1
|
Li X, Liu Q, Wang L, Bu T, Yang X, Gao S, Yun D, Sun F. PPM1G dephosphorylates α-catenin to maintain the integrity of adherens junctions and regulates apoptosis in Sertoli cells. Mol Cell Endocrinol 2025; 600:112493. [PMID: 39952314 DOI: 10.1016/j.mce.2025.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatase, Mg2+/Mn2+ dependent, 1G (PPM1G) regulates protein function via dephosphorylation. PPM1G participates in the assembly of adherens junctions by dephosphorylating α-catenin. Here, we demonstrated through siRNA transfection and intratesticular injection that PPM1G is critical for maintaining blood-testis barrier function and regulating Sertoli cell apoptosis. We observed that upon knocking down Ppm1g in rat testes, the function of the blood testis barrier was compromised, and the localization of α-catenin and β-catenin became aberrant. Further investigation in rat Sertoli cells revealed that after Ppm1g knockdown, the level of phosphorylated α-catenin increased, and it failed to properly aggregate at the cell membrane; instead, it was mislocalized to the cytoplasm. The actin to which catenin is attached also exhibited a disordered arrangement in the absence of PPM1G. Additionally, through RNA sequencing and bioinformatics analysis, we identified genes associated with Sertoli cell dysfunction induced by Ppm1g knockdown and identified a set of genes involved in regulating intercellular junctions. Subsequent validation revealed that after Ppm1g knockdown, the expression of the junction-related protein JAM2 was reduced, and Sertoli cells underwent apoptosis. Overall, we identified a gene, Ppm1g, which may be involved in maintaining the normal function of the blood-testis barrier and influencing the survival of Sertoli cells by regulating apoptotic pathways.
Collapse
Affiliation(s)
- Xinyao Li
- Department of General Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Qian Liu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tiao Bu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue, Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Wang S, Ma Y, Li W, Zhao Y, Gao Y, Wang S. LncRNA SNHG5/IGF2BP1/Occludin axis regulates Nd 2O 3 induced blood-testis barrier disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124527. [PMID: 38992831 DOI: 10.1016/j.envpol.2024.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Neodymium oxide (Nd2O3) is a rare earth element that can lead to various type of tissue and organ damage with prolonged exposure. The long noncoding RNA small nucleolar ribonucleic acid host gene 5 (lncRNA SNHG5) plays a role in disease progressiong. However, its connection with Nd2O3 induced reproductive harm in males has not been thoroughly investigated. Our research discovered that exposure to Nd2O3 increases the expression of SNHG5 in the testes of mice, which in turn binds directly to and reduces in the protein levels of insulin like growth factor 2 mRNA-binding protein 1 (IGF2BP1) both in vivo and in vitro. This process disrupts the cytoskeleton of blood-testis barrier(BTB) by impacting the stability of the tight junction protein Occludin (Ocln) mRNA structure and the permeability of the BTB. In summary, our study elucidates the regulatory mechanism of SNHG5/IGF2BP1/Occludin axis in Nd2O3-induced BTB injury, providing valuable insights for the treatment of male infertility.
Collapse
Affiliation(s)
- Shurui Wang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Yupeng Ma
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Wenjie Li
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China.
| |
Collapse
|
3
|
Bhat SA, Malla AB, Oddi V, Sen J, Bhandari R. Inositol hexakisphosphate kinase 1 is essential for cell junction integrity in the mouse seminiferous epithelium. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119596. [PMID: 37742721 DOI: 10.1016/j.bbamcr.2023.119596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are enzymes that catalyse the synthesis of the inositol pyrophosphate 5-IP7 which is involved in the regulation of many physiological processes in mammals. The IP6K paralog IP6K1 is expressed at high levels in the mammalian testis, and its deletion leads to sterility in male mice. Here, we show that the loss of IP6K1 in mice causes a delay in the first wave of spermatogenesis. Testes from juvenile Ip6k1 knockout mice show downregulation of transcripts that are involved in cell adhesion and formation of the testis-specific inter-Sertoli cell impermeable junction complex known as the blood-testis barrier (BTB). We demonstrate that loss of IP6K1 in the mouse testis causes BTB disruption associated with transcriptional misregulation of the tight junction protein claudin 3, and subcellular mislocalization of the gap junction protein connexin 43. In addition to BTB disruption, we also observe a loss of germ cell adhesion in the seminiferous epithelium of Ip6k1 knockout mice, ultimately resulting in premature sloughing of round spermatids into the epididymis. Mechanistically, we show that loss of IP6K1 in the testis enhances cofilin dephosphorylation in conjunction with increased AKT/ERK and integrin signalling, resulting in destabilization of the actin-based cytoskeleton in Sertoli cells and germ cell loss.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Aushaq Bashir Malla
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Vineesha Oddi
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| |
Collapse
|
4
|
Shen J, Wang L, Wang X, Xie J, Yao T, Yu Y, Wang Q, Ding Z, Zhang J, Zhang M, Xu L. Cypermethrin induces apoptosis of Sertoli cells through the endoplasmic reticulum pathway. Toxicol Ind Health 2022; 38:399-407. [PMID: 35610186 DOI: 10.1177/07482337221104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cypermethrin, an extensively used pyrethroid pesticide, is regarded as one of many endocrine-disrupting chemicals (EDCs) with anti-androgenic activity to damage male reproductive systems. We previously found cypermethrin-induced apoptosis in mouse Sertoli cells TM4. We hypothesized cypermethrin-induced TM4 apoptosis by the endoplasmic reticulum (ER) pathway. This study aimed to explore the roles of the ER pathway in cypermethrin-induced apoptosis in TM4 cells. The cells were treated with cypermethrin for 24 h at various concentrations (0 µM, 10 µM, 20 µM, 40 µM, and 80 µM). Flow cytometry was used to test for apoptosis. Western blot was used to test protein expressions in the ER stress pathway. The results showed that the apoptosis rate of TM4 cells increased with increased concentrations of cypermethrin, and a significant difference was detected in the 80-μM group. The protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like ER kinase (PERK), p-PERK, α subunit of eukaryotic initiation factor (eIF2α), p-eIF2α, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), caspase-12, caspase-9, and caspase-3 increased with increased concentrations of cypermethrin . The results suggested cypermethrin-induced apoptosis in TM4 cells regulated by the ER pathway involving PERK-eIF2α-ATF4-CHOP. The study provides a new insight into cypermethrin-induced apoptosis in Sertoli cells.
Collapse
Affiliation(s)
- Junyu Shen
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Lushan Wang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Xuxu Wang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Jiafei Xie
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Tingting Yao
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Yue Yu
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Qi Wang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Zhen Ding
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Meirong Zhang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Lichun Xu
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Wang X, Adegoke EO, Ma M, Huang F, Zhang H, Adeniran SO, Zheng P, Zhang G. Influence of Wilms' tumor suppressor gene WT1 on bovine Sertoli cells polarity and tight junctions via non-canonical WNT signaling pathway. Theriogenology 2019; 138:84-93. [PMID: 31302435 DOI: 10.1016/j.theriogenology.2019.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sertoli cells (SCs) are polarized epithelial cells and provide a microenvironment for the development of germ cells (GCs). The Wilms' tumor suppressor gene WT1 which support spermatogenesis is expressed explicitly in SCs. This study investigated the effect of WT1 on the polarity and blood-testis barrier (BTB) formation of bovine SCs in order to provide theoretical and practical bases for the spermatogenic process in mammals. In this study, newborn calf SCs were used as research material, and the RNAi technique was used to knockdown the endogenous WT1. The results show that WT1 knockdown did not affect the proliferation ability of SCs, but down-regulated the expression of polarity-associated proteins (Par3, Par6b, and E-cadherin), junction-associated protein (occludin) and inhibits transcription of downstream genes (WNT4, JNK, αPKC, and CDC42) in non-canonical WNT signaling pathway. WT1 also altered ZO-1 and occludin protein distribution. Overexpression of WNT1 did not affect the expression of Par6b, E-cadherin, and occludin, whereas the non-canonical WNT signaling pathway inhibitors wnt-c59, CCG-1423, and GO-6983 down-regulated the expression of Par6b, E-cadherin, and occludin respectively. This study indicates that WT1 mediates the regulation of several proteins involved in bovine SCs polarity maintenance and intercellular tight junctions (TJ) by non-canonical WNT signaling pathway.
Collapse
Affiliation(s)
- Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingjun Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Fushuo Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
6
|
Qilin pills alleviate oligoasthenospermia by inhibiting Bax-caspase-9 apoptosis pathway in the testes of model rats. Oncotarget 2018; 9:21770-21782. [PMID: 29774101 PMCID: PMC5955170 DOI: 10.18632/oncotarget.24985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
At present, the treatment of oligoasthenospermia with western medicine is ineffective. Qilin pill (QLP) is a Chinese traditional medicine for treating male infertility. Recent multicenter clinical studies in China reported that QLPs markedly improved sperm quality. However, the mechanism of action of QLPs on oligoasthenospermia remains unknown. In this study, we investigated the mechanistic basis for improvement of semen parameters and reversal of testis damage by QLPs in a rat model of oligoasthenospermia induced by treatment with tripterygium glycosides (TGs) (40 mg/kg) once daily for 4 weeks. Rats were administered QLPs (1.62 g/kg or 3.24 g/kg) each day for 60 days, with untreated animals serving as controls. The concentration and motility of sperm extracted from rat epididymis were determined, whereas histopathological examination and immunohistochemical apoptosis analysis of rat testes was performed. Expression profiles of apoptosis-related genes were determined by microarray analysis; the results were validated by quantitative real-time PCR, western blotting, and immunohistochemistry. Sperm concentration and motility in the QLP treatment group were increased relative to those in control rats. Testis tissue and DNA damage were reversed by QLP treatment. The improvement function of QLPs on sperm and testis works mainly by suppressing mitochondrial apoptosis in the testis via modulation of B cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), cytochrome C, caspase-9 and caspase-3 expression. QLPs could improve sperm quality and testis damage in a rat model of oligoasthenospermia by inhibiting the Bax-Caspase-9 apoptosis pathway and exerting therapeutic effects.
Collapse
|
7
|
Embryonic stem cell derived germ cells induce spermatogenesis after transplantation into the testes of an adult mouse azoospermia model. Clin Sci (Lond) 2017; 131:2381-2395. [DOI: 10.1042/cs20171074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023]
Abstract
The present study aimed to: (i) identify the exogenous factors that allow in vitro differentiation of mouse spermatogonial stem cells (SSCs) from embryonic stem cells (ESCs); (ii) evaluate the effects of Sertoli cells in SSC enrichment; and (iii) assess the success of transplantation using in vitro differentiated SSCs in a mouse busulfan-treated azoospermia model. A 1-day-old embryoid body (EB) received 5 ng/ml of bone morphogenetic protein 4 (BMP4) for 4 days, 3 µM retinoic acid (RA) in a SIM mouse embryo-derived thioguanine and ouabain resistant (STO) co-culture system for 7 days, and was subsequently co-cultured for 2 days with Sertoli cells in the presence or absence of a leukaemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and RA composition, and in the presence of these factors in simple culture medium. Higher viability, proliferation and germ cell gene expression were seen in the presence of the LIF, bFGF and RA composition, on top of Sertoli cells. Immunocytochemistry results showed higher CDH1 expression in this group. Sertoli co-culture had no effects on SSC proliferation. Eight weeks after transplantation, injected cells were observed at the base of the seminiferous tubules and in the recipient testes. The number of spermatogonia and the mass of the testes were higher in transplanted testes relative to the control group. It seems that transplantation of these cells can be useful in infertility treatment.
Collapse
|
8
|
Liu X, Ye J, Wang L, Li Z, Zhang Y, Sun J, Du C, Wang C, Xu S. Protective Effects of PGC-1α Against Lead-Induced Oxidative Stress and Energy Metabolism Dysfunction in Testis Sertoli Cells. Biol Trace Elem Res 2017; 175:440-448. [PMID: 27392955 DOI: 10.1007/s12011-016-0799-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 12/06/2022]
Abstract
The reproductive system is sensitive to lead (Pb) toxicity, which has long been an area of research interest, but the underlying mechanisms remain to be illustrated. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is pivotal in mitochondrial function. In this study, mouse testis Sertoli cells (TM4 cells), PGC-1α lower-expression (PGC-1α(-)) TM4 cells and PGC-1α overexpression (PGC-1α(+)) TM4 cells were used to explore the protective roles of PGC-1α against lead toxicity on the mouse reproductive system. Lead acetate (PbAc) exposure decreased the expression level of PGC-1α, increased the intracellular level of reactive oxygen species (ROS), and reduced the level of ATP in the three TM4 cell lines. The effects of PbAc on intracellular ATP level and on ROS content were significantly weakened in PGC-1α(+)TM4 cells versus TM4 cells and were significantly amplified in PGC-1α(-)TM4 cells versus TM4 cells. These results suggest that PGC-1α is a protective factor against PbAc-induced oxidative stress and energy metabolism dysfunction in the mouse reproductive system, thereby holding the potential of being developed as a preventive or therapeutic strategy against disorders induced by lead exposure.
Collapse
Affiliation(s)
- Xi Liu
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Jingping Ye
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
- Renmin hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Lu Wang
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Zhen Li
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Yucheng Zhang
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Jiantao Sun
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Chuang Du
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Chunhong Wang
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China.
| | - Siyuan Xu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Academy for Preventive Medicine, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
9
|
Mahaldashtian M, Naghdi M, Ghorbanian MT, Makoolati Z, Movahedin M, Mohamadi SM. In vitro effects of date palm (Phoenix dactylifera L.) pollen on colonization of neonate mouse spermatogonial stem cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:362-368. [PMID: 27084457 DOI: 10.1016/j.jep.2016.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Date palm (Phoenix dactylifera L.) pollen (DPP) is widely used as a folk remedy for male infertility treatment, and has well known medicinal effects. AIM OF THE STUDY This study aimed to determine the in vitro effects of DPP on the efficiency of neonate mouse spermatogonial stem cells (SSCs) proliferation. MATERIAL AND METHODS Sertoli and SSCs were isolated from 6 to 10-days-old mouse testes, and their identity was confirmed using immunocytochemistry against cytokeratin for sertoli cells and PLZF, Oct-4 and CDH-1 for SSCs. Isolated testicular cells were cultured in the absence or presence of 0.06, 0.25 and 0.62mg/ml concentrations of DPP aqueous extract for 2 weeks. The number and diameter of SSC colonies were assessed during third, 7th, 9th and 14th day of culture, and the expression of the Mvh, GFRα-1 and Oct-4 was evaluated using quantitative PCR at the end of the culture period. The significance of the data was analyzed using ANOVA and paired samples t-test and Tukey and Bonferroni test as post hoc tests at the level of p≤0.05. RESULTS Pattern assay of colony formation showed that SSCs numbers increased in the present of 0.62mg/ml concentration of DPP extract with higher slop relative to other groups (P <0.05). Colony diameters had no significant difference between groups in 3th, 7th, 9th and 14th days after culture. The Mvh and Oct-4 genes expression had no significant difference between groups, while GFRα1 expression was increased significantly in cells treated with 0.06mg/ml concentration relative to other groups (P<0.05). CONCLUSION It seems that co-culture of SSCs with sertoli sells in the presence of low doses of DPP can increase SSCs proliferation and keep their stemness state, while higher concentrations can differentiate the treated cells.
Collapse
Affiliation(s)
- Maryam Mahaldashtian
- Department of Molecular & Cellular Biology, Faculty of Biology, Damghan University, Semnan, Iran.
| | - Majid Naghdi
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohamad Taghi Ghorbanian
- Department of Molecular & Cellular Biology, Faculty of Biology, Damghan University, Semnan, Iran.
| | - Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Momeneh Mohamadi
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Gadella BM, Ferraz MA. A Review of New Technologies that may Become Useful for in vitro Production of Boar Sperm. Reprod Domest Anim 2016; 50 Suppl 2:61-70. [PMID: 26174921 DOI: 10.1111/rda.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/07/2023]
Abstract
Making sperm cells outside the original testicular environment in a culture dish has been considered for a long time as impossible due to the very complicated process of spermatogenesis and sperm maturation, which altogether, encompasses a 2-month period. However, new approaches in complex three-dimensional co-cell cultures, micro-perfusion and micro-fluidics technologies, new knowledge in the functioning, culturing and differentiation of spermatogonial stem cells (SSC) and their precursor cells have revolutionized this field. Furthermore, the use of better molecular markers as well as stimulatory factors has led to successful in vitro culture of stem cells either derived from germ line stem cells, from induced pluripotent stem cells (iPSC) or from embryonic stem cells (ESC). These stem cells when placed into small seminiferous tubule fragments are able to become SSC. The SSC beyond self-renewal can also be induced into haploid sperm-like cells under in vitro conditions. In mouse, this in vitro produced sperm can be injected into a mature oocyte and allow post-fertilization development into an early embryo in vitro. After transferring such obtained embryos into the uterus of a recipient mouse, they can further develop into healthy offspring. Recently, a similar approach has been performed with combining selected cells from testicular cell suspensions followed by a complete in vitro culture of seminiferous cords producing sperm-like cells. However, most of the techniques developed are laborious, time-consuming and have low efficiency, placing questionable that it will become useful used for setting up an efficient in vitro sperm production system for the boar. The benefits and drawbacks as well as the likeliness of in vitro pig sperm production to become applied in assisted technologies for swine reproduction are critically discussed. In this contribution, also the process of sperm production in the testis and sperm maturation is reviewed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - M A Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Shi QQ, Sun M, Zhang ZT, Zhang YN, Elsayed AK, Zhang L, Huang XM, Li BC. A screen of suitable inducers for germline differentiation of chicken embryonic stem cells. Anim Reprod Sci 2014; 147:74-85. [PMID: 24786547 DOI: 10.1016/j.anireprosci.2014.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/26/2014] [Accepted: 04/06/2014] [Indexed: 11/28/2022]
Abstract
Differentiation of germ cells from embryonic stem cells in vitro could have great application for treating infertility and provide an excellent model for uncovering molecular mechanisms of germline generation. In this study, we aim to screen the suitable inducers that may prove the efficiency of driving chicken embryonic stem cells (ES cells) toward germ cells. The male ES cells were separeted into different groups: single retinoic acid (RA) treatment, co-cultured with sertoli cell feeder with RA induction, cultured on matrix proteins (fibronectin, laminin and collagen) with RA treatment, cultured on fibronectin with sertoli cell feeder and RA induction, and single bone morphogenetic protein 4 (BMP4) treatment. Quantitative RT-PCR and immunoourescence were performed to characterize the ES cells differentiation process. The results showed that spermatogonial stem cells (SSCs)-like were not detected in single RA and RA with collagen groups, but were observed in the other groups. The expression of ES specific genes (Nanog and Sox2) was decreased while SSCs marker genes (Dazl, Stra8, integrin α6, integrinβ1 and C-kit) was remarkably increased. The multiple comparsion results showed that the expression of SSCs marker genes in RA with sertoli cells group was significantly higher than the other groups(P<0.05). Collectively, our results suggested that chicken ES cells possess the potency to differentiate into SSCs-like cells in vitro through RA, matrix proteins, sertoli cells and BMP4 induction, of which co-cultured with sertoli cell feeder with RA induction was proved to be the best.
Collapse
Affiliation(s)
- Qing-Qing Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Min Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Zhen-Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Ya-Ni Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Ahmed Kamel Elsayed
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Suez Canal University, Ismailia 41522, Egypt.
| | - Lei Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Xiao-Mei Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Bi-Chun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| |
Collapse
|
12
|
Abstract
Cadherin 17 is a member of a multigene family of calcium-dependent, transmembrane proteins that mediates cell-cell adhesion, plays important roles during embryogenesis, and is crucial for tissue morphogenesis and maintenance. Cadherin 17 is exclusively expressed in the epithelial cells of embryonic and adult small intestine and colon, and pancreatic ducts. It has also been reported to be frequently expressed in adenocarcinomas arising in the gastrointestinal tract and pancreas. Owing to its restricted expression in these groups of tumors, cadherin 17 has proven to be a useful immunohistochemical marker for assisting in distinguishing these neoplasms from other malignancies with which they may be confused.
Collapse
|
13
|
Lee NP. The Blood-Biliary Barrier, Tight Junctions and Human Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:171-85. [DOI: 10.1007/978-1-4614-4711-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Pointis G, Gilleron J, Carette D, Segretain D. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. SPERMATOGENESIS 2011; 1:303-317. [PMID: 22332114 DOI: 10.4161/spmg.1.4.18392] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
Abstract
Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility.
Collapse
|
15
|
Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J 2011; 435:553-62. [PMID: 21486226 DOI: 10.1042/bj20102121] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spermiogenesis in the mammalian testis is the most critical post-meiotic developmental event occurring during spermatogenesis in which haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa. Spermatozoa are then released from the seminiferous epithelium at spermiation. At the same time, the BTB (blood-testis barrier) undergoes restructuring to facilitate the transit of preleptotene spermatocytes from the basal to the apical compartment. Thus meiotic divisions take place behind the BTB in the apical compartment to form spermatids. These germ cells enter spermiogenesis to transform into elongating spermatids and then into spermatozoa to replace those that were released in the previous cycle. However, the mole-cular regulators that control spermiogenesis, in particular the dynamic changes that occur at the Sertoli cell-spermatid interface and at the BTB, are not entirely known. This is largely due to the lack of suitable animal models which can be used to study these events. During the course of our investigation to develop adjudin [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] as a potential male contraceptive, this drug was shown to 'accelerate' spermiation by inducing the release of premature spermatids from the epithelium. Using this model, we have identified several molecules that are crucial in regulating the actin filament network and the unique adhesion protein complex at the Sertoli cell-spermatid interface known as the apical ES (ectoplasmic specialization). In the present review, we critically evaluate these and other findings in the literature as they relate to the restricted temporal and spatial expression of two actin regulatory proteins, namely Eps8 (epidermal growth factor receptor pathway substrate 8) and Arp3 (actin-related protein 3), which regulate these events.
Collapse
|
16
|
Pérez C, Sobarzo C, Jacobo P, Jarazo Dietrich S, Theas M, Denduchis B, Lustig L. Impaired expression and distribution of adherens and gap junction proteins in the seminiferous tubules of rats undergoing autoimmune orchitis. ACTA ACUST UNITED AC 2011; 34:e566-77. [PMID: 21615420 DOI: 10.1111/j.1365-2605.2011.01165.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental autoimmune orchitis (EAO) is characterized by an interstitial lymphomononuclear cell infiltration and a severe lesion of seminiferous tubules (ST) with germ cells that undergo apoptosis and sloughing. The aim of this study was to analyse the expression and localization of adherens junction (AJ) proteins: N-cadherin, α-, β- and p120 catenins and gap junction protein, connexin 43 (Cx43), to explore some aspects of germ-cell sloughing during the development of orchitis. EAO was induced in Sprague-Dawley adult rats by active immunization with testicular homogenate and adjuvants. Control rats (C) were injected with saline solution and adjuvants. Concomitant with early signs of germ-cell sloughing, we observed by immunofluorescence and Western blot, a delocalization and a significant increase in N-cadherin and α-catenin expression in the ST of EAO compared with C rats. In spite of this increased AJ protein expression, a severe germ-cell sloughing occurred. This is probably due to the impairment of the AJ complex function, as shown by the loss of N-cadherin/β-catenin colocalization (confocal microscopy) and increased pY654 β-catenin expression, suggesting lower affinity of these two proteins and increased pERK1/2 expression in the testis of EAO rats. The significant decrease in Cx43 expression detected in EAO rats suggests a gap junction function impairment also contributing to germ-cell sloughing.
Collapse
Affiliation(s)
- C Pérez
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
17
|
CR16 forms a complex with N-WASP in human testes. Cell Tissue Res 2011; 344:519-26. [DOI: 10.1007/s00441-011-1159-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/24/2011] [Indexed: 10/25/2022]
|
18
|
Mok KW, Mruk DD, Lie PPY, Lui WY, Cheng CY. Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes. Reproduction 2011; 141:571-80. [PMID: 21307270 DOI: 10.1530/rep-10-0464] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adjudin is a derivative of 1H-indazole-3-carboxylic acid that was shown to have potent anti-spermatogenic activity in rats, rabbits, and dogs. It exerts its effects most notably locally in the apical compartment of the seminiferous epithelium, behind the blood-testis barrier, by disrupting adhesion of germ cells, most notably spermatids to the Sertoli cells, thereby inducing release of immature spermatids from the epithelium that leads to infertility. After adjudin is metabolized, the remaining spermatogonial stem cells and spermatogonia repopulate the seminiferous epithelium gradually via spermatogonial self-renewal and differentiation, to be followed by meiosis and spermiogenesis, and thus fertility rebounds. Recent studies in rats have demonstrated unequivocally that the primary and initial cellular target of adjudin in the testis is the apical ectoplasmic specialization, a testis-specific anchoring junction type restricted to the interface between Sertoli cells and elongating spermatids (from step 8 to 19 spermatids). In this review, we highlight some of the recent advances and obstacles regarding the possible use of adjudin as a male contraceptive.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
19
|
Lee NPY, Cheng CY. Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:25-32. [PMID: 19794905 PMCID: PMC2715196 DOI: 10.4161/oxim.1.1.6856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Department of Medicine/Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | |
Collapse
|
20
|
Martinović-Weigelt D, Wang RL, Villeneuve DL, Bencic DC, Lazorchak J, Ankley GT. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:447-458. [PMID: 21126777 DOI: 10.1016/j.aquatox.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/25/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.
Collapse
Affiliation(s)
- Dalma Martinović-Weigelt
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Pointis G, Gilleron J, Carette D, Segretain D. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1607-20. [PMID: 20403873 DOI: 10.1098/rstb.2009.0114] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell-cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli-Sertoli cell functional synchronization and the Sertoli-germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 895, Team 5 Physiopathology of Germ Cell Control: Genomic and Non-genomic Mechanisms, Bâtiment Universitaire ARCHIMED, C3M, 151 route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | | | | | | |
Collapse
|
22
|
Carette D, Weider K, Gilleron J, Giese S, Dompierre J, Bergmann M, Brehm R, Denizot JP, Segretain D, Pointis G. Major involvement of connexin 43 in seminiferous epithelial junction dynamics and male fertility. Dev Biol 2010; 346:54-67. [PMID: 20655897 DOI: 10.1016/j.ydbio.2010.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/29/2022]
Abstract
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, beta-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO(-/-)) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO(-/-) as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO(-/-) testis. Occludin, N-cadherin and beta-catenin levels were enhanced in SCCx43KO(-/-) mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.
Collapse
Affiliation(s)
- Diane Carette
- INSERM U 895, Team 5 Physiopathology of germ cell control: genomic and non genomic mechanisms Centre Méditerranéen de Médecine Moléculaire, Nice, F-06204 Cedex 3, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee NP, Poon RTP, Shek FH, Ng IOL, Luk JM. Role of cadherin-17 in oncogenesis and potential therapeutic implications in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2010; 1806:138-45. [PMID: 20580775 DOI: 10.1016/j.bbcan.2010.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/03/2010] [Accepted: 05/08/2010] [Indexed: 12/14/2022]
Abstract
Cadherin is an important cell adhesion molecule that plays paramount roles in organ development and the maintenance of tissue integrity. Dysregulation of cadherin expression is often associated with disease pathology including tissue dysplasia, tumor formation, and metastasis. Cadherin-17 (CDH17), belonging to a subclass of 7D-cadherin superfamily, is present in fetal liver and gastrointestinal tract during embryogenesis, but the gene becomes silenced in healthy adult liver and stomach tissues. It functions as a peptide transporter and a cell adhesion molecule to maintain tissue integrity in epithelia. However, recent findings from our group and others have reported aberrant expression of CDH17 in major gastrointestinal malignancies including hepatocellular carcinoma (HCC), stomach and colorectal cancers, and its clinical association with tumor metastasis and advanced tumor stages. Furthermore, alternative splice isoforms and genetic polymorphisms of CDH17 gene have been identified in HCC and linked to an increased risk of HCC. CDH17 is an attractive target for HCC therapy. Targeting CDH17 in HCC can inhibit tumor growth and inactivate Wnt signaling pathway in concomitance with activation of tumor suppressor genes. Further investigation on CDH17-mediated oncogenic signaling and cognate molecular mechanisms would shed light on new targeting therapy on HCC and potentially other gastrointestinal malignancies.
Collapse
Affiliation(s)
- Nikki P Lee
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
24
|
Abstract
The tight junction (TJ) is a critical cellular component for maintenance of tissue integrity, cellular interactions and cell-cell communications, and physiologically functions as the “great wall” against external agents and the surrounding hostile environment. During the host-pathogen evolution, viruses somehow found the key to unlock the gate for their entry into cells and to exploit and exhaust the host cells. In the liver, an array of TJ molecules is localized along the bile canaliculi forming the blood-biliary barrier, where they play pivotal roles in paracellular permeability, bile secretion, and cell polarity. In pathology, certain hepatic TJ molecules mediate virus entry causing hepatitis infection; deregulation and functional abnormality of the TJ have also been implicated in triggering liver cancer development and metastasis. All these findings shed new insights on the understanding of hepatic TJs in the development of liver disease and provide new clues for potential intervention.
Collapse
|
25
|
Takano N, Kimura A, Takahashi T. Two distinct localization patterns of testis-specific serine protease 1 (TESSP1) in the seminiferous tubules of the mouse testis. Zoolog Sci 2009; 26:294-300. [PMID: 19798924 DOI: 10.2108/zsj.26.294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse Tesspl has been shown to be a testis-specific gene that may contribute to spermatogenesis. In this report, we raised a specific antibody against TESSP1 to assess its biological role. Western blotting detected testicular TESSP1 in all postnatal developmental stages of the mouse. Experiments using the testes of W/W(V) mice, which lack germ cells, indicated TESSP1 expression in Sertoli cells and Leydig cells. In immunofluorescence staining of the wild-type mouse testis, dot-like signals for TESSP1 were observed in the adluminal compartment of the seminiferous tubules, while diffused signals were found in the basal compartment. Generally, the dot-like and diffused signals overlapped with the trans-Golgi network marker RAB6 and the transmembrane protein CADHERIN 2, respectively. Some TESSP1 staining was also observed in association with interstitial Leydig cells of the testis. The results of this study suggest that TESSP1 is predominantly localized in the plasma membrane of spermatogonia and Sertoli cells in the basal compartment, but exhibits an intracellular localization, presumably in the Golgi apparatus, of spermatocytes and spermatids in the adluminal compartment of the seminiferous tubules. The expression of TESSP1 in both germ cells and somatic cells and alteration in its cellular localization in the germ cells during spermatogenesis indicate that it may have a unique role in the testis.
Collapse
Affiliation(s)
- Naoharu Takano
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
26
|
Sun S, Wong EWP, Li MWM, Lee WM, Cheng CY. 14-3-3 and its binding partners are regulators of protein-protein interactions during spermatogenesis. J Endocrinol 2009; 202:327-36. [PMID: 19366886 PMCID: PMC2804912 DOI: 10.1677/joe-09-0041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During spermatogenesis, spermiation takes place at the adluminal edge of the seminiferous epithelium at stage VIII of the epithelial cycle during which fully developed spermatids (i.e. spermatozoa) detach from the epithelium in adult rat testes. This event coincides with the migration of preleptotene/leptotene spermatocytes across the blood-testis barrier from the basal to the apical (or adluminal) compartment. At stage XIV of the epithelial cycle, Pachytene spermatocytes (diploid, 2n) differentiate into diplotene spermatocytes (tetraploid, 4n) in the apical compartment of the epithelium, which begin meiosis I to be followed by meiosis II to form spermatids (haploid, 1n) at stage XIV of the epithelial cycle. These spermatids, in turn, undergo extensive morphological changes and traverse the seminiferous epithelium until they differentiate into elongated spermatids. Thus, there are extensive changes at the Sertoli-Sertoli and Sertoli-germ cell interface via protein 'coupling' and 'uncoupling' between cell adhesion protein complexes, as well as changes in interactions between integral membrane proteins and their peripheral adaptors, regulatory protein kinases and phosphatases, and the cytoskeletal proteins. These precisely coordinated protein-protein interactions affect cell adhesion and cell movement. In this review, we focus on the 14-3-3 protein family, whose members have different binding partners in the seminiferous epithelium. Recent studies have illustrated that 14-3-3 affects protein-protein interactions in the seminiferous epithelium, and regulates cell adhesion possibly via its effects on intracellular protein trafficking and cell-polarity proteins. This review provides a summary on the latest findings regarding the role of 14-3-3 family of proteins and their potential implications on spermatogenesis. We also highlight research areas that deserve attentions by investigators.
Collapse
Affiliation(s)
- Shengyi Sun
- The Mary M Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
27
|
Lee NPY, Wong EWP, Mruk DD, Cheng CY. Testicular cell junction: a novel target for male contraception. Curr Med Chem 2009; 16:906-15. [PMID: 19275601 DOI: 10.2174/092986709787549262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Center for Biomedical Research, Population Council, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
28
|
Desai BS, Shirolikar S, Ray K. F-actin-based extensions of the head cyst cell adhere to the maturing spermatids to maintain them in a tight bundle and prevent their premature release in Drosophila testis. BMC Biol 2009; 7:19. [PMID: 19416498 PMCID: PMC2683793 DOI: 10.1186/1741-7007-7-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 11/15/2022] Open
Abstract
Background In Drosophila, all the 64 clonally derived spermatocytes differentiate in syncytium inside two somatic-origin cyst cells. They elongate to form slender spermatids, which are individualized and then released into the seminal vesicle. During individualization, differentiating spermatids are organized in a tight bundle inside the cyst, which is expected to play an important role in sperm selection. However, actual significance of this process and its underlying mechanism are unclear. Results We show that dynamic F-actin-based processes extend from the head cyst cell at the start of individualization, filling the interstitial space at the rostral ends of the maturing spermatid bundle. In addition to actin, these structures contained lamin, beta-catenin, dynamin, myosin VI and several other filopodial components. Further, pharmacological and genetic analyses showed that cytoskeletal stability and dynamin function are essential for their maintenance. Disruption of these F-actin based processes was associated with spermatid bundle disassembly and premature sperm release inside the testis. Conclusion Altogether, our data suggests that the head cyst cell adheres to the maturing spermatid heads through F-actin-based extensions, thus maintaining them in a tight bundle. This is likely to regulate mature sperm release into the seminal vesicle. Overall, this process bears resemblance to mammalian spermiation.
Collapse
Affiliation(s)
- Bela S Desai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India.
| | | | | |
Collapse
|
29
|
Fink C, Weigel R, Fink L, Wilhelm J, Kliesch S, Zeiler M, Bergmann M, Brehm R. Claudin-11 is over-expressed and dislocated from the blood-testis barrier in Sertoli cells associated with testicular intraepithelial neoplasia in men. Histochem Cell Biol 2009; 131:755-64. [PMID: 19241088 DOI: 10.1007/s00418-009-0576-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
Abstract
In mouse testis, claudin-11 is responsible for the formation of specific parallel TJ strands of the blood-testis barrier (BTB). Concerning the human BTB, there is no information about the transmembrane TJ proteins. We recently demonstrated the loss of functional integrity of the BTB in testicular intraepithelial neoplasia (TIN), associated with a dislocation of the peripheral TJ proteins ZO-1 and ZO-2. Here, we determined the expression and distribution of claudin-11 at the human BTB in seminiferous tubules with normal spermatogenesis (NSP) and TIN. Immunostaining of claudin-11 revealed intense signals at the basal BTB region in seminiferous epithelium with NSP. Within TIN tubules, claudin-11 immunostaining became diffuse and cytoplasmic. Double immunogold labeling demonstrated a co-localization of claudin-11 and ZO-1 at the inter-Sertoli cell junctions. Real-time RT-PCR of laser microdissected tubules showed an up-regulation of claudin-11 mRNA in TIN. Additionally, increased claudin-11 protein was observed by Western blot. We conclude that claudin-11 constitutes a TJ protein at the human BTB. In TIN tubules, claudin-11 is up-regulated and dislocated from the BTB. Therefore, the disruption of the BTB is related to a dysfunction of claudin-11 and not to a failure of its expression.
Collapse
Affiliation(s)
- Cornelia Fink
- Institute of Veterinary Anatomy, Histology and Embryology, University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee NPY, Cheng CY. Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:172-85. [PMID: 19856168 DOI: 10.1007/978-0-387-09597-4_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Department of Medicine and Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | |
Collapse
|
31
|
Tarulli GA, Meachem SJ, Schlatt S, Stanton PG. Regulation of testicular tight junctions by gonadotrophins in the adult Djungarian hamster in vivo. Reproduction 2008; 135:867-77. [PMID: 18502899 DOI: 10.1530/rep-07-0572] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study aimed to assess the effect of gonadotrophin suppression and FSH replacement on testicular tight junction dynamics and blood-testis barrier (BTB) organisation in vivo, utilising the seasonal breeding Djungarian hamster. Confocal immunohistology was used to assess the cellular organisation of tight junction proteins and real-time PCR to quantify tight junction mRNA. The effect of tight junction protein organisation on the BTB permeability was also investigated using a biotin-linked tracer. Tight junction protein (claudin-3, junctional adhesion molecule (JAM)-A and occludin) localisation was present but disorganised after gonadotrophin suppression, while mRNA levels (claudin-11, claudin-3 and occludin) were significantly (two- to threefold) increased. By contrast, both protein localisation and mRNA levels for the adaptor protein zona occludens-1 decreased after gonadotrophin suppression. FSH replacement induced a rapid reorganisation of tight junction protein localisation. The functionality of the BTB (as inferred by biotin tracer permeation) was found to be strongly associated with the organisation and localisation of claudin-11. Surprisingly, JAM-A was also recognised on spermatogonia, suggesting an additional novel role for this protein in trans-epithelial migration of germ cells across the BTB. It is concluded that gonadotrophin regulation of tight junction proteins forming the BTB occurs primarily at the level of protein organisation and not gene transcription in this species, and that immunolocalisation of the organised tight junction protein claudin-11 correlates with BTB functionality.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
32
|
Hooley RP, Paterson M, Brown P, Kerr K, Saunders PTK. Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium. Reproduction 2008; 137:361-70. [PMID: 18955374 DOI: 10.1530/rep-08-0247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. We describe here a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems.
Collapse
Affiliation(s)
- R P Hooley
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | |
Collapse
|
33
|
Anahara R, Toyama Y, Mori C. Review of the histological effects of the anti-androgen, flutamide, on mouse testis. Reprod Toxicol 2007; 25:139-43. [PMID: 18243649 DOI: 10.1016/j.reprotox.2007.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 11/25/2007] [Accepted: 12/19/2007] [Indexed: 01/03/2023]
Abstract
This is a mini-review summarizing recent findings on the effect of flutamide (FLUT), an anti-androgenic toxicant, on the mouse testis, particularly on the ectoplasmic specialization (ES) in the testis. FLUT induces a reduction in the weight of male reproductive tissues, such as the prostate, because it inhibits the formation of the androgen receptors and testosterone retention. The present review summarizes the abnormal histological changes produced in the mouse testis by FLUT. In addition, we outline the effect of FLUT on the expression of cortactin, an actin-binding protein, in the mouse testis. FLUT is often used as a positive control for the identification of endocrine disrupting chemicals having anti-androgenic activities; therefore, a detailed understanding of the adverse effects of FLUT is important for the analysis of the risks to spermatogenesis by anti-androgen-like endocrine disruptors.
Collapse
Affiliation(s)
- Reiko Anahara
- Faculty of Health Sciences, Ryotokuji University, 5-8-1, Akemi, Urayasu, Chiba 279-8567, Japan.
| | | | | |
Collapse
|
34
|
Kusumi N, Watanabe M, Yamada H, Li SA, Kashiwakura Y, Matsukawa T, Nagai A, Nasu Y, Kumon H, Takei K. Implication of Amphiphysin 1 and Dynamin 2 in Tubulobulbar Complex Formation and Spermatid Release. Cell Struct Funct 2007; 32:101-13. [PMID: 17785912 DOI: 10.1247/csf.07024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tubulobulbar complexes (TBCs) are composed of several tubular invaginations formed at the plasma membrane of testicular Sertoli cells. TBCs are transiently formed at the contact region with spermatids at spermatogenic stage VII in rat and mouse, and such TBC formation is prerequisite for spermatid release. Since the characteristic structure of TBCs suggests that the molecules implicated in endocytosis could be involved in TBC formation, we here investigated the localization and physiological roles of endocytic proteins, amphiphysin 1 and dynamin 2, at TBCs. We demonstrated by immunofluorescence that the endocytic proteins were concentrated at TBCs, where they colocalized with cytoskeletal proteins, such as actin and vinculin. Immunoelectron microscopy disclosed that both amphiphysin 1 and dynamin 2 were localized on TBC membrane. Next, we histologically examined the testis from amphiphysin 1 deficient {Amph(-/-)} mice. Morphometric analysis revealed that the number of TBCs was significantly reduced in Amph(-/-). The ratio of stage VIII seminiferous tubules was increased, and the ratio of stage IX was conversely decreased in Amph(-/-). Moreover, unreleased spermatids in stage VIII seminiferous tubules were increased in Amph(-/-), indicating that spermatid release and the following transition from stage VIII to IX was prolonged in Amph(-/-) mice. These results suggest that amphiphysin 1 and dynamin 2 are involved in TBC formation and spermatid release at Sertoli cells.
Collapse
Affiliation(s)
- Norihiro Kusumi
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee NPY, Leung KW, Wo JY, Tam PC, Yeung WSB, Luk JM. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis 2006; 11:1215-29. [PMID: 16699959 DOI: 10.1007/s10495-006-6981-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spermatogenesis, a tightly regulated developmental process of male germ cells in testis, is associated with temporal and spatial expression of gap junction proteins, such as the connexin family members. Perturbation of their expressions may lead to spermatogenic arrest as manifested by disruption of cell-cell interaction. To explore the role(s) of connexins during spermatogenesis, we utilized the small peptide antagonistic approach to specifically deplete connexin 31, connexin 33, and pan-connexin. Three connexin peptides corresponding to the extracellular binding domain of connexin 31 and connexin 33 and to the extracellular conserved domain of connexins were designed and synthesized commercially. Peptides (at single dosage of 0.5, 1, or 2 mg per animal) were injected into rat testes and testes were collected on day 0, 1, 3, 5, 10, 15, and 30 after microinjection. In situ TUNEL assay demonstrated the induction of apoptosis in the testes after pan-connexin peptide treatment in a dose-dependent manner from day 3 and onward. Unlike the pan-connexin peptide, connexin 31 and connexin 33 peptides appeared to have little effect on inducing apoptosis and germ cell loss. CD45 staining also detected the occasional presence of infiltrating lymphocytes in the seminiferous tubules. Accompanied with the apoptotic events, two apoptotic markers, NF-kappaB and caspase 3, demonstrated a general up-regulation in their expressions. In adjacent testis sections, eliminations of connexin 31, 32, and 43 were observed. However, an induction of connexin 33 expression was detected. This suggests the versatility and functional diversity of connexins in the testis. The expression of ZO-1, the only known adaptor of connexins in the testis, was reduced and remained in a low level in the seminiferous epithelium. As such, the alterations of connexins in seminiferous epithelium may induce apoptotic signaling in the testis via the caspase 3 and the NF-kappaB pathway. This demonstrates the significant role of testicular connexins to maintain the survival of germ cells by regulating inter-cellular communications among germ cells and adjacent supporting cells during spermatogenesis. In addition, the inter-relationship between connexins and other junction proteins and associated signaling protein were investigated. After pan-connexin peptide treatment, a dys-localization of N-cadherin, an adherens junction protein, and diminution of occludin, a tight junction protein, level were detected. In addition, inductions of junction regulatory protein, cathepsin L, was observed during the course of peptide-mediated germ cell loss in the testes. In summary, pan-connexin peptide treatment triggered apoptosis and germ cell loss in the testes. This event influenced the localization and expression of different junction proteins and junction-associated protein in the testes.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Departments of Surgery, The University of Hong Kong, L9-52 Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
36
|
Sobarzo CM, Lustig L, Ponzio R, Denduchis B. Effect of di-(2-ethylhexyl) phthalate on N-cadherin and catenin protein expression in rat testis. Reprod Toxicol 2006; 22:77-86. [PMID: 16678996 DOI: 10.1016/j.reprotox.2006.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/25/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
This study investigated the effect of DEHP exposure on N-cadherin and alpha-, beta- and p120-catenin immunoreactivities in the rat testis. DEHP was administered by daily gavage to 25-day-old male Sprague-Dawley rats at a dose of 2 g DEHP/5 ml corn oil/kg body weight for 2 days or 7 days. Control rats were treated with corn oil vehicle under the same conditions. Animals were killed at 24h after the last treatment. Another group of rats treated with DEHP or corn oil vehicle (control group) for 2 days were held for 30 days without treatment to observe recovery. Testes were analyzed for histopathology, TUNEL staining, immunofluorescence (IF) and Western blot analyses. Animals exposed to DEHP for 2 days or 7 days showed severe alterations of seminiferous tubules characterized by germ cell sloughing. Animals from the longer term recovery group treated with DEHP showed foci of delayed spermatogenesis. A linear and continuous pattern of N-cadherin was observed in the basal compartment of the seminiferous tubules. A similar pattern but with higher IF intensity was observed for N-cadherin in rats treated with DEHP for 2 days or 7 days, compared to control animals. The alpha-, beta- and p120-catenins were detected in the basal compartment of seminiferous tubules in similar localization and IF pattern for DEHP and control groups. A significant increase in testicular N-cadherin and alpha-catenin levels was detected by Western blot analysis in DEHP-exposed versus control rats. No variations in N-cadherin or catenin expression were detected in the recovery groups. These findings demonstrate that DEHP induces an up-regulation of N-cadherin and alpha-catenin expression and may perturb cell-cell adhesion phenomena in the seminiferous tubule.
Collapse
Affiliation(s)
- Cristian M Sobarzo
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 10 P (C1121 ABG) Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
37
|
Anahara R, Toyama Y, Maekawa M, Kai M, Ishino F, Toshimori K, Mori C. Flutamide depresses expression of cortactin in the ectoplasmic specialization between the Sertoli cells and spermatids in the mouse testis. Food Chem Toxicol 2006; 44:1050-6. [PMID: 16481087 DOI: 10.1016/j.fct.2005.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/28/2005] [Accepted: 12/22/2005] [Indexed: 01/01/2023]
Abstract
Flutamide (FLUT) has potent anti-androgenic activity and is used in the medical field and in a screening test to detect endocrinologically active compounds. Our previous study demonstrated that FLUT induced histological deformation of spermatids and ultrastructural defects of the apical ectoplasmic specialization (ES) in the mouse testis. The apical ES is an actin-based junctional structure between the Sertoli cells and germ cells. Cortactin, an actin-binding protein, is found in the actin layer of ES. The protein level of cortactin was decreased in FLUT-treated testes as shown by Western blot analysis. The detailed analysis indicated that the protein level was drastically decreased in FLUT-treated seminiferous tubules of stages from VI to IX. Immunohistochemistry and immunoelectron microscopy showed that FLUT depressed cortactin expression in the apical ES. In addition, the effect of FLUT on cortactin localization appeared between 12 h and 8 days (about 180 h) after a one-day treatment. These results suggest that FLUT depressed the expression of cortactin in the apical ES with stage specificity. Therefore, the initial target of FLUT may be the cell-cell interactions between the Sertoli and germ cells. To our knowledge, this study is the first to document the decrease of cortactin expression in the abnormal apical ES following treatment with FLUT.
Collapse
Affiliation(s)
- Reiko Anahara
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuoku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Tarulli GA, Stanton PG, Lerchl A, Meachem SJ. Adult sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organization. Biol Reprod 2006; 74:798-806. [PMID: 16407497 DOI: 10.1095/biolreprod.105.050450] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sertoli cell number is considered to be stable and unmodifiable by hormones after puberty in mammals, although recent data using the seasonal breeding adult Djungarian hamster (Phodopus sungorus) model challenged this assertion by demonstrating a decrease in Sertoli cell number after gonadotropin depletion and a return to control levels following 7 days of FSH replacement. The present study aimed to determine whether adult Sertoli cells are terminally differentiated using known characteristics of cellular differentiation, including proliferation, junction protein localization, and expression of particular maturational markers, in the Djungarian hamster model. Adult long-day (LD) photoperiod (16L:8D) hamsters were exposed to short-day (SD) photoperiod (8L:16D) for 11 wk to suppress gonadotropins and then received exogenous FSH for up to 10 days. Sertoli cell proliferation was assessed by immunofluorescence by the colocalization of GATA4 and proliferating cell nuclear antigen and quantified by stereology. Markers of Sertoli cell maturation (immature, cytokeratin 18 [KRT18]; mature, GATA1) and junction proteins (actin, espin, claudin 11 [CLDN11], and tight junction protein 1 [TJP1, also known as ZO-1]) also were localized using confocal immunofluorescence. In response to FSH treatment, proliferation was upregulated within 2 days compared with SD controls (90% vs. 0.2%, P < 0.001) and declined gradually thereafter. In LD hamsters, junction proteins colocalized at the basal aspect of Sertoli cells, consistent with inter-Sertoli cell junctions, and were disordered within the Sertoli cell cytoplasm in SD animals. Exogenous FSH treatment promptly restored localization of these junction markers to the LD phenotype. Protein markers of maturity remain consistent with those of adult Sertoli cells. It is concluded that adult Sertoli cells are not terminally differentiated in the Djungarian hamster and that FSH plays an important role in governing the differentiation process. It is proposed that Sertoli cells can enter a transitional state, exhibiting features common to both undifferentiated and differentiated Sertoli cells.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research, Clayton Victoria, 3168, Australia
| | | | | | | |
Collapse
|
39
|
Xia W, Wong CH, Lee NPY, Lee WM, Cheng CY. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol 2005; 205:141-57. [PMID: 15880438 DOI: 10.1002/jcp.20377] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
40
|
Lee JH, Choi KW, Lee SJ, Gye MC. Expression of beta-catenin in human testes with spermatogenic defects. ACTA ACUST UNITED AC 2005; 51:271-6. [PMID: 16036634 DOI: 10.1080/014850190923387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
beta-catenin is a multifunctional molecule that functions in intercellular adhesion and signal transduction during assembly of AJs between Sertoli cells as well as between Sertoli cells and germ cells. To assess changes in the testicular beta-catenin in male infertility conditions, testicular tissues from obstructive azoospermia with normal spermatogenesis, spermatogenic arrest (SA) and Sertoli cell-only syndrome (SCO) patients were examined for immunohistochemical localization of beta-catenin. In normal spermatogenic tissue, expression of beta-catenin was largely found in the Sertoli cell-germ cell (primarily spermatocytes) contact areas. Interestingly, perinuclear localization of beta-catenin was found in spermatocytes and spermatids. In spermatogenic arrest, beta-catenin in cell contact areas between Sertoli cells and germ cells was greatly decreased, but perinuclear beta-catenin in spermatocytes was not. In SCO, weak or negligible immunoreactivity of beta-catenin was found in cell contacts between Sertoli cells. Nuclear localization of beta-catenin was found in myotubular cells in all samples. Taken together, altered expression of beta-catenin in cell contacts within the seminiferous epithelia in spermatogenic arrest and SCO suggests that interactions between Sertoli cells and germ cell are crucial for expression of beta-catenin, and thus functional development of AJs in seminiferous epithelia in human testis. It should be also emphasized that perinuclear beta-catenin in germ cells may play a specific role in spermatogenesis.
Collapse
Affiliation(s)
- J H Lee
- Laboratory of IVF, MDplus LSI, Seoul, Korea
| | | | | | | |
Collapse
|
41
|
Zhang J, Mruk DD, Cheng CY. Myotubularin phosphoinositide phosphatases, protein phosphatases, and kinases: their roles in junction dynamics and spermatogenesis. J Cell Physiol 2005; 204:470-83. [PMID: 15690393 DOI: 10.1002/jcp.20303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis in the seminiferous epithelium of the mammalian testis is a dynamic cellular event. It involves extensive restructuring at the Sertoli-germ cell interface, permitting germ cells to traverse the epithelium from basal to adluminal compartment. As such, Sertoli-germ cell actin-based adherens junctions (AJ), such as ectoplasmic specializations (ES), must disassemble and reassemble to facilitate this event. Recent studies have shown that AJ dynamics are regulated by intricate interactions between AJ integral membrane proteins (e.g., cadherins, alpha6beta1 integrins and nectins), phosphatases, kinases, adaptors, and the underlying cytoskeleton network. For instance, the myotubularin (MTM) phosphoinositide (PI) phosphatases, such as MTM related protein 2 (MTMR2), can form a functional complex with c-Src (a non-receptor protein tyrosine kinase). In turn, this phosphatase/kinase complex associates with beta-catenin, a constituent of the N-cadherin/beta-catenin functional unit at the AJ site. This MTMR2-c-Src-beta-catenin complex apparently regulates the phosphorylation status of beta-catenin, which determines cell adhesive function conferred by the cadherin-catenin protein complex in the seminiferous epithelium. In this review, we discuss the current status of research on selected phosphatases and kinases, and how these proteins potentially interact with adaptors at AJ in the seminiferous epithelium to regulate cell adhesion in the testis. Specific research areas that are open for further investigation are also highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Population Council, Center for Biomedical Research, New York, New York, USA
| | | | | |
Collapse
|
42
|
Xia W, Cheng CY. TGF-beta3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: An in vivo study. Dev Biol 2005; 280:321-43. [PMID: 15882576 DOI: 10.1016/j.ydbio.2004.12.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Recent studies have shown that transforming growth factor (TGF)-beta3 regulates blood-testis barrier (BTB) dynamics in vivo, plausibly by determining the steady-state levels of occludin and zonula occludens-1 (ZO-1) at the BTB site via the p38 MAP kinase signaling pathway. Since BTB is composed of coexisting TJs and basal ectoplasmic specializations [ES, a testis-specific adherens junction (AJ) type] in the seminiferous epithelium of the rat testis, we sought to examine if TGF-beta3 would also regulate anchoring junction dynamics. Using an in vivo model in which rats were treated with AF-2364 [1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide] to perturb Sertoli-germ cell AJs without affecting the integrity of TJs at the BTB, it was noted that the event of germ cell loss from the epithelium was associated with a transient surge in TGF-beta3. Furthermore, it was also associated with a surge in the protein levels of Ras, p-ERK, and the intrinsic activity of ERK, illustrating TGF-beta3 apparently regulates Sertoli-germ cell ES function via the Ras/MEK/ERK signaling pathway. Indeed, pretreatment of rats with TbetaRII/Fc chimera, a TGF-beta antagonist, or U0126, a specific MEK inhibitor, could significantly delay and partially block the disruptive effects of AF-2364 in depleting germ cells from the epithelium. While the protein levels of the cadherin/catenin complex were significantly induced during AF-2364-mediated germ cell loss, perhaps being used to retain germ cells in the epithelium, this increase failed to reverse the loss of adhesion function between Sertoli and germ cells because of a loss of protein-protein interactions between cadherins and catenins. Collectively, these results illustrate that the testis has a novel mechanism in place in which an agent that primarily disrupts TJs can induce secondary loss of AJ function, leading to germ cell loss from the seminiferous epithelium. Yet an agent that selectively disrupts AJs (e.g., AF-2364) can limit its effects exclusively at the Sertoli-germ cell adhesive site without perturbing the Sertoli-Sertoli TJs.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | |
Collapse
|
43
|
Franco S, Canela A, Klatt P, Blasco MA. Effectors of mammalian telomere dysfunction: a comparative transcriptome analysis using mouse models. Carcinogenesis 2005; 26:1613-26. [PMID: 15860505 DOI: 10.1093/carcin/bgi107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Critical telomere shortening in the absence of telomerase in late generation Terc-/- mice (G3 Terc-/-) or loss of telomere capping due to abrogation of the DNA repair/telomere binding protein Ku86 (Ku86-/- mice) results in telomere dysfunction and organismal premature aging. Here, we report on genome-wide transcription in mouse G3 Terc-/-, Ku86-/- and G3 Terc-/-/Ku86-/- germ cells using high-density oligonucleotide microarrays. Although a few transcripts are modulated specifically in Ku86- or Terc-deficient cells, the observed transcriptional response is mainly inductive and qualitatively similar for all three genotypes, with highest transcriptional induction observed in double mutant G3 Terc-/-/Ku86-/- cells compared with either single mutant. Analysis of 92 known genes induced in G3 Terc-/-/Ku86-/- germ cells compared with wild-type cells shows predominance of genes involved in cell adhesion, cell-to-cell and cell-to-matrix communication, as well as increased metabolic turnover and augmented antioxidant responses. In addition, the data presented in this study support the view that telomere dysfunction induces a robust compensatory response to rescue impaired germ cell function through the induction of survival signals related to the PI3-kinase pathway, as well as by the coordinated upregulation of transcripts that are essential for mammalian spermatogenesis.
Collapse
Affiliation(s)
- Sonia Franco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Lee NPY, Mruk DD, Wong CH, Cheng CY. Regulation of Sertoli-germ cell adherens junction dynamics in the testis via the nitric oxide synthase (NOS)/cGMP/protein kinase G (PRKG)/beta-catenin (CATNB) signaling pathway: an in vitro and in vivo study. Biol Reprod 2005; 73:458-71. [PMID: 15858215 DOI: 10.1095/biolreprod.105.040766] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During spermatogenesis, extensive restructuring of cell junctions takes place in the seminiferous epithelium to facilitate germ cell movement. However, the mechanism that regulates this event remains largely unknown. Recent studies have shown that nitric oxide (NO) likely regulates tight junction (TJ) dynamics in the testis via the cGMP/protein kinase G (cGMP-dependent protein kinase, PRKG) signaling pathway. Due to the proximity of TJ and adherens junctions (AJ) in the testis, in particular at the blood-testis barrier, it is of interest to investigate if NO can affect AJ dynamics. Studies using Sertoli-germ cell cocultures in vitro have shown that the levels of NOS (nitric oxide synthase), cGMP, and PRKG were induced when anchoring junctions were being established. Using an in vivo model in which adult rats were treated with adjudin [a molecule that induces adherens junction disruption, formerly called AF-2364, 1-(2,4-dichlorobenzyl)-IH-indazole-3-carbohydrazide], the event of AJ disruption was also associated with a transient iNOS (inducible nitric oxide synthase, NOS2) induction. Immunohistochemistry has illustrated that NOS2 was intensely accumulated in Sertoli and germ cells in the epithelium during adjudin-induced germ cell loss, with a concomitant accumulation of intracellular cGMP and an induction of PRKG but not cAMP or protein kinase A (cAMP-dependent protein kinase, PRKA). To identify the NOS-mediated downstream signaling partners, coimmunoprecipitation was used to demonstrate that NOS2 and eNOS (endothelial nitric oxide synthase, NOS3) were structurally associated with the N-cadherin (CDH2)/beta-catenin (CATNB)/actin complex but not the nectin-3 (poliovirus receptor-related 3, PVRL 3)/afadin (myeloid/lymphoid or mixed lineage-leukemia tranlocation to 4 homolog, MLLT4) nor the integrin beta1 (ITB1)-mediated protein complexes, illustrating the spatial vicinity of NOS with selected AJ-protein complexes. Interestingly, CDH2 and CATNB were shown to dissociate from NOS during the adjudin-mediated AJ disruption, implicating the CDH2/CATNB protein complex is the likely downstream target of the NO signaling. Furthermore, PRKG, the downstream signaling protein of NOS, was shown to interact with CATNB in the rat testis. Perhaps the most important of all, pretreatment of testes with KT5823, a specific PRKG inhibitor, can indeed delay the adjudin-induced germ cell loss, further validating NOS/NO regulates Sertoli-germ cell AJ dynamics via the cGMP/PRKG pathway. These results illustrate that the CDH2/CATNB-mediated adhesion function in the testis is regulated, at least in part, via the NOS/cGMP/PRKG/CATNB pathway.
Collapse
|
45
|
Wong CH, Cheng CY. The Blood‐Testis Barrier: Its Biology, Regulation, and Physiological Role in Spermatogenesis. Curr Top Dev Biol 2005; 71:263-96. [PMID: 16344108 DOI: 10.1016/s0070-2153(05)71008-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The blood-testis barrier (BTB) in mammals, such as rats, is composed of the tight junction (TJ), the basal ectoplasmic specialization (basal ES), the basal tubulobulbar complex (basal TBC) (both are testis-specific actin-based adherens junction [AJ] types), and the desmosome-like junction that are present side-by-side in the seminiferous epithelium. The BTB physically divides the seminiferous epithelium into basal and apical (or adluminal) compartments, and is pivotal to spermatogenesis. Besides its function as an immunological barrier to segregate the postmeiotic germ-cell antigens from the systemic circulation, it creates a unique microenvironment for germ-cell development and confers cell polarity. During spermatogenesis, the BTB in rodents must physically disassemble to permit the passage of preleptotene and leptotene spermatocytes. This occurs at late stage VII through early stage VIII of the epithelial cycle. Studies have shown that this dynamic BTB restructuring to facilitate germ-cell migration is regulated by two cytokines, namely transforming growth factor-beta3 (TGF-beta3) and tumor necrosis factor-alpha (TNFalpha), via downstream mitogen-activated protein kinases. These cytokines determine the homeostasis of TJ- and basal ES-structural proteins, proteases, protease inhibitors, and other extracellular matrix (ECM) proteins (e.g., collagen) in the seminiferous epithelium. Some of these molecules are known regulators of focal contacts between the ECM and other actively migrating cells, such as macrophages, fibroblasts, or malignant cells. These findings also illustrate that cell-cell junction restructuring at the BTB is regulated by mechanisms involved in the junction turnover at the cell-matrix interface. This review critically discusses these latest findings in the field in light of their significance in the biology and regulation of the BTB pertinent to spermatogenesis.
Collapse
|
46
|
Obermann H, Raabe I, Balvers M, Brunswig B, Schulze W, Kirchhoff C. Novel testis-expressed profilin IV associated with acrosome biogenesis and spermatid elongation. Mol Hum Reprod 2004; 11:53-64. [PMID: 15591451 DOI: 10.1093/molehr/gah132] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel profilin, named profilin IV, was cloned and characterized as a testicular isoform, distinct from the previously described testis-specific profilin III. Profilin IV showed only 30% amino acid identity with the other mammalian profilins; nevertheless, database searches produced significant alignments with the conserved profilin domain. Northern blot analysis and in situ transcript hybridization suggested that profilin IV, like profilin III, is transcribed in the germ cells. However, the timing of their expression during post-natal development of rat testis and in the rat spermatogenetic cycle was distinct. In the human testis, profilin IV mRNA expression correlates with the presence of germ cells suggesting that it may be a suitable molecular diagnostic parameter to supplement conventional histopathological diagnostics in the assessment of testicular biopsies. The predicted profilin IV protein was verified employing an anti-oligopeptide antibody. Western blot analysis detected an immunorelated testicular protein of approximately 14 kDa. Immunohistochemistry revealed an intracellular protein of the rat, the mouse and the human testis accumulating asymmetrically in the cytoplasm of round and elongating spermatids with its perinuclear location coinciding with the position of the developing acrosome-acroplaxome and the manchette. Profilin IV thus may regulate testicular actin cytoskeleton dynamics and play a role in acrosome generation and spermatid nuclear shaping.
Collapse
Affiliation(s)
- Heike Obermann
- Department of Andrology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|