1
|
Serafini S, O’Flaherty C. Sphingolipids modulate redox signalling during human sperm capacitation. Hum Reprod 2025; 40:210-225. [PMID: 39658334 PMCID: PMC11788196 DOI: 10.1093/humrep/deae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
STUDY QUESTION What role do sphingolipids have in mediating human sperm capacitation? SUMMARY ANSWER Sphingosine 1-phosphate (S1P) mediates the acquisition of fertilizing competency in human spermatozoa by engaging with its Gi-coupled receptor S1PR1 and promoting production of reactive oxygen species such as nitric oxide and superoxide anion. WHAT IS KNOWN ALREADY Bioactive sphingolipids, such as S1P, are fundamental for regulating numerous physiological domains and processes, such as cell membranes and signalling, cell death and proliferation, cell migration and invasiveness, inflammation, and central nervous system development. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from a cohort of 10 healthy non-smoking volunteers (18-30 years old) to investigate the role of S1P in sperm. PARTICIPANTS/MATERIALS, SETTING, METHODS Percoll-selected human spermatozoa were incubated at 37°C for 3.5 h in BWW media with or without foetal cord serum ultrafiltrate (FCSu), sphingosine (Sph), or ceramide (Cer). Spermatozoa were also incubated with or without pharmacological inhibitors of sphingolipid metabolism. Protein tyrosine phosphorylation was determined by immunoblotting. The acrosome reaction was determined by PSA-FTIC labelling of the acrosome and analysed using fluorescence microscopy. Intracellular nitric oxide (NO•) production was determined using a DAF-2DA probe. Immunocytochemistry was performed to localize and assess the functional relationship of key components of lipid signalling in spermatozoa. Sperm viability and motility of the samples were evaluated by the hypo-osmotic swelling (HOS) test and computer-aided sperm analysis (CASA). Statistical differences between groups were determined using ANOVA and Tukey's test. Normal distribution of the data and variance homogeneity were assessed using Shapiro-Wilk and Levene's test, respectively. A difference was considered significant when the P-value was ≤0.05. MAIN RESULTS AND THE ROLE OF CHANCE S1P mediates the acquisition of fertilizing competency in human spermatozoa by engaging with its Gi-coupled receptor S1PR1. We found that S1PR1 redistributes to the post-acrosomal region upon induction of capacitation. S1P signalling promotes the activation of the PI3K-AKT pathway, leading to NO• production during sperm capacitation. L-NAME, an nitric oxide synthase inhibitor, impaired the Sph- and Cer-dependent capacitation. Additionally, Sph and Cer promote superoxide anion (O2•-) production, and the extracellular addition of superoxide dismutase (SOD) prevented Sph- and Cer-dependent capacitation, suggesting that Sph and Cer stimulate O2•- production during sperm capacitation. Protein kinase type R (PKR), ceramide kinase (CERK), and protein kinase C (PKC) are responsible for translocating and activating sphingosine kinase 1 (SphK1), which is necessary to promote S1P production for sperm capacitation. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The utilization and actions of sphingolipids may differ in spermatozoa of different species. WIDER IMPLICATIONS OF THE FINDINGS Sphingolipid metabolites such as Sph, Cer, S1P, and ceramide 1-phosphate (C1P) play a crucial role in inducing human sperm capacitation. Our research has provided new insights into fundamental sphingolipid processes in human sperm, including the importance of C1P in translocating and activating SphK1 as well as the S1P signalling to regulate the PI3K/AKT/NOS pathway to generate NO• for sperm capacitation. We are the first to identify the presence of PKR in human spermatozoa and its role in the phosphorylation activities of SphK1 with the subsequent activation of S1P signalling. Furthermore, our study has identified that S1PR1 and S1PR3 are involved in capacitation and the acrosome reaction, respectively. These findings shed light on a novel mechanism by which sphingolipids drive capacitation in human sperm and pave the way for further exploration of the role of bioactive sphingolipid metabolites in this process. Lastly, our studies lay the foundation for examining the lipid profile of infertile males, as potential discrepancies can affect the functional capacity of spermatozoa to reach fertilizing potential. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the Canadian Institutes of Health Research (CIHR), grant number PJT-165962 to C.O.F. S.S. was awarded a Research Institute-MUHC Desjardins Studentship. There are no competing interests to report.
Collapse
Affiliation(s)
- Steven Serafini
- Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada
- Urology Division, Department of Surgery, McGill University, Montréal, QC, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cristian O’Flaherty
- Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada
- Urology Division, Department of Surgery, McGill University, Montréal, QC, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Blawut B, Wolfe B, Premanandan C, Schuenemann G, Ludsin SA, Liu SL, Veeramachaneni DNR, Coutinho da Silva MA. Effects of activation and assisted reproduction techniques on the composition, structure, and properties of the sauger (Sander Canadensis) spermatozoa plasma membrane. Theriogenology 2023; 198:87-99. [PMID: 36566603 DOI: 10.1016/j.theriogenology.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The sperm plasma membrane is a multifunctional organelle essential to fertilization. However, assisted reproduction techniques often negatively affect this structure, resulting in reduced fertility. These reductions have been attributed to plasma membrane damage in a wide array of species, including fish. Considerable research has been conducted on the fish sperm membrane, but few have examined the effect of cryopreservation and other assisted reproduction techniques (ARTs) on not only membrane composition, but also specific characteristics (e.g., fluidity) and organization (e.g., lipid rafts). Herein, we determined the effects of three ARTs (testicular harvest, strip spawning, and cryopreservation) on the sperm plasma membrane, using Sauger (Sander canadensis) sperm as a model. To this end, a combination of fluorescent dyes (e.g., merocyanine 540, filipin III, cholera toxin subunit β), liquid chromatography - mass spectroscopy (LC-MS) analysis of membrane lipids, and membrane ultracentrifugation coupled with plate assays and immunofluorescence were used to describe and compare sperm fluidity, membrane composition, as well as lipid raft composition and distribution among sperm types. Stripped sperm became more fluid following motility activation (40% increase in highly fluid cells characterized by a 2 × increase in fluorescence) and contained lipid rafts restricted to the midpiece. Testicular harvest yielded sperm with characteristics similar to stripped sperm. By contrast, cryopreservation impacted every aspect of membrane physiology. Two cell populations, one highly fluid and the other rigid, resulted from the freeze-thaw process. Cryopreservation reduced lipid raft cholesterol content by 44% and flotilin-2 (a lipid raft marker) was partially displaced owing to a decrease in buoyancy. Unlike stripped and testicular sperm, LC-MS analysis revealed increases in oxidative damage markers, membrane destabilization, and apoptotic signaling in cryopreserved sperm. Ultrastructural analysis also revealed widespread physical damage to the membrane following freeze-thaw. Sperm motility, however, was unrelated to any measure of membrane physiology used in this study. Our results demonstrate that ARTs have the potential to substantially affect the sperm plasma membrane, but not always detrimentally. These results provide multiple potential biomarkers of sperm quality as well as insight into sources of sub-fertility resulting from use of ARTs.
Collapse
Affiliation(s)
- Bryan Blawut
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Clinical Sciences, Columbus, OH, USA
| | - Barbara Wolfe
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Chris Premanandan
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, OH, USA
| | - Gustavo Schuenemann
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Stuart A Ludsin
- The Ohio State University, Department of Ecology, Evolution and Organismal Biology, Aquatic Ecology Lab, Columbus, OH, USA
| | - Shan-Lu Liu
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Viruses and Emerging Pathogens Program, The Infectious Diseases Institute, Columbus, OH, USA
| | - D N Rao Veeramachaneni
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Fort Collins, CO, USA
| | - Marco A Coutinho da Silva
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Clinical Sciences, Columbus, OH, USA.
| |
Collapse
|
3
|
Tiwari S, Rajamanickam G, Unnikrishnan V, Ojaghi M, Kastelic JP, Thundathil JC. Testis-Specific Isoform of Na +-K + ATPase and Regulation of Bull Fertility. Int J Mol Sci 2022; 23:7936. [PMID: 35887284 PMCID: PMC9317330 DOI: 10.3390/ijms23147936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
An advanced understanding of sperm function is relevant for evidence-based male fertility prediction and addressing male infertility. A standard breeding soundness evaluation (BSE) merely identifies gross abnormalities in bulls, whereas selection based on single nucleotide polymorphisms and genomic estimated breeding values overlooks sub-microscopic differences in sperm. Molecular tools are important for validating genomic selection and advancing knowledge on the regulation of male fertility at an interdisciplinary level. Therefore, research in this field is now focused on developing a combination of in vitro sperm function tests and identifying biomarkers such as sperm proteins with critical roles in fertility. The Na+-K+ ATPase is a ubiquitous transmembrane protein and its α4 isoform (ATP1A4) is exclusively expressed in germ cells and sperm. Furthermore, ATP1A4 is essential for male fertility, as it interacts with signaling molecules in both raft and non-raft fractions of the sperm plasma membrane to regulate capacitation-associated signaling, hyperactivation, sperm-oocyte interactions, and activation. Interestingly, ATP1A4 activity and expression increase during capacitation, challenging the widely accepted dogma of sperm translational quiescence. This review discusses the literature on the role of ATP1A4 during capacitation and fertilization events and its prospective use in improving male fertility prediction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob C. Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.T.); (G.R.); (V.U.); (M.O.); (J.P.K.)
| |
Collapse
|
4
|
Sajeevadathan M, Pettitt MJ, Buhr MM. Are isoforms of capacitating Na + K + -ATPase localized to sperm head rafts? Mol Reprod Dev 2021; 88:731-743. [PMID: 34658111 DOI: 10.1002/mrd.23543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
Capacitation begins in the sperm head plasma membrane (HPM). Membrane rafts could house signaling molecules, but although these specialized microdomains have been microscopically visualized in sperm heads, rafts have been isolated for study only from homogenized whole sperm or tails, never purified HPM. Sodium/potassium ATPase (Na+ K+ -ATPase) is a membrane-bound signaling protein that induces capacitation in bull sperm in response to the steroid hormone ouabain, and its subunit isoforms α1, α3, β1, β2, and β3 are known in HPM. This study hypothesized that rafts exist in the HPM of bull sperm, with Na+ K+ -ATPase subunit isoforms preferentially localized there. Western immunoblotting (WB) of HPM from fresh, uncapacitated bull sperm (n = 7 ejaculates), and detergent-resistant membranes isolated by density gradient centrifugation from this HPM, contained the raft-marker protein Flotillin-1; the non-raft fraction did not. HPM, raft, and non-raft contained all known Na+ K+ -ATPase isoforms including, for the first time, the previously unknown α2 isoform. Quantification (ImageQuant Software) found α3 and β1 were relatively dominant isoforms in the HPM raft. WB profiles of raft isoforms differed significantly from HPM and non-raft profiles, with unique banding patterns and amounts, hinting that the capacitation signaling in the now-identified HPM rafts may depend on unique sequences within the isoform structure.
Collapse
Affiliation(s)
- Mrudhula Sajeevadathan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Murray J Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Prairie Swine Centre, Saskatoon, Saskatchewan, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Liu Y, Zhang C, Wang S, Hu Y, Jing J, Ye L, Jing R, Ding Z. Dependence of sperm structural and functional integrity on testicular calcineurin isoform PPP3R2 expression. J Mol Cell Biol 2021; 12:515-529. [PMID: 31900494 PMCID: PMC7493031 DOI: 10.1093/jmcb/mjz115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
After leaving the testis, mammalian sperm undergo a sequential maturation process in the epididymis followed by capacitation during their movement through the female reproductive tract. These phenotypic changes are associated with modification of protein phosphorylation and membrane remodeling, which is requisite for sperm to acquire forward motility and induce fertilization. However, the molecular mechanisms underlying sperm maturation and capacitation are still not fully understood. Herein, we show that PPP3R2, a testis-specific regulatory subunit of protein phosphatase 3 (an isoform of calcineurin in the testis), is essential for sperm maturation and capacitation. Knockout of Ppp3r2 in mice leads to male sterility due to sperm motility impairment and morphological defects. One very noteworthy change includes increases in sperm membrane stiffness. Moreover, PPP3R2 regulates sperm maturation and capacitation via (i) modulation of membrane diffusion barrier function at the annulus and (ii) facilitation of cholesterol efflux during sperm capacitation. Taken together, PPP3R2 plays a critical role in modulating cholesterol efflux and mediating the dynamic control of membrane remodeling during sperm maturation and capacitation.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chujun Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiyao Wang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Luyao Ye
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Jing
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Xin L, Guo Y, Zhao HB, Yu HM, Hou L. Peroxiredoxin 6 translocates to the plasma membrane of human sperm under oxidative stress during cryopreservation. Cryobiology 2021; 100:158-163. [PMID: 33561454 DOI: 10.1016/j.cryobiol.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Peroxiredoxin 6 (PRDX6) is one antioxidant enzyme which could control the levels of reactive oxygen species and to avoid oxidative damage of sperm. In this study, we aimed to investigate the position change of PRDX6 in human sperm under oxidative stress during cryopreservation. Semen samples were obtained from 98 healthy donors and 27 asthenozoospermic donors. The plasma membrane protein and cytoplasmic protein of sperm samples were extracted and analyzed after cryopreservation. Western blot and immunofluorescence were used to measure the expressions of PRDX6. Liquid chromatography mass spectrometric (LC-MS/MS) analysis was performed to confirm the component of sperm membrane complex. Western blot showed that the detection rate of PRDX6 in plasma membranes with low sperm motility (≤20%) was significantly higher than that with high sperm motility (≥40%). Western blot and Immunofluorescence revealed that cryopreservation and thawing induced the position change of the PRDX6 from cytoplasm to sperm membrane. LC-MS/MS analysis showed that PRDX6, ADP/ATP translocase 4 (ANT4) and glyceraldehyde-3-phosphte dehydrogenase (GAPDHS) were present in the components of membrane complex after cryopreservation. The present study indicated that the presence of PRDX6 in sperm plasma membrane was related to sperm motility. GAPDHS and ANT4 may be involved the position change of the PRDX6 from cytoplasm to sperm membrane under oxidative stress during cryopreservation.
Collapse
Affiliation(s)
- Ling Xin
- National Research Institute for Family Planning, Beijing, China.
| | - Ying Guo
- National Research Institute for Family Planning, Beijing, China.
| | - Hai-Bao Zhao
- National Research Institute for Family Planning, Beijing, China.
| | - He-Ming Yu
- National Research Institute for Family Planning, Beijing, China.
| | - Li Hou
- National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
7
|
Gómez-Torres MJ, Robles-Gómez L, Huerta-Retamal N, Sáez-Espinosa P, Avilés M, Aizpurua J, Romero A. FE-SEM Characterization of α-Mannose Density and Surface Mapping Changes in Human Sperm Head During In Vitro Capacitation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1220-1225. [PMID: 33121558 DOI: 10.1017/s1431927620024630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sperm capacitation includes the reorganization of plasma membrane components and the outstanding modification of the glycocalyx. The α-mannose presence and location during in vitro capacitation have been commonly described in human spermatozoa using Concanavalin A (Con A) lectin. However, it is still unclear to date how in vitro capacitation time affects the α-mannose residues and their topographic spatial distribution on sperm membrane. Here, we characterized the α-mannose density and specific membrane domain locations before and after in vitro capacitation (1–4 h) using high-resolution field emission scanning electron microscopy (FE-SEM). Results showed that α-mannose residues were present preferably on the acrosome domains for all physiological conditions. Uncapacitated sperm comparatively exhibits significant highest labeling densities of α-mannose residues. In addition, as in vitro capacitation takes place, significant and progressive decreasing of sugar residues was combined with their relocation mostly affecting acrosomal domain apical areas. Our findings reveal that combined approach using FE-SEM and gold nanoparticle topographical mapping offers new human sperm biomolecular and structural details during capacitation events.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
- Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| | - Natalia Huerta-Retamal
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, Alicante, Spain
| | - Alejandro Romero
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Ap. C. 99, Alicante03080, Spain
| |
Collapse
|
8
|
Taga H, Dallaire MP, Gervais R, Richard FJ, Ma L, Corl BA, Chouinard PY. Characterization of raft microdomains in bovine mammary tissue during lactation: How they are modulated by fatty acid treatments. J Dairy Sci 2020; 104:2384-2395. [PMID: 33246605 DOI: 10.3168/jds.2020-19267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.
Collapse
Affiliation(s)
- H Taga
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - M P Dallaire
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - F J Richard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - L Ma
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - B A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada.
| |
Collapse
|
9
|
Rodríguez-Tobón E, Fierro R, González-Márquez H, García-Vázquez FA, Arenas-Ríos E. Boar sperm incubation with reduced glutathione (GSH) differentially modulates protein tyrosine phosphorylation patterns and reorganization of calcium in sperm, in vitro fertilization, and embryo development depending on concentrations. Res Vet Sci 2020; 135:386-396. [PMID: 33153763 DOI: 10.1016/j.rvsc.2020.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
The sperm in the female's reproductive tract undergo changes to fertilize the oocyte (sperm capacitation). These changes are regulated by redox system. However, some assisted reproductive technologies require sperm capacitation under in vitro conditions, though this increases the generation of ROS. Therefore, the aim of this study was to evaluate the effect of GSH as an antioxidant agent during the capacitation of boar sperm [evaluated by calcium compartmentalization, tyrosine phosphorylation (Tyr-P), motility, viability, and acrosomal integrity], in vitro fertilization (evaluated by penetration, monospermy, and efficiency %), and later embryo development (evaluated by cleavage and blastocyst rates, total number of cells per blastocyst and blastocyst diameter). Four experimental groups with different GSH concentrations (0-control, 0.5, 1, and 5 mM) were formed. When 1-GSH was added to the medium, the percentage of capacitated sperm increased after 4 h of incubation; the localization of Tyr-P was modified at 1 h and 4 h of incubation depending on the GSH concentration. Percentages of total and progressive sperm motility also increased at 4 h of incubation, but only in the 5-GSH group compared to control. Viability, acrosomal integrity, and general Tyr-P (Western blot) not differ among the experimental groups. The addition of GSH during gamete interaction increased penetration, monospermy, and efficiency rates in the 1-GSH group compared to the others. However, the effect of GSH was not observed in cleavage and blastocyst rates compared to the control. In conclusion, adding GSH modulates sperm capacitation (by means of calcium compartmentalization and tyrosine phosphorilation pattern) depending on its concentration, and improves IVF output at 1-GSH during gamete interaction.
Collapse
Affiliation(s)
- Ernesto Rodríguez-Tobón
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, CDMX, Mexico
| | - Reyna Fierro
- Universidad Autónoma Metropolitana, Departamento de Ciencias de la Salud, Unidad Iztapalapa, CDMX, Mexico.
| | - Humberto González-Márquez
- Universidad Autónoma Metropolitana, Departamento de Ciencias de la Salud, Unidad Iztapalapa, CDMX, Mexico.
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus Internacional de Excelencia para la educación superior e investigación "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.
| | - Edith Arenas-Ríos
- Universidad Autónoma Metropolitana, Departamento de Biología de la Reproducción, Unidad Iztapalapa, CDMX, Mexico.
| |
Collapse
|
10
|
Existence and distribution of Niemann-Pick type 2C (NPC2) in prawn reproductive tract and its putative role as a cholesterol modulator during sperm transit in the vas deferens. Cell Tissue Res 2020; 382:381-390. [PMID: 32556727 DOI: 10.1007/s00441-020-03225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Sequestering of cholesterol (CHO) is a hallmark molecular event that is known to be associated with sperm gaining their fertilizing ability in a broad array of animals. We have shown previously that the level of CHO declines in the Macrobrachium rosenbergii sperm membrane when they are migrating into the vas deferens, prompting us to search for CHO transporters, one of which is Niemann-Pick type 2C (NPC2), within the prawn male reproductive tract. Sequence comparison of MrNPC2 with other NPC2, from crustaceans to mammals, revealed its conserved features in the hydrophobic cavity with 3 amino acids forming a CHO lid that is identical in all species analyzed. Expressions of MrNPC2 transcript and protein were detected in testicular supporting and interstitial cells and along the epithelial cells of the vas deferens. As confirmed by live cell staining, the testicular sperm (Tsp) surface was devoid of MrNPC2 but it first existed on the vas deferens sperm, suggesting its acquisition from the luminal fluid, possibly through trafficking of multi-lamellar vesicles during sperm transit in the vas deferens. We further showed that recombinant MrNPC2 had a high affinity towards CHO in the lipid extracts, either from Tsp or from lipid vesicles in the vas deferens. Together, our results indicated the presence of MrNPC2 in the male reproductive tract, which may play an important role as a CHO modulator between the sperm membrane and vas deferens epithelial communication.
Collapse
|
11
|
Characteristics of bull sperm acrosome associated 1 proteins. Anim Reprod Sci 2020; 218:106479. [PMID: 32507260 DOI: 10.1016/j.anireprosci.2020.106479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
An atypical distribution of sperm acrosomal tyrosine-phosphorylated proteins [which include sperm acrosome associated 1 (SPACA1) proteins] may be related to the relatively lesser pregnancy rates when semen of some bulls are used for artificial insemination (AI). There may also be these associations with bull SPACA1 proteins that are translocated from the equatorial segment to the anterior part in the acrosomes during sperm maturation in the normally functioning epididymis. The aim of the present study, therefore, was assessment of the characteristics of bull SPACA1 proteins. Results from immunocytochemical evaluations indicate there were large variations in sperm percentages with typically distributed SPACA1 proteins in acrosomes of cauda epididymal sperm samples (7%-95%). These values were positively correlated with percentages of epididymal spermatozoa with typically distributed acrosomal tyrosine-phosphorylated proteins (r=0.8564, P<0.001). Results indicate there are individual differences in translocation of SPACA1 proteins in the epididymis during sperm maturation, and that SPACA1 protein is one of the main determinants for the typical distribution of acrosomal tyrosine-phosphorylated proteins. In addition, conception rates as a result of AI using cryopreserved spermatozoa tended to be associated with percentages of epididymal spermatozoa with typically distributed SPACA1 proteins. Results from sucrose gradient centrifugation fractionation experiments indicate SPACA1 proteins are sperm membrane raft-associated proteins. Based on these results, it is hypothesized that there is an association between bull subfertility when semen is used for AI and epididymal dysfunctions in the arrangement of membrane lipid rafts during sperm maturation.
Collapse
|
12
|
López-Salguero JB, Fierro R, Michalski JC, Jiménez-Morales I, Lefebvre T, Mondragón-Payne O, Baldini SF, Vercoutter-Edouart AS, González-Márquez H. Identification of lipid raft glycoproteins obtained from boar spermatozoa. Glycoconj J 2020; 37:499-509. [PMID: 32367480 DOI: 10.1007/s10719-020-09924-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 11/30/2022]
Abstract
The surface of the spermatozoa is coated with glycoproteins the redistribution of which during in vitro capacitation plays a key role in the subsequent fertilization process. Lipid rafts are membrane microdomains involved in signal transduction through receptors and include or recruit specific types of proteins and glycoproteins. Few studies have focused on identifying glycoproteins resident in the lipid rafts of spermatozoa. Proteins associated with lipid rafts modify their localization during capacitation. The objective of the study was to identify the glycoproteins associated with lipid rafts of capacitated boar spermatozoa through a lectin-binding assay coupled to mass spectrometry approach. From the proteomic profiles generated by the raft proteins extractions, we observed that after capacitation the intensity of some bands increased while that of others decreased. To determine whether the proteins obtained from lipid rafts are glycosylated, lectin blot assays were performed. Protein bands with a good resolution and showing significant glycosylation modifications after capacitation were analyzed by mass spectrometry. The bands of interest had an apparent molecular weight of 64, 45, 36, 34, 24, 18 and 15 kDa. We sequenced the 7 bands and 20 known or potential glycoproteins were identified. According to us, for ten of them this is the first time that their association with sperm lipid rafts is described (ADAM5, SPMI, SPACA1, Seminal plasma protein pB1, PSP-I, MFGE8, tACE, PGK2, SUCLA2, MDH1). Moreover, LYDP4, SPAM-1, HSP60, ZPBP1, AK1 were previously reported in lipid rafts of mouse and human spermatozoa but not in boar spermatozoa. We also found and confirmed the presence of ACR, ACRBP, AWN, AQN3 and PRDX5 in lipid rafts of boar spermatozoa. This paper provides an overview of the glycosylation pattern in lipid rafts of boar spermatozoa before and after capacitation. Further glycomic analysis is needed to determine the type and the variation of glycan chains of the lipid rafts glycoproteins on the surface of spermatozoa during capacitation and acrosome reaction.
Collapse
Affiliation(s)
- José Benito López-Salguero
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Reyna Fierro
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| | - Jean-Claude Michalski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Irma Jiménez-Morales
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Oscar Mondragón-Payne
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Steffi F Baldini
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | | | - Humberto González-Márquez
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México
| |
Collapse
|
13
|
Walters JL, Gadella BM, Sutherland JM, Nixon B, Bromfield EG. Male Infertility: Shining a Light on Lipids and Lipid-Modulating Enzymes in the Male Germline. J Clin Med 2020; 9:E327. [PMID: 31979378 PMCID: PMC7073900 DOI: 10.3390/jcm9020327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the prevalence of male factor infertility, most cases are defined as idiopathic, thus limiting treatment options and driving increased rates of recourse to assisted reproductive technologies (ARTs). Regrettably, our current armory of ARTs does not constitute therapeutic treatments for male infertility, thus highlighting an urgent need for novel intervention strategies. In our attempts to fill this void, we have come to appreciate that the production of pathological levels of oxygen radicals within the male germline are a defining etiology of many idiopathic infertility cases. Indeed, an imbalance of reactive oxygen species can precipitate a cascade of deleterious sequelae, beginning with the peroxidation of membrane lipids and culminating in cellular dysfunction and death. Here, we shine light on the importance of lipid homeostasis, and the impact of lipid stress in the demise of the male germ cell. We also seek to highlight the utility of emerging lipidomic technologies to enhance our understanding of the diverse roles that lipids play in sperm function, and to identify biomarkers capable of tracking infertility in patient cohorts. Such information should improve our fundamental understanding of the mechanistic causes of male infertility and find application in the development of efficacious treatment options.
Collapse
Affiliation(s)
- Jessica L.H. Walters
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Bart M. Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jessie M. Sutherland
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
14
|
Priyadarshana C, Tajima A, Ishikawa N, Asano A. Membrane rafts regulate sperm acrosome reaction via cAMP-dependent pathway in chickens (Gallus gallus domesticus). Biol Reprod 2019; 99:1000-1009. [PMID: 29788183 DOI: 10.1093/biolre/ioy120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Both transcriptionally and translationally inactive sperm need preassembled pathways into specific cellular compartments to function. Although initiation of the acrosome reaction (AR) involves several signaling pathways including protein kinase A (PKA) activation, how these are regulated remains poorly understood in avian sperm. Membrane rafts are specific membrane regions enriched in sterols and functional proteins and play important roles in diverse cellular processes, including signal transduction. Our recent studies on chicken sperm demonstrated that membrane rafts exist and play a role in multistage fertilization. These, combined with the functional importance of membrane rafts in mammalian sperm AR, prompted us to investigate the roles of membrane rafts in signaling pathways leading to AR in chicken sperm. Using 2-hydroxypropyl-β-cyclodextrin (2-OHCD), we found that the disruption of membrane rafts inhibits PKA activity and AR without affecting protein tyrosine phosphorylation; however, these inhibitions were abolished in the presence of a cyclic 3,5-adenosine monophosphate (cAMP) analog. In addition, biochemical experiments showed a decrease in cAMP content in 2-OHCD-treated sperm, suggesting the involvement of soluble adenylyl cyclase (sAC) and transmembrane adenylyl cyclase (tmAC). Pharmacological experiments, combined with transcriptome analysis, showed that sAC and tmAC are present and involved in AR induction in chicken sperm. Furthermore, stimulation of both isoforms reversed the inhibition of PKA activity and AR in 2-OHCD-treated sperm. In conclusion, our results demonstrated that membrane rafts play an important role in AR induction by regulating the cAMP-dependent pathway and that they provide a mechanistic insight into membrane regulation of AR and sperm function in birds.
Collapse
Affiliation(s)
- Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoto Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Testis-Specific Isoform of Na/K-ATPase (ATP1A4) Interactome in Raft and Non-Raft Membrane Fractions from Capacitated Bovine Sperm. Int J Mol Sci 2019; 20:E3159. [PMID: 31261667 PMCID: PMC6651793 DOI: 10.3390/ijms20133159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 11/28/2022] Open
Abstract
The plasma membrane of sperm contains highly dynamic lipid microdomains (rafts), which house signaling proteins with a role in regulating capacitation. We reported that ATP1A4, the testis-specific isoform of Na/K-ATPase, interacted with caveolin-1, Src, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinases 1/2 (ERK1/2) in raft and non-raft domains of the plasma membrane of bovine sperm during capacitation. The objective of the present study was to use a proteomic approach to characterize the ATP1A4 interactome in rafts and non-rafts from capacitated bovine sperm. The non-raft interactome included hexokinase 1, plakophilin 1, desmoglein 1, 14-3-3 protein ζ/δ, cathepsin D and heat shock protein beta1 proteins exclusively, whereas glutathione S-transferase and annexin A2 were unique to raft interactome. However, a disintegrin and metalloprotease 32 (ADAM 32), histone H4, actin, acrosin, serum albumin and plakoglobin were identified in both raft and non-raft fractions of capacitated sperm. Based on gene ontology studies, these differentially interacted proteins were implicated in cell-cell adhesion, signal transduction, fertilization, metabolism, proteolysis and DNA replication, in addition to acting as transport/carrier and cytoskeletal proteins. Overall, we identified proteins not previously reported to interact with ATP1A4; furthermore, we inferred that ATP1A4 may have a role in sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
16
|
Bai C, Kang N, Zhao J, Dai J, Gao H, Chen Y, Dong H, Huang C, Dong Q. Cryopreservation disrupts lipid rafts and heat shock proteins in yellow catfish sperm. Cryobiology 2019; 87:32-39. [PMID: 30876909 DOI: 10.1016/j.cryobiol.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
Lipid rafts and associated membrane proteins (flotillin, caveolin) play important roles in cell signaling and sperm fertilization while heat shock proteins (Hsp) ensure properly protein folding to fulfill their physiological functions. The markedly reduced fertility in thawed sperm after cryopreservation could result from disrupted membrane lipid rafts and these proteins. To explore the effect of sperm cryopreservation on lipid rafts and heat shock proteins, we compared lipid raft integrity, and the expression levels of lipid raft associated proteins (Flot-1, Flot-2, Cav-1) as well as heat shock proteins (Hsp90, Hsp70) in fresh and thawed sperm cryopreserved under different scenarios in yellow catfish. We found higher lipid raft integrity, higher protein expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 in fresh sperm samples than in thawed sperm samples, in thawed sperm samples cryopreserved with optimal cooling rate than those cryopreserved with sub-optimal cooling rate, and in thawed sperm samples cryopreserved with extenders supplemented with cholesterol than those supplemented with methyl-β-cyclodextrin (for cholesterol removal). Our findings indicate that lipid raft integrity, and expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 are clearly associated with sperm quality, and together they may play a cumulative role in reduced fertility associated with thawed sperm in aquatic species.
Collapse
Affiliation(s)
- Chenglian Bai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Ning Kang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junping Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jun Dai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Gao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
17
|
Do GWAS and studies of heterozygotes for NPC1 and/or NPC2 explain why NPC disease cases are so rare? J Appl Genet 2018; 59:441-447. [PMID: 30209687 DOI: 10.1007/s13353-018-0465-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Early onset Niemann-Pick C diseases are extremely rare, especially Niemann-Pick C2. Perhaps unusually for autosomal recessive diseases, heterozygotes for mutations in NPC1 manifest many biological variations. NPC2 deficiency has large effects on fertility. These features of NPC1 and NPC2 are reviewed in regard to possible negative selection for heterozygotes carrying null and hypomorphic alleles.
Collapse
|
18
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Cormier N, McGlone JJ, Leszyk J, Hardy DM. Immunocontraceptive target repertoire defined by systematic identification of sperm membrane alloantigens in a single species. PLoS One 2018; 13:e0190891. [PMID: 29342175 PMCID: PMC5771590 DOI: 10.1371/journal.pone.0190891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Sperm competence in animal fertilization requires the collective activities of numerous sperm-specific proteins that are typically alloimmunogenic in females. Consequently, sperm membrane alloantigens are potential targets for contraceptives that act by blocking the proteins' functions in gamete interactions. Here we used a targeted proteomics approach to identify the major alloantigens in swine sperm membranes and lipid rafts, and thereby systematically defined the repertoire of these sperm-specific proteins in a single species. Gilts with high alloantibody reactivity to proteins in sperm membranes or lipid rafts produced fewer offspring (73% decrease) than adjuvant-only or nonimmune control animals. Alloantisera recognized more than 20 potentially unique sperm membrane proteins and five sperm lipid raft proteins resolved on two-dimensional immunoblots with or without prior enrichment by anion exchange chromatography. Dominant sperm membrane alloantigens identified by mass spectrometry included the ADAMs fertilin α, fertilin ß, and cyritestin. Less abundant alloantigens included ATP synthase F1 β subunit, myo-inositol monophosphatase-1, and zymogen granule membrane glycoprotein-2. Immunodominant sperm lipid raft alloantigens included SAMP14, lymphocyte antigen 6K, and the epididymal sperm protein E12. Of the fifteen unique membrane alloantigens identified, eleven were known sperm-specific proteins with uncertain functions in fertilization, and four were not previously suspected to exist as sperm-specific isoforms. De novo sequences of tryptic peptides from sperm membrane alloantigen "M6" displayed no evident homology to known proteins, so is a newly discovered sperm-specific gene product in swine. We conclude that alloimmunizing gilts with sperm membranes or lipid rafts evokes formation of antibodies to a relatively small number of dominant alloantigens that include known and novel sperm-specific proteins with possible functions in fertilization and potential utility as targets for immunocontraception.
Collapse
Affiliation(s)
- Nathaly Cormier
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - John J. McGlone
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - John Leszyk
- Proteomic and Mass Spectrometry Facility and Department of Biochemistry & Pharmacology, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wong CW, Lam KKW, Lee CL, Yeung WSB, Zhao WE, Ho PC, Ou JP, Chiu PCN. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding. Hum Reprod 2017; 32:733-742. [PMID: 28175305 DOI: 10.1093/humrep/dex007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022] Open
Abstract
Study question Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? Summary answer ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. What is known already A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. Study design, size, duration The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Participants/materials, setting, methods Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Main results and the role of chance Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. Large scale data N/A. Limitations, reasons for caution The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Wider implications of the findings Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. Study funding/competing interest(s) This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests.
Collapse
Affiliation(s)
- Chi-Wai Wong
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - Wei E Zhao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Pak-Chung Ho
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - Jian-Ping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| |
Collapse
|
21
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms. Mol Reprod Dev 2017; 84:1168-1182. [PMID: 28833817 DOI: 10.1002/mrd.22879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| | - John P Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| | - Jacob C Thundathil
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Calpain inhibition prevents flotillin re-ordering and Src family activation during capacitation. Cell Tissue Res 2017; 369:395-412. [DOI: 10.1007/s00441-017-2591-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
|
23
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes. Cell Tissue Res 2016; 368:187-200. [PMID: 27807702 DOI: 10.1007/s00441-016-2514-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Abstract
Capacitation comprises a series of structural and functional modifications of sperm that confer fertilizing ability. We previously reported that the testis-specific isoform of Na/K-ATPase (ATP1A4) regulated bovine sperm capacitation through signaling mechanisms involving kinases. During subsequent investigations to elucidate mechanisms by which ATP1A4 regulates sperm capacitation, we observed that ATP1A4 was localised in both raft and non-raft fractions of the sperm plasma membrane and that its total content was increased in both membrane fractions during capacitation. The objective of the present study was to investigate mechanism(s) of capacitation-associated increase in the content of ATP1A4. Despite the widely accepted dogma of transcriptional/translational quiescence, incubation of sperm with either ouabain (specific ligand for ATP1A4) or heparin increased ATP1A4 content in raft and non-raft sperm membrane fractions, total sperm protein extracts (immunoblotting) and fixed sperm (flow cytometry), with a concurrent increase in Na/K-ATPase enzyme activity. This capacitation-associated increase in ATP1A4 content was partially decreased by chloramphenicol (mitochondrial translation inhibitor) but not affected by actinomycin D (transcription inhibitor). To demonstrate de novo ATP1A4 synthesis, we evaluated incorporation of bodipy conjugated lysine in this protein during capacitation. A partial decrease in bodipy-lysine incorporation occurred in ATP1A4 from sperm capacitated in the presence of chloramphenicol. Therefore, increased ATP1A4 content during capacitation was attributed to mitochondrial translation of ATP1A4 mRNA present in ejaculated sperm, rather than gene transcription. To our knowledge, this is the first report demonstrating ATP1A4 synthesis during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
24
|
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
25
|
Andrews RE, Galileo DS, Martin-DeLeon PA. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase. Mol Hum Reprod 2015; 21:832-43. [PMID: 26345709 DOI: 10.1093/molehr/gav049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/31/2015] [Indexed: 11/12/2022] Open
Abstract
Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at high [Ca(2+)]c in sperm to down-regulate them, and thus prevent elevated levels of NO, known to induce asthenozoospermia via oxidative stress. Our studies point to the potential underlying cause of infertility in PMCA4's absence, and suggest that inactivating mutations of PMCA4 could lead to asthenozoospermia and human infertility. Screening for these mutations may serve both diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Rachel E Andrews
- Department of Biological Sciences, University of Delaware, Newark, DE 17916, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 17916, USA
| | | |
Collapse
|
26
|
Al-Dossary AA, Bathala P, Caplan JL, Martin-DeLeon PA. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: DETECTION OF FUSION AND UNDERLYING MOLECULAR PLAYERS USING THREE-DIMENSIONAL SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY (SR-SIM). J Biol Chem 2015; 290:17710-17723. [PMID: 26023236 DOI: 10.1074/jbc.m114.633156] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Oviductosomes ((OVS), exosomes/microvesicles), which deliver the Ca(2+) efflux pump, plasma membrane Ca(2+)ATPase 4 (PMCA4), to sperm are likely to play an important role in sperm fertilizing ability (Al-Dossary, A. A., Strehler, E. E., and Martin-DeLeon, P. A. (2013) PloS one 8, e80181). It is unknown how exosomes/microvesicles deliver transmembrane proteins such as PMCA4 to sperm. Here we define a novel experimental approach for the assessment of the interaction of OVS with sperm at a nanoscale level, using a lipophilic dye (FM4-64FX) and three-dimensional SR/SIM, which has an 8-fold increase in volumetric resolution, compared with conventional confocal microscopy. Coincubation assays detected fusion of prelabeled OVS with sperm, primarily over the head and midpiece. Immunofluorescence revealed oviductosomal delivery of PMCA4a to WT and Pmca4 KO sperm, and also endogenous PMCA4a on the inner acrosomal membrane. Fusion was confirmed by transmission immunoelectron microscopy, showing immunogold particles in OVS, and fusion stalks on sperm membrane. Immunofluorescence colocalized OVS with the αv integrin subunit which, along with CD9, resides primarily on the sperm head and midpiece. In capacitated and acrosome reacted sperm, fusion was significantly (p < 0.001) inhibited by blocking integrin/ligand interactions via antibodies, exogenous ligands (vitronectin and fibronectin), and their RGD recognition motif. Our results provide evidence that receptor/ligand interactions, involving αvβ3 and α5β1integrins on sperm and OVS, facilitate fusion of OVS in the delivery of transmembrane proteins to sperm. The mechanism uncovered is likely to be also involved in cargo delivery of prostasomes, epididymosomes, and uterosomes.
Collapse
Affiliation(s)
- Amal A Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716; Delaware Biotechnology Institute, Newark, Delaware 19711
| | | |
Collapse
|
27
|
Zigo M, Dorosh A, Pohlová A, Jonáková V, Šulc M, Maňásková-Postlerová P. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm–zona pellucida receptors. Cell Tissue Res 2014; 359:895-908. [DOI: 10.1007/s00441-014-2072-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/17/2014] [Indexed: 02/01/2023]
|
28
|
Busso D, Oñate-Alvarado MJ, Balboa E, Castro J, Lizama C, Morales G, Vargas S, Härtel S, Moreno RD, Zanlungo S. Spermatozoa from mice deficient in Niemann-Pick disease type C2 (NPC2) protein have defective cholesterol content and reduced in vitro fertilising ability. Reprod Fertil Dev 2014; 26:609-21. [PMID: 24709320 DOI: 10.1071/rd12059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
The cholesterol content of the sperm membrane is regulated during both maturation in the epididymis and capacitation in the female tract, two processes required for the spermatozoa to acquire their fertilising ability. Because Niemann-Pick disease, type C2 (NPC2) protein is one of the most abundant components of the epididymal fluid and contains a functional cholesterol-binding site that can transfer cholesterol between membranes, it has been suggested for years that NPC2 could be involved in the regulation of cholesterol levels in spermatozoa during epididymal maturation. In the present study, western blot and immunohistochemistry analyses demonstrated significant levels of NPC2 in the mouse epididymal epithelium. Epididymal spermatozoa obtained from NPC2(-/-) mice were morphologically normal and had normal motility parameters, but had a reduced cholesterol content compared with that of wild-type (WT) spermatozoa, as determined by both biochemical and by flow cytometry analyses. These results suggest that NPC2 could be involved in regulating cholesterol levels in spermatozoa during epididymal maturation. To understand the relevance of epididymal NPC2 for sperm function, the ability of spermatozoa to undergo events influenced by epididymal maturation, such as capacitation and fertilisation, were compared between WT and NPC2(-/-) mice. Capacitated NPC2(-/-) spermatozoa exhibited defective tyrosine phosphorylation patterns and a reduced ability to fertilise cumulus-oocyte complexes compared with WT spermatozoa, supporting the relevance of mouse epididymal NPC2 for male fertility.
Collapse
Affiliation(s)
- Dolores Busso
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - María José Oñate-Alvarado
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - Elisa Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - Gabriela Morales
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - Susana Vargas
- Laboratory for Scientific Image Analysis (SCIAN-Lab), Program of Anatomy and Developmental Biology, Instituto de Ciencias Biomédicas ICBM, Faculty of Medicine, Universidad de Chile, Avda. Independencia 1027. 8389100 Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis (SCIAN-Lab), Program of Anatomy and Developmental Biology, Instituto de Ciencias Biomédicas ICBM, Faculty of Medicine, Universidad de Chile, Avda. Independencia 1027. 8389100 Santiago, Chile
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica. Avda. Bernardo O'Higgins 340. 8331150 Santiago, Chile
| |
Collapse
|
29
|
Araki N, Trencsényi G, Krasznai ZT, Nizsalóczki E, Sakamoto A, Kawano N, Miyado K, Yoshida K, Yoshida M. Seminal vesicle secretion 2 acts as a protectant of sperm sterols and prevents ectopic sperm capacitation in mice. Biol Reprod 2014; 92:8. [PMID: 25395676 DOI: 10.1095/biolreprod.114.120642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Seminal vesicle secretion 2 (SVS2) is a protein secreted by the mouse seminal vesicle. We previously demonstrated that SVS2 regulates fertilization in mice; SVS2 is attached to a ganglioside GM1 on the plasma membrane of the sperm head and inhibits sperm capacitation in in vitro fertilization as a decapacitation factor. Furthermore, male mice lacking SVS2 display prominently reduced fertility in vivo, which indicates that SVS2 protects spermatozoa from some spermicidal attack in the uterus. In this study, we tried to investigate the mechanisms by which SVS2 controls in vivo sperm capacitation. SVS2-deficient males that mated with wild-type partners resulted in decreased cholesterol levels on ejaculated sperm in the uterine cavity. SVS2 prevented cholesterol efflux from the sperm plasma membrane and incorporated liberated cholesterol in the sperm plasma membrane, thereby reversibly preventing the induction of sperm capacitation by bovine serum albumin and methyl-beta-cyclodextrin in vitro. SVS2 enters the uterus and the uterotubal junction, arresting sperm capacitation in this area. Therefore, our results show that SVS2 keeps sterols on the sperm plasma membrane and plays a key role in unlocking sperm capacitation in vivo.
Collapse
Affiliation(s)
- Naoya Araki
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan
| | - György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoárd T Krasznai
- Department of Obstetrics and Gynecology, University of Debrecen, Debrecen, Hungary
| | - Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Ayako Sakamoto
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan Center for Marine Biology, University of Tokyo, Miura, Japan
| |
Collapse
|
30
|
Samavat J, Natali I, Degl'Innocenti S, Filimberti E, Cantini G, Di Franco A, Danza G, Seghieri G, Lucchese M, Baldi E, Forti G, Luconi M. Acrosome reaction is impaired in spermatozoa of obese men: a preliminary study. Fertil Steril 2014; 102:1274-1281.e2. [PMID: 25226854 DOI: 10.1016/j.fertnstert.2014.07.1248] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare spontaneous (Sp-AR) and P-induced acrosome reaction (AR) in spermatozoa of obese and lean subjects. SETTING Bariatric unit at a university hospital. DESIGN Prospective, observational study. PATIENT(S) Twenty-three obese (mean±SD body mass index [BMI], 44.3±5.9 kg/m2) and 25 age-matched lean (BMI, 24.2±3.0 kg/m2) subjects. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Spontaneous and P-induced AR in spermatozoa of obese and lean subjects. RESULT(S) A statistically significant difference was found between obese and lean cohorts in total T and calculated free T, E2, glycated hemoglobin, and high-density lipoproteins, whereas among the routine semen parameters analyzed, only immotile sperm percentage and ejaculate volume differed significantly. Spermatozoa of obese (n=13) vs. lean men (n=19) showed a higher Sp-AR (17.9%±7.2% vs. 8.3%±4.2%), which resulted in a reduced ability to respond to P evaluated as the AR-after-P-challenge parameter (3.5%±3.2% vs. 17.6%±9.2%). Multivariate analysis adjusted for age revealed a significant correlation between BMI, waist, E2, and glycated hemoglobin with both Sp-AR (age-adjusted r=0.654, r=0.711, r=0.369, and r=0.644, respectively) and AR-after-P-challenge (age-adjusted r=-0.570, r=-0.635, r=-0.507, and r=-0.563, respectively). A significant difference in sperm cholesterol content was reported between obese and lean men (29.8±19.5 vs. 19.1±14.6 ng/μg of proteins). CONCLUSION(S) Sperm AR is impaired in obese men, showing reduced response to P and elevated Sp-AR, associated with altered circulating levels of E2 and sperm cholesterol content.
Collapse
Affiliation(s)
- Jinous Samavat
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Ilaria Natali
- Seminology Laboratory, Azienda USL3 Pistoia, Pistoia, Italy
| | - Selene Degl'Innocenti
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Erminio Filimberti
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanna Danza
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppe Seghieri
- Agenzia Regionale Sanità Toscana, Florence, Italy; Accademia Medica Filippo Pacini, Pistoia, Italy
| | - Marcello Lucchese
- Bariatric and Metabolic Surgery, Careggi Hospital, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Elisabetta Baldi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianni Forti
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
31
|
Hu SG, Li XQ, Tang CH, Sun Y, Zhang YL. Isolation and characterization of detergent-resistant membranes from rat spermatozoa. Asian J Androl 2014; 16:790-791. [PMID: 24994786 PMCID: PMC4215660 DOI: 10.4103/1008-682x.132979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shuang-Gang Hu
- Department of Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Qi Li
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hua Tang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun Sun
- Department of Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yong-Lian Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Tong S, Fu M, Cao X, Firempong CK, Yi C, Zhen Q, Zhong H, Yu J, Xu X. Lipid Raft Stationary Phase Chromatography for Screening Anti-tumor Components from Galla chinensis. Chromatographia 2014. [DOI: 10.1007/s10337-014-2623-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Moretti E, Vindigni C, Tripodi SA, Mazzi L, Nuti R, Figura N, Collodel G. Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa. Andrologia 2013; 46:979-85. [PMID: 24147986 DOI: 10.1111/and.12183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/18/2022] Open
Abstract
The role of ghrelin and obestatin in male reproduction has not completely been clarified. We explored ghrelin and obestatin localisation in the male reproductive system. Polyclonal antibodies anti-ghrelin and anti-obestatin were used to detect the expression of these hormones in human testis, prostate and seminal vesicles by immunocytochemistry, while in ejaculated and swim up selected spermatozoa by immunofluorescence. Sertoli cells were positive for both peptides and Leydig cells for ghrelin; germ cells were negative for both hormones. Mild signals for ghrelin and obestatin were observed in rete testis; efferent ductules were the most immune reactive region for both peptides. Epididymis was moderately positive for ghrelin; vas deferens and seminal vesicles showed intense obestatin and moderate ghrelin labelling; prostate tissue expressed obestatin alone. Ejaculated and selected spermatozoa were positive for both peptides in different head and tail regions. This study confirms ghrelin localisation in Leydig and Sertoli cells; the finding that ghrelin is expressed in rete testis, epididymis, vas deferens and seminal vesicles is novel, as well as the localisation of obestatin in almost all tracts of the male reproductive system. This research could offer insights for stimulating other studies, particularly on the role of obestatin in sperm physiology, which is still obscure.
Collapse
Affiliation(s)
- E Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Zigo M, Jonáková V, Šulc M, Maňásková-Postlerová P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol 2013; 61:322-8. [PMID: 23916641 DOI: 10.1016/j.ijbiomac.2013.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
Abstract
Complementary molecules on the surface of both gametes are responsible for the interaction of sperm protein receptors with zona pellucida (ZP) saccharide structures, and many primary sperm receptors for ZP glycoproteins have been disclosed in various mammals. For our study, proteins were obtained from the surface of ejaculated and in vitro capacitated boar sperm. The isolated proteins were characterized by 1D- and 2D-electrophoretic protein profiles, and by glycoprotein staining. Our results show quantitative and qualitative differences in protein and glycoprotein patterns between ejaculated and capacitated sperm. Far-western blotting with ZP glycoproteins identified 17 interactions in the subproteome of the ejaculated sperm and 14 interactions in the subproteome of the capacitated sperm. High-molecular-mass proteins, coincident with binding to ZP, were sequence-identified. Angiotensin-converting enzyme (ACE), polycystic kidney disease receptor and egg jelly receptor (PKDREJ), and acrosin precursor were successfully identified. This is the first time PKDREJ has been identified on the surface of boar spermatozoa.
Collapse
Affiliation(s)
- Michal Zigo
- Laboratory of Reproductive Biology, Institute of Biotechnology, The Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
35
|
Gavella M, Lipovac V. Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa. Asian J Androl 2013; 15:375-81. [PMID: 23503425 PMCID: PMC3739653 DOI: 10.1038/aja.2012.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/11/2012] [Accepted: 11/14/2012] [Indexed: 01/02/2023] Open
Abstract
This article summarizes the available evidence on the efficacy of gangliosides to reduce the degree of reactive oxygen species (ROS)-mediated damage. The antioxidative efficacy of exogenous gangliosides in protecting different cells encouraged us to examine their ability to protect human spermatozoa. Gangliosides are sialic acid-containing glycosphingolipids with strong amphiphilic character due to the bulky headgroup made of several sugar rings with sialic acid residues and the double-tailed hydrophobic lipid moiety. The amphiphilicity of gangliosides allows them to exist as micelles in aqueous media when they are present at a concentration above their critical micellar concentration. The protective effect of ganglioside micelles on spermatozoa is believed to stem from their ability to scavenge free radicals and prevent their damaging effects. In our study, we particularly focused our attention on the protective effect of ganglioside micelles on DNA in human spermatozoa exposed to cryopreservation. The results indicate that ganglioside micelles can modulate the hydrophobic properties of the sperm membrane to increase tolerance to DNA fragmentation, thus protecting the DNA from cryopreservation-induced damage. Further actions of ganglioside micelles, which were documented by biochemical and biophysical studies, included (i) the modulation of superoxide anion generation by increasing the diffusion barrier for membrane events responsible for signal translocation to the interior of the cell; (ii) the inhibition of iron-catalysed hydroxyl radical formation due to the iron chelation potential of gangliosides; and (iii) inhibition of hydrogen peroxide diffusion across the sperm membrane.
Collapse
Affiliation(s)
- Mirjana Gavella
- Reproductive Biochemistry and Cell Metabolism Unit, Institute of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb 10000, Croatia.
| | | |
Collapse
|
36
|
Saez Lancellotti TE, Boarelli PV, Romero AA, Funes AK, Cid-Barria M, Cabrillana ME, Monclus MA, Simón L, Vicenti AE, Fornés MW. Semen quality and sperm function loss by hypercholesterolemic diet was recovered by addition of olive oil to diet in rabbit. PLoS One 2013; 8:e52386. [PMID: 23326331 PMCID: PMC3543415 DOI: 10.1371/journal.pone.0052386] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
Fat increment (0.05% cholesterol, chol) in standard diet promoted a significant increase in serum and sperm membrane chol, which ultimately altered membrane-coupled sperm specific functions: osmotic resistance, acrosomal reaction, and sperm capacitation in White New Zealand rabbits. These changes were also associated with a reduction in motility percentage and appearance of abnormal sperm morphology. The present study was carried out to evaluate the effect of dietary olive oil (OO, 7% v/w) administration to several male hypercholesterolemic rabbits (hypercholesterolemic rabbits, HCR) with altered fertility parameters. These HCR males were achieved by feeding normal rabbits with a high-fat diet (0.05% chol). HCR were associated with a modest non-significant increase in body weight (standard diet, 4.08±0.17 Kg, versus high-fat diet, 4.37±0.24 Kg). Hypercholesterolemic rabbits presented a marked decrease in semen volume, sperm cell count, and percentage of sperm motility, associated with a significant increase in sperm cell abnormalities. Moreover, sperm capacitation measured by the characteristic phosphorylated protein pattern in and induced acrosomal reaction were also altered suggesting sperm dysfunction. However, the administration of OO (for 16 weeks) to rabbits that were fed with 50% of the high-fat diet normalized serum chol. Curiously, OO supply succeeded to attenuate the seminal and sperm alterations observed in HCR group. Administration of OO alone did not cause any significant changes in above mentioned parameters. These data suggest that OO administration to HCR male rabbits recovers the loss of semen quality and sperm functionality.
Collapse
Affiliation(s)
- Tania E. Saez Lancellotti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Paola V. Boarelli
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Aida A. Romero
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Abi K. Funes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Macarena Cid-Barria
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - María E. Cabrillana
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - María A. Monclus
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Layla Simón
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Amanda E. Vicenti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Miguel W. Fornés
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico Tecnológico (CCT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| |
Collapse
|
37
|
Redgrove KA, Anderson AL, McLaughlin EA, O'Bryan MK, Aitken RJ, Nixon B. Investigation of the mechanisms by which the molecular chaperone HSPA2 regulates the expression of sperm surface receptors involved in human sperm-oocyte recognition. Mol Hum Reprod 2012; 19:120-35. [PMID: 23247813 DOI: 10.1093/molehr/gas064] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A unique characteristic of mammalian spermatozoa is that, upon ejaculation, they are unable to recognize and bind to an ovulated oocyte. These functional attributes are only realized following the cells' ascent of the female reproductive tract whereupon they undergo a myriad of biochemical and biophysical changes collectively referred to as 'capacitation'. We have previously shown that this functional transformation is, in part, engineered by the modification of the sperm surface architecture leading to the assembly and/or presentation of multimeric sperm-oocyte receptor complexes. In this study, we have extended our findings through the characterization of one such complex containing arylsulfatase A (ARSA), sperm adhesion molecule 1 (SPAM1) and the molecular chaperone, heat shock 70kDa protein 2 (HSPA2). Through the application of flow cytometry we revealed that this complex undergoes a capacitation-associated translocation to facilitate the repositioning of ARSA to the apical region of the human sperm head, a location compatible with a role in the mediation of sperm-zona pellucida (ZP) interactions. Conversely, SPAM1 appears to reorient away from the sperm surface, possibly reflecting its primary role in cumulus matrix dispersal preceding sperm-ZP recognition. The dramatic relocation of the complex was completely abolished by incubation of capacitating spermatozoa in exogenous cholesterol or broad spectrum protein kinase A (PKA) and tyrosine kinase inhibitors suggesting that it may be driven by alterations in membrane fluidity characteristics and concurrently by the activation of a capacitation-associated signal transduction pathway. Collectively these data afford novel insights into the sub-cellular localization and potential functions of multimeric protein complexes in human spermatozoa.
Collapse
Affiliation(s)
- Kate A Redgrove
- Reproductive Science Group, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Bovine sperm raft membrane associated Glioma Pathogenesis-Related 1-like protein 1 (GliPr1L1) is modified during the epididymal transit and is potentially involved in sperm binding to the zona pellucida. J Cell Physiol 2012; 227:3876-86. [DOI: 10.1002/jcp.24099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Wu Y, Chen X, Wang S, Jiang M, Zheng B, Zhou Q, Bi Y, Zhou Z, Huang X, Sha J. Flotillin-2 is an acrosome-related protein involved in mouse spermiogenesis. J Biomed Res 2012; 26:278-87. [PMID: 23554761 PMCID: PMC3596745 DOI: 10.7555/jbr.26.20120030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022] Open
Abstract
Spermatogenesis is a complex process of terminal differentiation by which mature sperms are generated, and it can be divided into three phases: mitosis, meiosis and spermiogenesis. In a previous study, we established a series of proteomic profiles for spermatogenesis to understand the regulation of male fertility and infertility. Here, we further investigated the localization and the role of flotillin-2 in spermiogenesis. Flotillin-2 expression was investigated in the testis of male CD1 mice at various developmental stages of spermatogenesis by using Western blotting, immunohistochemistry and immunofluorescence. Flotillin-2 was knocked down in vivo in three-week-old male mice using intratesticular injection of small inhibitory RNA (siRNA), and sperm abnormalities were assessed three weeks later. Flotillin-2 was expressed at high levels in male germ cells during spermatogenesis. Flotillin-2 immunoreactivity was observed in pachytene spermatocytes as a strong dot-shaped signal and in round spermatids as a sickle-shaped distribution ahead of the acrosome. Immunofluorescence confirmed flotillin-2 was localized in front of the acrosome in round spermatids, indicating that flotillin-2 was localized to the Golgi apparatus. Knockdown of flotillin-2in vivo led to a significant increase in head sperm abnormalities isolated from the cauda epididymis, compared with control siRNA-injected testes. This study indicates that flotillin-2 is a novel Golgi-related protein involved in sperm acrosome biogenesis.
Collapse
Affiliation(s)
- Yibo Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dou J, Chen L, Hu Y, Miao L. Cholesterol and the biosynthesis of glycosphingolipids are required for sperm activation in Caenorhabditis elegans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:934-42. [DOI: 10.1016/j.bbalip.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
41
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
42
|
Moretti E, Terzuoli G, Mazzi L, Iacoponi F, Collodel G. Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Syst Biol Reprod Med 2011; 58:129-35. [DOI: 10.3109/19396368.2011.644385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Leahy T, Gadella BM. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction 2011; 142:759-78. [DOI: 10.1530/rep-11-0310] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spermatozoa interact with their immediate environment and this contact remodels the sperm surface in preparation for fertilisation. These fundamental membrane changes will be critically covered in this review with special emphasis on the very specific surface destabilisation event, capacitation. This process involves very subtle and intricate modifications of the sperm membrane including removal of suppression (decapacitation) factors and changes in the lateral organisation of the proteins and lipids of the sperm surface. Processing of sperm for assisted reproduction (storage, sex-sorting, etc.) subjects spermatozoa to numerous stressors, and it is possible that this processing overrides such delicate processes resulting in sperm instability and cell damage. To improve sperm quality, novel mechanisms must be used to stabilise the sperm surface during handling. In this review, different types of membrane stress are considered, as well as novel surface manipulation methods to improve sperm stability.
Collapse
|
44
|
Zhu L, Inaba K. Lipid rafts function in Ca2+ signaling responsible for activation of sperm motility and chemotaxis in the ascidian Ciona intestinalis. Mol Reprod Dev 2011; 78:920-9. [PMID: 21887722 DOI: 10.1002/mrd.21382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 08/06/2011] [Indexed: 11/12/2022]
Abstract
Lipid rafts are specialized membrane microdomains that function as signaling platforms across plasma membranes of many animal and plant cells. Although there are several studies implicating the role of lipid rafts in capacitation of mammalian sperm, the function of these structures in sperm motility activation and chemotaxis remains unknown. In the ascidian Ciona intestinalis, egg-derived sperm activating- and attracting-factor (SAAF) induces both activation of sperm motility and sperm chemotaxis to the egg. Here we found that a lipid raft disrupter, methyl-β-cyclodextrin (MCD), inhibited both SAAF-induced sperm motility activation and chemotaxis. MCD inhibited both SAAF-promoted synthesis of intracellular cyclic AMP and sperm motility induced by ionophore-mediated Ca(2+) entry, but not that induced by valinomycin-mediated hyperpolarization. Ca(2+)-imaging revealed that lipid raft disruption inhibited Ca(2+) influx upon activation of sperm motility. The Ca(2+)-activated adenylyl cyclase was clearly inhibited by MCD in isolated lipid rafts. The results suggest that sperm lipid rafts function in signaling upstream of cAMP synthesis, most likely in SAAF-induced Ca(2+) influx, and are required for Ca(2+)-dependent pathways underlying activation and chemotaxis in Ciona sperm.
Collapse
Affiliation(s)
- Lihong Zhu
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
45
|
Leahy T, Gadella BM. Capacitation and Capacitation-like Sperm Surface Changes Induced by Handling Boar Semen. Reprod Domest Anim 2011; 46 Suppl 2:7-13. [DOI: 10.1111/j.1439-0531.2011.01799.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Nixon B, Mitchell LA, Anderson AL, Mclaughlin EA, O'bryan MK, Aitken RJ. Proteomic and functional analysis of human sperm detergent resistant membranes. J Cell Physiol 2011; 226:2651-65. [DOI: 10.1002/jcp.22615] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Hasan AKMM, Fukami Y, Sato KI. Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 2011; 78:814-30. [PMID: 21688335 DOI: 10.1002/mrd.21336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/15/2011] [Indexed: 12/19/2022]
Abstract
Fertilization is the fundamental system of biological reproduction in many organisms, including animals, plants, and algae. A growing body of knowledge has emerged to explain how fertilization and activation of development are accomplished. Studies on the molecular mechanisms of fertilization are in progress for a wide variety of multicellular organisms. In this review, we summarize recent findings and debates about the long-standing questions concerning fertilization: how egg and sperm become competent for their interaction with each other, how the binding and fusion of these gamete cells are made possible, and how the fertilized eggs initiate development to a newborn. We will focus on the structure and function of the membrane microdomains (MDs) of egg and sperm that may serve as a platform or signaling center for the aforementioned cellular functions. In particular, we provide evidence that MDs of eggs from the African clawed frog, Xenopus laevis, play a pivotal role in receiving extracellular signals from fertilizing sperm and then transmitting them to the egg cytoplasm, where the tyrosine kinase Src is present and responsible for the subsequent signaling events collectively called egg activation. The presence of a new signaling axis involving uroplakin III, an MD-associated transmembrane protein, and Src in this system will be highlighted and discussed.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | |
Collapse
|
48
|
Ayo JO, Obidi JA, Rekwot PI. Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern Guinea savannah zone of Nigeria: a review. ISRN VETERINARY SCIENCE 2011; 2011:838606. [PMID: 23738109 PMCID: PMC3658707 DOI: 10.5402/2011/838606] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/21/2011] [Indexed: 11/23/2022]
Abstract
The paper examines heat stress and its adverse effects as a hindrance to profitable poultry production in the tropics, with emphasis on the Northern Guinea Savannah zone of Nigeria. It elucidates the general negative effects of heat stress on physiological parameters of domestic chickens, and the specific impact of the stress on reproduction in the tropics. The deleterious effects are expressed in poor poultry well-being and reproductive performance. It is concluded that measures aimed at alleviating heat stress in domestic chickens must be adopted in order to enhance reproductive and, consequently, efficiency of modern poultry production in the tropics.
Collapse
Affiliation(s)
- J O Ayo
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria 81001, Nigeria
| | | | | |
Collapse
|
49
|
Zigo M, Jonáková V, Maňásková-Postlerová P. Electrophoretic and zymographic characterization of proteins isolated by various extraction methods from ejaculated and capacitated boar sperms. Electrophoresis 2011; 32:1309-18. [DOI: 10.1002/elps.201000558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/06/2022]
|
50
|
Kawano N, Yoshida K, Miyado K, Yoshida M. Lipid rafts: keys to sperm maturation, fertilization, and early embryogenesis. J Lipids 2011; 2011:264706. [PMID: 21490798 PMCID: PMC3068481 DOI: 10.1155/2011/264706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/17/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
Cell membranes are composed of many different lipids and protein receptors, which are important for regulating intracellular functions and cell signaling. To orchestrate these activities, the cell membrane is compartmentalized into microdomains that are stably or transiently formed. These compartments are called "lipid rafts". In gamete cells that lack gene transcription, distribution of lipids and proteins on these lipid rafts is focused during changes in their structure and functions such as starting flagella movement and membrane fusion. In this paper, we describe the role of lipid rafts in gamete maturation, fertilization, and early embryogenesis.
Collapse
Affiliation(s)
- Natsuko Kawano
- Division of Gamete and Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Kenji Miyado
- Division of Gamete and Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| |
Collapse
|