1
|
Pérez-Montero S, Carbonell A, Azorín F. Germline-specific H1 variants: the "sexy" linker histones. Chromosoma 2015; 125:1-13. [PMID: 25921218 DOI: 10.1007/s00412-015-0517-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
Abstract
The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain. .,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Wolfe SA, van Wert J, Grimes SR. Transcription factor RFX2 is abundant in rat testis and enriched in nuclei of primary spermatocytes where it appears to be required for transcription of the testis-specific histone H1t gene. J Cell Biochem 2007; 99:735-46. [PMID: 16676351 DOI: 10.1002/jcb.20959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous work in our laboratory revealed upregulated transcription of the testis-specific linker histone H1t gene in pachytene primary spermatocytes during spermatogenesis. Using the H1t X-box as an affinity chromatography probe, we identified Regulatory Factor X2 (RFX2), a member of the RFX family of transcription factors, as a nuclear protein that binds the probe. We also showed that RFX2 activated the H1t promoter in transient expression assays. However, other RFX family members have the same DNA-binding domain and they also may regulate H1t gene expression. Therefore, in this study we examined the distribution of RFX2 and other RFX family members in rat testis germinal cells and in several tissues. Among tissues examined, RFX2 is most abundant in testis. Testis RFX2 is most abundant in spermatocytes where transcription of the H1t gene is upregulated and the steady-state H1t mRNA level is high. RFX2 levels decrease but RFX1 levels increase in early spermatids where H1t gene transcription is downregulated. Antibodies against RFX2 generate a shifted band in electrophoretic mobility shift assays (EMSA) using H1t or testisin X-box DNA probes with nuclear proteins from spermatocytes. These data support the hypothesis that RFX2 expression is upregulated in spermatocytes where it participates in activating transcription of the H1t gene and other testis genes. These data also support the possibility that other RFX family members may bind to the H1t promoter in other testis germinal cell types and in nongerminal cells to downregulate H1t gene transcription.
Collapse
Affiliation(s)
- Steven A Wolfe
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA
| | | | | |
Collapse
|
3
|
Chowdhary R, Ali RA, Albig W, Doenecke D, Bajic VB. Promoter modeling: the case study of mammalian histone promoters. Bioinformatics 2005; 21:2623-8. [PMID: 15769833 DOI: 10.1093/bioinformatics/bti387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MOTIVATION Histone proteins play important roles in chromosomal functions. They are significantly evolutionarily conserved across species, which suggests similarity in their transcription regulation. The abundance of experimental data on histone promoters provides an excellent background for the evaluation of computational methods. Our study addresses the issue of how well computational analysis can contribute to unveiling the biologically relevant content of promoter regions for a large number of mammalian histone genes taken across several species, and suggests the consensus promoter models of different histone groups. RESULTS This is the first study to unveil the detailed promoter structures of all five mammalian histone groups and their subgroups. This is also the most comprehensive computational analysis of histone promoters performed to date. The most exciting fact is that the results correlate very well with the biologically known facts and experimental data. Our analysis convincingly demonstrates that computational approach can significantly contribute to elucidation of promoter content (identification of biologically relevant signals) complementing tedious wet-lab experiments. We believe that this type of analysis can be easily applied to other functional gene classes, thus providing a general framework for modelling promoter groups. These results also provide the basis to hunt for genes co-regulated with histone genes across mammalian genomes.
Collapse
Affiliation(s)
- Rajesh Chowdhary
- Knowledge Extraction Lab, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
| | | | | | | | | |
Collapse
|
4
|
Grimes SR. Testis-specific transcriptional control. Gene 2004; 343:11-22. [PMID: 15563828 DOI: 10.1016/j.gene.2004.08.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/06/2004] [Accepted: 08/19/2004] [Indexed: 01/19/2023]
Abstract
In the testis, tissue-specific transcription is essential for proper expression of the genes that are required for the reproduction of the organism. Many testis-specific genes are required for mitotic proliferation of spermatogonia, spermatocytes undergoing genetic recombination and meiotic divisions, and differentiation of haploid spermatids. In this article we describe some of the genes that are transcribed in male germinal cells and in non-germinal testis cells. Because significant progress has been made in examination of promoter elements and their cognate transcription factors that are involved in controlling transcription of the testis-specific linker histone H1t gene in primary spermatocytes, this work will be reviewed in greater detail. The gene is transcriptionally active in spermatocytes and repressed in all other germinal and non-germinal cell types and, therefore, it serves as a model for study of regulatory mechanisms involved in testis-specific transcription.
Collapse
Affiliation(s)
- S R Grimes
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, LA 71101-4295, USA.
| |
Collapse
|