1
|
Nakagata N, Nakao S, Mikoda N, Yamaga K, Takeo T. Time elapsed between ovulation and insemination determines the quality of fertilized rat oocytes. J Reprod Dev 2024; 70:123-130. [PMID: 38403585 PMCID: PMC11017092 DOI: 10.1262/jrd.2023-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Genetically modified rats are valuable models in human disease research. We recently developed an improved system for rat sperm cryopreservation and in vitro fertilization (IVF) that facilitates the efficient production and preservation of genetically modified rats. In the IVF procedure performed using frozen-thawed rat sperm, the IVF schedule is fixed to ensure timely hormone administration and oocyte collection. To enhance the flexibility of the IVF schedule, possible periods of postovulated rat oocytes with normal fertility and developmental abilities should be determined. Therefore, in this study, we examined the fertilization and developmental ability of incubated oocytes 1-13 h after oocyte collection at 9:00 AM. The fertilization rate decreased 7 h after oocyte collection, and abnormally fertilized oocytes appeared 10 h after oocyte collection. The developmental rate also decreased 7 h after oocyte collection; however, live pups were obtained from oocytes 12 h after oocyte collection. In summary, ovulated rat oocytes exhibited a high developmental ability after IVF for up to 4 h after oocyte collection.
Collapse
Affiliation(s)
- Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuyuki Mikoda
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Kyudo Co., Ltd., Saga 841-0075, Japan
| | - Katsuma Yamaga
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Morita K, Honda A, Asano M. A Simple and Efficient Method for Generating KO Rats Using In Vitro Fertilized Oocytes. Methods Mol Biol 2023; 2637:233-246. [PMID: 36773151 DOI: 10.1007/978-1-0716-3016-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The development of ZFN, TALEN, and CRISPR/Cas9 systems has simplified the process of generating knockout (KO) and knock-in (KI) rats in addition to mice. However, in rats, an efficient genome editing technique that uses in vitro fertilized oocytes has not been established. Recently, we reported the stable generation of offspring from five standard strains of rats by superovulation and in vitro fertilization (IVF). Furthermore, genome-edited rats can be easily generated by electroporation. First, juvenile female rats are administered LHRH (luteinizing hormone-releasing hormone) to synchronize the estrous cycle and then AIS (Automatic Identification System) with PMSG (pregnant mare serum gonadotropin) before hCG (human chorionic gonadotropin) for superovulation. Sperm collected from a sexually mature male rat the following morning is then pre-cultured. Cumulus cell-oocyte complexes (COCs) are collected from female rats under anesthesia, and COCs are induced into a medium containing concentration-adjusted sperm. Thereafter, oocytes with two pronucleus are selected as fertilized oocytes. Next, fertilized oocytes are transferred into a glass chamber containing CRISPR ribonucleoprotein (RNP) complexes formed from gRNA and Cas9 protein. After electroporation, fertilized oocytes are then immediately transferred to culture medium. The next day, embryos are transferred into the oviduct of pseudopregnant female rats. Using the above method, offspring can be obtained 22 days after the day of embryo transfer. In this paper, we outline a method allowing simple and efficient generation of genetically modified rats without the need for technically difficult micromanipulation techniques.
Collapse
Affiliation(s)
- Kohtaro Morita
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Arata Honda
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Jichi Medical University, School of Medicine, Tochigi, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Takeo T, Nakao S, Mikoda N, Yamaga K, Maeda R, Tsuchiyama S, Nakatsukasa E, Nakagata N. Optimized protocols for sperm cryopreservation and in vitro fertilization in the rat. Lab Anim (NY) 2022; 51:256-274. [DOI: 10.1038/s41684-022-01053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
|
4
|
Roldan ERS, Teves ME. Understanding sperm physiology: Proximate and evolutionary explanations of sperm diversity. Mol Cell Endocrinol 2020; 518:110980. [PMID: 32853744 DOI: 10.1016/j.mce.2020.110980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Much can be gained from the comprehensive study of a biological system. Based on what is known as Mayr's proximate-ultimate causation and the subsequent expansion to Tinbergen's four questions, biological traits can be understood by taking into account different approximations that try to explain mechanisms, development, adaptive significance or phylogeny. These, in principle, separate areas, can be integrated crossing boundaries, but bearing in mind that answers to one question would not explain a different query. Studies of sperm biology have, until now, not benefited much from this framework and potential integration. Proximate causes (particularly mechanisms) have been the subject of interest for reproductive biologists, and evolutionary explanations have been the domain of behavioural ecologists with interest in adaptive significance of traits in the context of post-copulatory sexual selection. This review will summarize opportunities for research in the different areas, focusing on sperm preparation for fertilization and suggesting possible integration within and between proximate and evolutionary studies.
Collapse
Affiliation(s)
- Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.
| | - Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Efficient derivation of knock-out and knock-in rats using embryos obtained by in vitro fertilization. Sci Rep 2019; 9:11571. [PMID: 31399630 PMCID: PMC6689013 DOI: 10.1038/s41598-019-47964-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/27/2019] [Indexed: 01/06/2023] Open
Abstract
Rats are effective model animals and have contributed to the development of human medicine and basic research. However, the application of reproductive engineering techniques to rats is not as advanced compared with mice, and genome editing in rats has not been achieved using embryos obtained by in vitro fertilization (IVF). In this study, we conducted superovulation, IVF, and knock out and knock in using IVF rat embryos. We found that superovulation effectively occurred in the synchronized oestrus cycle and with anti-inhibin antiserum treatment in immature rats, including the Brown Norway rat, which is a very difficult rat strain to superovulate. Next, we collected superovulated oocytes under anaesthesia, and offspring derived from IVF embryos were obtained from all of the rat strains that we examined. When the tyrosinase gene was targeted by electroporation in these embryos, both alleles were disrupted with 100% efficiency. Furthermore, we conducted long DNA fragment knock in using adeno-associated virus and found that the knock-in litter was obtained with high efficiency (33.3–47.4%). Thus, in this study, we developed methods to allow the simple and efficient production of model rats.
Collapse
|
6
|
Kim S, Agca C, Agca Y. Changes in rat spermatozoa function after cooling, cryopreservation and centrifugation processes. Cryobiology 2012; 65:215-23. [PMID: 22760031 DOI: 10.1016/j.cryobiol.2012.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing-thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P<0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (P<0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen-thawed spermatozoa. Centrifugation decreased motility and PMI of frozen-thawed spermatozoa (P<0.05). Centrifugation decreased basal ROS of all spermatozoa (P<0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (P<0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
7
|
Petroff BK, Valdez KE, Brown SB, Piasecka J, Albertini DF. The aryl hydrocarbon receptor agonist 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) alters early embryonic development in a rat IVF exposure model. Reprod Toxicol 2011; 32:286-92. [PMID: 21835239 PMCID: PMC3205263 DOI: 10.1016/j.reprotox.2011.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/31/2011] [Accepted: 07/25/2011] [Indexed: 01/01/2023]
Abstract
Aryl hydrocarbon receptor (AHR) ligands, including 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), accelerate reproductive senescence and one proposed target is the early embryo. To discriminate between direct effects on the oocyte and early embryo and those mediated by complex ovarian interactions with TCDD, IVF was carried out in the presence of TCDD (10, 100 nM) and the aryl hydrocarbon antagonist CH-223191 (1 μM) combined factorially. TCDD-induced Cyp1a1 mRNA expression was absent in 2-cell embryos; however morulae exhibit dose-dependent Cyp1a1 expression. TCDD induced accumulation of sperm in the perivitelline space and displacement of blastomere nuclei. At 100 nM TCDD, aberrations in cytokinesis and nuclear positioning were observed 2-cell embryos and morula and these effects were reversed in the presence of CH-223191. Our data suggest that acute exposure to TCDD has direct effects on early development in the rat that permit discrimination of AHR-mediated and AHR-independent mechanisms through which environmental toxicants impair mammalian reproduction.
Collapse
Affiliation(s)
- Brian K Petroff
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
8
|
A protocol for rat in vitro fertilization during conventional laboratory working hours. Transgenic Res 2011; 20:1245-52. [DOI: 10.1007/s11248-011-9492-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
|
9
|
Mural granulosa cell gene expression associated with oocyte developmental competence. J Ovarian Res 2010; 3:6. [PMID: 20205929 PMCID: PMC2845131 DOI: 10.1186/1757-2215-3-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/06/2010] [Indexed: 01/23/2023] Open
Abstract
Background Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte. Methods Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC) of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC). Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array. Results The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox) and nerve growth factor receptor associated protein 1 (Ngfrap1), which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2), which is involved in the regulation of extracellular matrix organization and biogenesis. Conclusions The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and the developmental competence of oocytes. This finding suggests that the most differentially expressed gene, lysyl oxidase, may be a candidate biomarker of oocyte health and useful for the selection of good quality oocytes for assisted reproduction.
Collapse
|
10
|
Kashiwazaki N, Seita Y, Takizawa A, Maedomari N, Ito J, Serikawa T. Techniques for in vitro and in vivo fertilization in the rat. Methods Mol Biol 2010; 597:311-322. [PMID: 20013243 DOI: 10.1007/978-1-60327-389-3_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although in vitro and in vivo fertilization are powerful tools for restoring conserved sperm as well as stocked males in the rat, the techniques have progressively gained importance. However, the techniques are not used extensively for efficient production of rat offspring, because the techniques require a great deal of skill. This chapter describes the protocols for in vitro and in vivo fertilization in the rat. Namely, sperm collection, sperm cryopreservation, pre-incubation of sperm, and insemination (co-culture with sperm and oocytes) for in vitro fertilization and intrauterine insemination for in vivo fertilization with fresh or frozen/thawed spermatozoa are provided.
Collapse
Affiliation(s)
- Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Yoshizawa Y, Kato M, Hirabayashi M, Hochi S. Impaired active demethylation of the paternal genome in pronuclear-stage rat zygotes produced by in vitro fertilization or intracytoplasmic sperm injection. Mol Reprod Dev 2009; 77:69-75. [DOI: 10.1002/mrd.21109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod 2008; 80:503-10. [PMID: 19038860 DOI: 10.1095/biolreprod.108.072918] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In rats, the success of in vitro fertilization (IVF) was reported 40 years ago. Although it has been demonstrated in papers that these IVF oocytes using sperm freshly collected from cauda epididymides can be developed to term via embryo transfer, successful IVF with cryopreserved rat sperm has never been reported to date. Here, we report establishment of a successful IVF system using frozen/thawed rat spermatozoa. Our data showed that intracellular cAMP and free cholesterol levels in frozen/thawed rat sperm were maintained low, suppressing capacitation-associated tyrosine phosphorylation. The treatment of methyl-beta-cyclodextrin improved removal of free cholesterol from the membrane in frozen/thawed sperm but not induction of capacitation-associated tyrosine phosphorylation in the sperm. Treatment with a phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthin (IBMX), dramatically increased cAMP and tyrosine phosphorylation levels in frozen/thawed rat sperm. When the IBMX-treated frozen/thawed sperm were used for IVF, the proportions of pronuclear formation and blastocyst formation were significantly higher than those of frozen/thawed sperm treated without IBMX (P < 0.05). The embryos were developed to term at a high success rate equivalent to the rate obtained with IVF using fresh sperm. Thus, we established for the first time a successful IVF system in rats using cryopreserved spermatozoa.
Collapse
Affiliation(s)
- Yasunari Seita
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | | | | | | |
Collapse
|
13
|
Tesson L, Cozzi J, Ménoret S, Rémy S, Usal C, Fraichard A, Anegon I. Transgenic modifications of the rat genome. Transgenic Res 2006; 14:531-46. [PMID: 16245144 DOI: 10.1007/s11248-005-5077-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
The laboratory rat (R. norvegicus) is a very important experimental animal in several fields of biomedical research. This review describes the various techniques that have been used to generate transgenic rats: classical DNA microinjection and more recently described techniques such as lentiviral vector-mediated DNA transfer into early embryos, sperm-mediated transgenesis, embryo cloning by nuclear transfer and germline mutagenesis. It will also cover techniques associated to transgenesis such as sperm cryopreservation, embryo freezing and determination of zygosity. The availability of several technologies allowing genetic manipulation in the rat coupled to genomic data will allow biomedical research to fully benefit from the rat as an experimental animal.
Collapse
Affiliation(s)
- Laurent Tesson
- Institut de Transplantation et de Recherche en Transplantation (ITERT), F-44093, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Popova E, Bader M, Krivokharchenko A. Strain Differences in Superovulatory Response, Embryo Development and Efficiency of Transgenic Rat Production. Transgenic Res 2005; 14:729-38. [PMID: 16245164 DOI: 10.1007/s11248-005-7218-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
The differences between rat strains in superovulation response, in vitro and in vivo development of preimplantation embryos and overall transgenic efficiency was studied. The protocols for induction of superovulation using single injections of pregnant mare's serum gonadotropin (PMSG) or minipumps with follicle stimulating hormone (FSH) were compared in Lewis (LEW), Wistar-Kyoto (WKY), and stroke-prone spontaneously hypertensive rats (SHRSP) or Sprague-Dawley (SD) and Wistar rats as representative inbred or outbred strains, respectively. The percentage of mated animals with positive superovulatory response was similar in all strains (60.0-100%). The mean number of ova per donor was not dependent on the kind of hormonal treatment used within each rat strain. In general, females from outbred SD and Wistar rats were more responsive to hormonal treatments than animals from inbred rat strains. In addition, SD female rats produced a significantly higher number of embryos per female in response to PMSG-treatment compared to all other strains. Between the inbred strains, SHRSP was the most effective for superovulation. In vitro development of intact zygotes to the blastocyst stage was not different between SD, Wistar and SHRSP rats. In contrast, in vitro development of WKY zygotes was significantly less efficient than in other strains. However, 2-cell stage embryos in vivo produced from SD, SD x Wistar and WKY animals showed no difference in competence to develop to blastocyst stage in vitro. The proportion of offspring developing after oviduct transfer of intact zygotes was similar in all strains (44.0-56.4%) with the exception of WKY rats (35.9%). We also compared the survival rate after injection, ability of manipulated zygotes to develop to term and overall transgenic efficiency in various rat strains. SD and SHRSP zygotes survived after microinjection better than the WKY and Lewis zygotes. No differences were found in the efficiency of transgene integration per newborn in different strains ranging from 5.7 to 16.7%. The results of this study demonstrate that different rat strains have varying responses to superovulation, sensitivity to microinjection, capability to develop in vitro until blastocyst stage or in vivo to term after transfer to foster mothers. Despite these differences all studied strains can be used for efficient transgenic rat production.
Collapse
Affiliation(s)
- Elena Popova
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13092 Berlin-Buch, Germany
| | | | | |
Collapse
|