. hordei) for cross-species transferability. These SSR markers derived from ESTs will be useful for characterization of population structures and for gene mapping in P. graminis.
Collapse
Affiliation(s)
- S Zhong
- Department of Plant Pathology, North Dakota State University, Fargo 58105, USA.
| | | | | | | | | |
Collapse
|
31
|
Hovmøller MS, Justesen AF. Rates of evolution of avirulence phenotypes and DNA markers in a northwest European population of Puccinia striiformis f. sp. tritici. Mol Ecol 2007; 16:4637-47. [PMID: 17887968 DOI: 10.1111/j.1365-294x.2007.03513.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of evolutionary processes in fungal pathogen populations may occur more rapidly and display larger effects in agricultural systems than in wild ecosystems because of human involvement by plant breeding and crop management. In this study, we analysed the rate of evolution in three lineages of a northwest European population of a biotrophic and asexual reproduced fungal pathogen, Puccinia striiformis f. sp. tritici, causing yellow rust on wheat. Pathogen samples were collected between 1975 and 2002 in the UK and Denmark, and assayed for 14 individual avirulence/virulence alleles and up to 234 amplified fragment length polymorphism (AFLP) primer pairs producing approximately 17,000 AFLP fragments. The large number of fragments and a targeted sampling of isolates allowed a reconstruction of phylogenies in great detail, i.e. no homoplasy and a representation of sequential, evolutionary steps by pathogen samples. A recent, phenotypic loss of avirulence was observed at least once for loci corresponding to P. striiformis f. sp. tritici resistance Yr2, Yr3, Yr4, Yr7, Yr9, and Yr15, whereas Avr6 and Avr17 were lost independently in all three lineages, corresponding to 16 events of loss of avirulence (emergence of virulence). The opposite process, restoration of avirulence, was observed for Yr9 and Yr32. An interpretation of phenotypic changes within lineages as independent mutation events resulted in mutation frequencies from 1.4x10(-6) to 4.1x10(-6) per AFLP fragment (locus) per generation, whereas the effective rate by which a mutation from avirulence to virulence was established in the pathogen population, when subject to selection by host resistance genes, was approximately three orders of magnitude faster.
Collapse
Affiliation(s)
- Mogens S Hovmøller
- University of Aarhus, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Flakkebjerg, DK4200 Slagelse, Denmark.
| | | |
Collapse
|
32
|
Roscher C, Schumacher J, Foitzik O, Schulze ED. Resistance to rust fungi in Lolium perenne depends on within-species variation and performance of the host species in grasslands of different plant diversity. Oecologia 2007; 153:173-83. [PMID: 17415594 DOI: 10.1007/s00442-007-0713-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
The hypothesis that plant species diversity and genetic variation of the host species decrease the severity of plant diseases is supported by studies of agricultural systems, but experimental evidence from more complex systems is scarce. In an experiment with grassland communities of varying species richness (1, 2, 4, 8, 16, and 60 species) and functional group richness (1, 2, 3, and 4 functional groups), we used different cultivars of Lolium perenne (perennial ryegrass) to study effects of biodiversity and cultivar identity on the occurrence and severity of foliar fungal diseases caused by Puccinia coronata (crown rust) and P. graminis (stem rust). Cultivar monocultures of perennial ryegrass revealed strong differences in pathogen susceptibility among these cultivars. Disease intensity caused by both rust fungi decreased significantly with growing species richness of species mixtures. The response to the diversity gradient was related to the decreased density and size of the host individuals with increasing species richness. The occurrence of other grass species known to be possible hosts of the pathogens in the experimental mixtures did not promote disease intensity in L. perenne, indicating that there was a high host specificity of pathogen strains. Differences in pathogen susceptibility among perennial ryegrass cultivars persisted independent of diversity treatment, host density and host individual size, but resulted in a cultivar-specific pattern of changes in pathogen infestation across the species-richness gradient. Our study provided evidence that within-species variation in pathogen susceptibility and competitive interactions of the host species with the environment, as caused by species diversity treatments, are key determinants of the occurrence and severity of fungal diseases.
Collapse
Affiliation(s)
- Christiane Roscher
- Institut für Okologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
33
|
SZABO LESJ. Development of simple sequence repeat markers for the plant pathogenic rust fungus, Puccinia graminis. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01540.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Keiper FJ, Haque MS, Hayden MJ, Park RF. Genetic Diversity in Australian Populations of Puccinia graminis f. sp. avenae. PHYTOPATHOLOGY 2006; 96:96-104. [PMID: 18944209 DOI: 10.1094/phyto-96-0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Sequence-tagged microsatellite profiling was used to develop 110 microsatellites for Puccinia graminis f. sp. tritici (causal agent of wheat stem rust). Low microsatellite polymorphism was exhibited among 10 pathogenically diverse P. graminis f. sp. tritici isolates collected from Australian cereal growing regions over a period of at least 70 years, with two polymorphic loci detected, each revealing two alleles. Limited cross-species amplification was observed for the wheat rust pathogens, P. triticina (leaf rust) and P. striiformis f. sp. tritici (stripe rust). However, very high transferability was revealed with P. graminis f. sp. avenae (causal agent of oat stem rust) isolates. A genetic diversity study of 47 P. graminis f. sp. avenae isolates collected from an Australia-wide survey in 1999, and a historical group of 16 isolates collected from Australian cereal growing regions from 1971 to 1996, revealed six polymorphic microsatellite loci with a total of 15 alleles. Genetic analysis revealed the presence of several clonal lineages and subpopulations in the pathogen population, and wide dispersal of identical races and genotypes throughout Australian cereal-growing regions. These findings demonstrated the dynamic population structure of this pathogen in Australia and concur with the patterns of diversity observed in pathogenicity studies.
Collapse
|
35
|
Webb CA, Szabo LJ, Bakkeren G, Garry C, Staples RC, Eversmeyer M, Fellers JP. Transient expression and insertional mutagenesis of Puccinia triticina using biolistics. Funct Integr Genomics 2005; 6:250-60. [PMID: 16284743 DOI: 10.1007/s10142-005-0009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/01/2005] [Accepted: 09/04/2005] [Indexed: 11/26/2022]
Abstract
The fungal genus Puccinia contains more than 4,000 species. Puccinia triticina, causal agent of wheat leaf rust, is an economically significant, biotrophic basidiomycete. Little is known about the molecular biology of this group, and tools for understanding gene function have not yet been established. A set of parameters was established for the transient transformation of urediniospores. The expression of three heterologous promoters (actin, elongation factor 1-alpha, and Hss1, Heat Shock 70 protein), derived from Puccinia graminis, was evaluated along with the potential for insertional mutagenesis. The UidA (GUS) gene was used as a marker for transient expression. When transferred into P. triticina urediniospores, transient expression was observed across four helium pressures using one size of gold and three sizes of tungsten microprojectiles. Each of the three promoters displayed strong transient expression in germinated urediniospores; however, higher numbers of GUS-positive urediniospores were observed when either the actin or Hss1 promoters were used. Possible concomitant insertional mutagenesis of several avirulence genes was selected in wheat cultivars harboring the cognate resistance genes. Using a linearized cloning plasmid, stable integration into the genome was achieved as demonstrated by PCR and sequencing analysis.
Collapse
Affiliation(s)
- Craig A Webb
- USDA-ARS, Plant Science and Entomology Research Unit, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Leonard KJ, Szabo LJ. Stem rust of small grains and grasses caused by Puccinia graminis. MOLECULAR PLANT PATHOLOGY 2005; 6:99-111. [PMID: 20565642 DOI: 10.1111/j.1364-3703.2005.00273.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED SUMMARY Stem rust has been a serious disease of wheat, barley, oat and rye, as well as various important grasses including timothy, tall fescue and perennial ryegrass. The stem rust fungus, Puccinia graminis, is functionally an obligate biotroph. Although the fungus can be cultured with difficulty on artificial media, cultures grow slowly and upon subculturing they develop abnormal ploidy levels and lose their ability to infect host plants [Bushnell and Bosacker (1982) Can. J. Bot. 60, 1827-1836]. P. graminis is a typical heteroecious rust fungus with the full complement of five distinct spore stages that occur during asexual reproduction on its gramineous hosts and sexual reproduction that begins in the resting spore stage and culminates on the alternate host, barberry (Berberis spp.). There appears to be little polymorphism for resistance/susceptibility in Berberis species, but complex polymorphisms of resistance/susceptibility and matching virulence/avirulence exist in gene-for-gene relationships between small grain species and the forms of P. graminis that infect them. TAXONOMY Puccinia graminis is a rust fungus in the phylum Basidiomycota, class Urediniomycetes, order Uredinales, and family Pucciniaceae, which contains 17 genera and approximately 4121 species, of which the majority are in the genus Puccinia[Kirk et al. (2001) Ainsworth and Bisby's Dictionary of the Fungi. Wallingford, UK: CAB International]. Various subdivisions of P. graminis into subspecies, varieties and formae speciales have been proposed based on spore size and host range. Crossing studies and DNA sequence comparisons support the separation of at least two subspecies, but not the proposed separation based on spore size. HOST RANGE The host range of P. graminis is very broad compared with that of most Puccinia spp.; it includes at least 365 species of cereals and grasses in 54 genera [Anikster (1984) The Cereal Rusts. Orlando, FL: Academic Press, pp. 115-130]. Wheat stem rust, P. graminis f. sp. tritici, was shown to infect 74 species in 34 genera in artificial inoculations of seedlings, but only 28 of those species belonging to eight genera were known to be natural hosts of the fungus. Other formae speciales of P. graminis have narrower host ranges than P. graminis f. sp. tritici. Disease symptoms: Infections in cereals or grasses occur mainly on stems and leaf sheaths, but occasionally they may be found on leaf blades and glumes as well. The first macroscopic symptom is usually a small chlorotic fleck, which appears a few days after infection. About 8-10 days after infection, a pustule several millimetres long and a few millimetres wide is formed by rupture of the host epidermis from pressure of a mass of brick-red urediniospores produced in the infection. These uredinial pustules are generally linear or diamond shaped and may enlarge up to 10 mm long. The powdery masses of urediniospores appear similar to rust spots on a weathered iron surface. With age, the infection ceases production of brick-red urediniospores and produces a layer of black teliospores in their place, causing the stems of heavily infected plants to appear blackened late in the season.
Collapse
Affiliation(s)
- Kurt J Leonard
- Department of Plant Pathology, University of Minnesota and United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, USA
| | | |
Collapse
|
37
|
Genetics of Morphogenesis in Basidiomycetes. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Linning R, Lin D, Lee N, Abdennadher M, Gaudet D, Thomas P, Mills D, Kronstad JW, Bakkeren G. Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei. Genetics 2004; 166:99-111. [PMID: 15020410 PMCID: PMC1470683 DOI: 10.1534/genetics.166.1.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Race-cultivar specialization during the interaction of the basidiomycete smut pathogen Ustilago hordei with its barley host was described in the 1940s. Subsequent genetic analyses revealed the presence of dominant avirulence genes in the pathogen that conform to the gene-for-gene theory. This pathosystem therefore presents an opportunity for the molecular genetic characterization of fungal genes controlling avirulence. We performed a cross between U. hordei strains to obtain 54 progeny segregating for three dominant avirulence genes on three differential barley cultivars. Bulked segregant analysis was used to identify RAPD and AFLP markers tightly linked to the avirulence gene UhAvr1. The UhAvr1 gene is located in an area containing repetitive DNA and this region is undetectable in cosmid libraries prepared from the avirulent parental strain. PCR and hybridization probes developed from the linked markers were therefore used to identify cosmid clones from the virulent (Uhavr1) parent. By walking on Uhavr1-linked cosmid clones, a nonrepetitive, nearby probe was found that recognized five overlapping BAC clones spanning 170 kb from the UhAvr1 parent. A contig of the clones in the UhAvr1 region was constructed and selected probes were used for RFLP analysis of the segregating population. This approach genetically defined an approximately 80-kb region that carries the UhAvr1 gene and provided cloned sequences for subsequent genetic analysis. UhAvr1 represents the first avirulence gene cloned from a basidiomycete plant pathogen.
Collapse
Affiliation(s)
- R Linning
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
40
|
Sicard D, Legg E, Brown S, Babu NK, Ochoa O, Sudarshana P, Michelmore RW. A genetic map of the lettuce downy mildew pathogen, Bremia lactucae, constructed from molecular markers and avirulence genes. Fungal Genet Biol 2003; 39:16-30. [PMID: 12742060 DOI: 10.1016/s1087-1845(03)00005-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genetic map of Bremia lactucae was expanded utilizing 97 F(1) progeny derived from a cross between Finnish and Californian isolates (SF5xC82P24). Genetic maps were constructed for each parent utilizing 7 avirulence genes, 83 RFLP markers, and 347 AFLP markers, and a consensus map was constructed from the complete data set. The framework map for SF5 contained 24 linkage groups distributed over 835cM; the map for C82P24 contained 21 linkage groups distributed over 606cM. The consensus map contained 12 linkage groups with markers from both parents and 24 parent-specific groups. Six avirulence genes mapped to different linkage groups; four were located at the ends of linkage groups. The closest linkages between molecular markers and avirulence genes were 3cM to Avr4 and 1cM to Avr7. Mating type seemed to be determined by a single locus, where the heterozygote determined the B(2) type and the homozygous recessive genotype determined the B(1) type.
Collapse
Affiliation(s)
- Delphine Sicard
- Department of Vegetable Crops, University of California Davis, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Keiper FJ, Hayden MJ, Park RF, Wellings CR. Molecular genetic variability of Australian isolates of five cereal rust pathogens. MYCOLOGICAL RESEARCH 2003; 107:545-56. [PMID: 12884951 DOI: 10.1017/s0953756203007809] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rust fungi cause economically important diseases of cereals, and their ability to rapidly evolve new virulent races has hindered attempts to control them by genetic resistance. PCR-based molecular tools may assist in understanding the genetic structure of pathogen populations. The high multiplex DNA fingerprinting techniques, amplified fragment length polymorphisms (AFLP), selectively amplified microsatellites (SAM) and sequence-specific amplification polymorphisms (S-SAP) were assessed for their potential in investigations of the genetic relationships among isolates of the wheat rust pathogens, Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and P. striiformis f. sp. tritici (Pst), the oat stem rust pathogen P. graminis f. sp. avenae (Pga), and a putative new P. striiformis special form tentatively designated Barley grass yellow rust (Bgyr). Marker information content, as indicated by the number of species-specific fragments, polymorphic fragments among pathotypes, percentage of polymorphic loci, and the marker index, was highest for the SAM assay, followed by the AFLP and S-SAP assays. UPGMA analysis revealed that all marker types efficiently discriminated the five different taxa and Mantel tests revealed significant correlations between the marker types. Within pathogen groups, the marker types differed in the amount of variation detected among isolates; however, the major differences were consistent and polymorphism was generally low. This was reflected by the AMOVA analysis that significantly partitioned 90% of the genetic variation between taxa. Of the three marker types, SAMS were the most informative, and have the potential for the development of locus-specific microsatellites.
Collapse
Affiliation(s)
- Felicity J Keiper
- Plant Breeding Institute, University of Sydney, Cobbitty, PMB 11, Camden NSW 2570, Australia.
| | | | | | | |
Collapse
|