1
|
Tan W, Zhang X, Wang Z, Chen Y, Wang A, Chu M, Tang B, Li Z. Differential expression of Wilms' tumour 1 gene in porcine urogenital organs during development. Anat Histol Embryol 2018; 48:102-109. [PMID: 30450614 DOI: 10.1111/ahe.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/07/2018] [Accepted: 10/28/2018] [Indexed: 11/28/2022]
Abstract
Wilms' tumour 1 gene (WT1) is essential for the development of mammalian urogenital system. However, the expression pattern of WT1 in the development of porcine urogenital organs is still unclear. Here, we examined the expression of WT1 mRNA and protein in porcine kidneys, ovaries and testes from embryonic days 35 and 60 (E35d, E60d, n = 3) to the newborn (0d, n = 4) and adult (210d, n = 3) stages, using real-time PCR and immunofluorescent staining. Real-time PCR analysis showed that porcine kidneys, ovaries and testes all expressed high level of WT1 mRNAs, especially in adult testes (p < 0.05 or 0.01 vs. kidney and ovary, respectively). Morphologically, characteristic microstructures of the kidneys, ovaries and testes were observed and discerned at all four stages. Immunofluorescently, WT1 expression was detected in a dynamic and context-specific pattern during the development of these organs. Taken together, porcine urogenital organs express relatively high levels of WT1 mRNA. Dynamical and context-specific expression profile of WT1 in these organs occurs during their development, implying its close association with the development and function of porcine kidney, ovary and testis.
Collapse
Affiliation(s)
- Wentao Tan
- The First Bethune Hospital, Jilin University, Changchun, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengzhu Wang
- The First Bethune Hospital, Jilin University, Changchun, China
| | - Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Aibing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meiran Chu
- The First Bethune Hospital, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Li
- The First Bethune Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
Juengel JL, Smith PR, Quirke LD, French MC, Edwards SJ. The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes. Anim Reprod 2018; 15:180-190. [PMID: 34178140 PMCID: PMC8202455 DOI: 10.21451/1984-3143-ar2018-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the growth and maturation of the ovarian follicle is critical for normal reproductive function. Alterations in this growth can lead to pathological conditions, such as cystic follicles, reduced oocyte quality, or an abnormal endocrine environment leading to poor fertility. Alterations in follicular growth also influence the number of follicles ovulating and thus can change litter size. Both endocrine factors, such as follicle stimulating hormone and luteinizing hormone, as well as local factors, are known to regulate follicular growth and development. This review will focus on the role of local factors in regulation of ovarian follicular growth in ruminants, with a focus on members of the transforming growth factor superfamily. The potential role of these factors in regulating proliferation, apoptosis, steroidogenesis and responsiveness to gonadotrophins will be considered.
Collapse
Affiliation(s)
- Jennifer L Juengel
- Reproduction, Animal Science, AgResearch Ltd., Invermay Agricultural Centre, Mosgiel New Zealand
| | - Peter R Smith
- Reproduction, Animal Science, AgResearch Ltd., Invermay Agricultural Centre, Mosgiel New Zealand
| | - Laurel D Quirke
- Reproduction, Animal Science, AgResearch Ltd., Invermay Agricultural Centre, Mosgiel New Zealand
| | - Michelle C French
- Reproduction, Animal Science, AgResearch Ltd., Invermay Agricultural Centre, Mosgiel New Zealand
| | - Sara J Edwards
- Reproduction, Animal Science, AgResearch Ltd., Invermay Agricultural Centre, Mosgiel New Zealand
| |
Collapse
|
3
|
Martinovic V, Vukusic Pusic T, Restovic I, Bocina I, Filipovic N, Saraga-Babic M, Vukojevic K. Expression of Epithelial and Mesenchymal Differentiation Markers in the Early Human Gonadal Development. Anat Rec (Hoboken) 2017; 300:1315-1326. [PMID: 27981799 DOI: 10.1002/ar.23531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
Expressions of cytokeratin 8 (CK8), vimentin, nestin, and alpha-smooth-muscle-actin (alpha-SMA) were analyzed in the developing gonads of 12, 5-9 week old (W) human conceptuses by immunohistochemistry and immunofluorescence. During the investigated period, the number of CK8 positive cells increased from 56% to 92% in the gonadal surface epithelium, from 50% to 60% in the stroma, and from 23% to 42% in the medulla. In the early fetal period, the cell expression of CK8 increased in all gonadal parts, whereas primordial germ cells (PGC) remained negative. The expression of vimentin increased in the gonad stroma (gs) from 73% to 88%, and in the surface epithelium from 18% to 97% until ninth W. The medulla had the highest expression of vimentin in the seventh to eighth W (93%). Vimentin and CK8 colocalized in the somatic cells, while some PGCs showed vimentin expression only. Initially, nestin was positive in the gonad surface epithelium (8%) and stroma (52%), however during further development it decreased to 1% and 33%, respectively. In the early fetal period, the nestin positive cells decreased from 44% to 31% in the gonad medulla. Alpha-SMA was positive only in the blood vessels and mesonephros. The described pattern of expression of intermediate filaments (IF) in developing human gonads suggests their role in the control of PGC apoptosis, early differentiation of gs cells and cell migration. Both epithelial and mesenchymal origins of follicular cells and possible epithelial-to-mesenchymal transition of somatic cells is proposed. Lastly, IF intensity expression varies depending on the cell type and developmental period analyzed. Anat Rec, 300:1315-1326, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vlatka Martinovic
- Department of Pediatric Surgery, University Hospital Mostar, Bosnia and Herzegovina
| | | | | | - Ivana Bocina
- Faculty of Science, University of Split, Croatia
| | - Natalija Filipovic
- Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Croatia.,Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Croatia
| | - Mirna Saraga-Babic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Croatia
| | - Katarina Vukojevic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Croatia.,Department of Histology and Embryology, School of Medicine, University of Mostar, Bosnia and Herzegovina
| |
Collapse
|
4
|
Guzmán JM, Luckenbach JA, Yamamoto Y, Swanson P. Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon. PLoS One 2014; 9:e114176. [PMID: 25485989 PMCID: PMC4259363 DOI: 10.1371/journal.pone.0114176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/05/2014] [Indexed: 01/17/2023] Open
Abstract
The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.
Collapse
Affiliation(s)
- José M. Guzmán
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- * E-mail:
| | - J. Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, 99164, United States of America
| | - Yoji Yamamoto
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, 98195, United States of America
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, 99164, United States of America
| |
Collapse
|
5
|
Gao F, Guan J, Liu L, Zhang S, An P, Fan A, Song G, Zhang P, Zhao T, Tang B, Zhang X, Li Z. Effects of WT1 down-regulation on oocyte maturation and preimplantation embryo development in pigs. Reproduction 2014; 148:377-87. [DOI: 10.1530/rep-14-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Wilms' tumour 1 (WT1) gene originally identified as a tumour suppressor associated with WTs encodes a zinc finger-containing transcription factor that is expressed in multiple tissues and is an important regulator of cellular and organ growth, proliferation, development, migration and survival. However, there is a deficiency of data regarding the expression and function ofWT1during oocyte maturation and preimplantation embryonic development. Herein, we sought to define the expression characteristics and functions ofWT1during oocyte maturation and preimplantation embryonic development in pigs. We show thatWT1is expressed in porcine oocytes and at all preimplantation stages in embryos generated by ICSI. We then evaluated the effects of down-regulatingWT1expression at germinal vesicle and early ICSI stages using a recombinant plasmid (pGLV3-WT1-shRNA). Down-regulation ofWT1did not affect oocyte maturation but significantly decreased preimplantation embryonic development and increased apoptosis in blastocysts. These results indicate thatWT1plays important roles in the development of porcine preimplantation embryos.
Collapse
|
6
|
Luckenbach JA, Yamamoto Y, Guzmán JM, Swanson P. Identification of ovarian genes regulated by follicle-stimulating hormone (Fsh) in vitro during early secondary oocyte growth in coho salmon. Mol Cell Endocrinol 2013. [PMID: 23200633 DOI: 10.1016/j.mce.2012.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Follicle-stimulating hormone (Fsh) function in fishes is poorly understood. This study aimed to reveal Fsh-regulated genes in coho salmon previtellogenic ovarian follicles in vitro. Four suppression subtractive hybridization libraries were generated with RNA isolated from Fsh-treated and control follicles or follicle cell-enriched tissue fractions. Fsh induced steroidogenesis and dynamically upregulated several genes predominantly expressed in follicle cells, including WAP domain-containing protease, connexin 34.3, clusterin (clu1, clu2), fibronectin, wilms tumor 2-like, and influenza virus NS1A-binding protein a. Genes downregulated by Fsh included connective tissue growth factor, alcohol dehydrogenase 8-like, and serine/threonine-protein kinase pim-1. This study demonstrates for the first time in fishes that Fsh influences the expression of a unique suite of ovarian genes involved in processes like cell communication, survival and differentiation, and extracellular matrix remodeling. Collectively, these findings suggest that Fsh and/or steroids induce differentiation of granulosa cells and remodeling of the follicle in preparation for onset of vitellogenesis.
Collapse
Affiliation(s)
- J Adam Luckenbach
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA.
| | | | | | | |
Collapse
|
7
|
Baillet A, Mandon-Pépin B, Cabau C, Poumerol E, Pailhoux E, Cotinot C. Identification of transcripts involved in meiosis and follicle formation during ovine ovary development. BMC Genomics 2008; 9:436. [PMID: 18811939 PMCID: PMC2566313 DOI: 10.1186/1471-2164-9-436] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/23/2008] [Indexed: 12/02/2022] Open
Abstract
Background The key steps in germ cell survival during ovarian development are the entry into meiosis of oogonies and the formation of primordial follicles, which then determine the reproductive lifespan of the ovary. In sheep, these steps occur during fetal life, between 55 and 80 days of gestation, respectively. The aim of this study was to identify differentially expressed ovarian genes during prophase I meiosis and early folliculogenesis in sheep. Results In order to elucidate the molecular events associated with early ovarian differentiation, we generated two ovary stage-specific subtracted cDNA libraries using SSH. Large-scale sequencing of these SSH libraries identified 6,080 ESTs representing 2,535 contigs. Clustering and assembly of these ESTs resulted in a total of 2,101 unique sequences depicted in 1,305 singleton (62.11%) and 796 contigs (37.9%) ESTs (clusters). BLASTX evaluation indicated that 99% of the ESTs were homologous to various known genes/proteins in a broad range of organisms, especially ovine, bovine and human species. The remaining 1% which exhibited any homology to known gene sequences was considered as novel. Detailed study of the expression patterns of some of these genes using RT-PCR revealed new promising candidates for ovary differentiation genes in sheep. Conclusion We showed that the SSH approach was relevant to determining new mammalian genes which might be involved in oogenesis and early follicle development, and enabled the discovery of new potential oocyte and granulosa cell markers for future studies. These genes may have significant implications regarding our understanding of ovarian function in molecular terms, and for the development of innovative strategies to both promote and control fertility.
Collapse
Affiliation(s)
- Adrienne Baillet
- INRA, ENVA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
AIMS To determine the expression of WT1 in endothelial proliferations and tumours. Endothelial cells are derived from angioblasts which differentiate into bone marrow stem cells (BMSC). BMSC are characterized by the constitutive expression of the WT1 gene and we have postulated that its expression may be maintained during the differentiation of angioblasts to endothelial cells. METHODS AND RESULTS The expression of WT1 was studied in human umbilical vein-derived (HUVEC) and brain microvascular endothelial cells (HBME) as well as in a Kaposi sarcoma (KS) cell line in vitro. Forty-two human skin biopsy samples of endothelial proliferations and tumours were analysed for the protein expression of WT1 using the monoclonal antibodies for wt-WT1 (6F-H2) and its 17AA+ variant (2C12). WT1 expression was detectable in HUVEC and KS cells and all WT1 splice variants examined (17AA+/- KTS+/-) were detectable in KS cells, while the 17AA+/- and KTS- variants were present in HUVEC. Immunohistochemical analysis of the 42 human skin biopsy samples revealed cytoplasmic WT1 expression using wild-type specific antibody (6FH2) in microvessels, which is maintained during neoangiogenesis (inflammation, haemorrhage, peritumoral angiogenesis). Around one-third of haemangiomas (3/10) and non-HIV-Kaposi sarcomas (7/18) expressed the WT1 protein in the cytoplasm of tumour cells compared with its frequent expression in angiosarcomas (7/8) using the same antibody (6FH2). The nuclear 17AA+ isoform of WT1 was detectable at protein level in a small proportion of KS cases exclusively (3/7). CONCLUSION Our data suggest that WT1 protein expression is maintained during angiogenesis and malignant transformation of endothelial cells and can be considered as a new endothelial marker.
Collapse
Affiliation(s)
- J Timár
- Diagnostic Pathology, National Institute of Oncology, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
9
|
van den Hurk R, Zhao J. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 2005; 63:1717-51. [PMID: 15763114 DOI: 10.1016/j.theriogenology.2004.08.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/28/2004] [Accepted: 08/17/2004] [Indexed: 11/25/2022]
Abstract
The limited knowledge on the regulation of oocyte formation, the different steps of folliculogenesis and the required conditions for oocytes to undergo proper growth, differentiation and maturation are major causes of the failure in obtaining viable offspring from in vitro cultured early oocytes from domestic animals and humans. This review highlights the factors that at present are known to be involved in the formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.
Collapse
Affiliation(s)
- Robert van den Hurk
- Department of Farm Animal Health, Faculty of Veterinary Medicine, P.O. Box 90151, Yalelaan 7, Utrecht University, Utrecht 3508TD, The Netherlands.
| | | |
Collapse
|