1
|
Fedorova MV, Voznesensky VI, Sosnova EA, Proskurnina EV. Activity of NAD(P)H-Oxidoreductases in Ovarian Cancer. Biomedicines 2024; 12:1052. [PMID: 38791014 PMCID: PMC11117946 DOI: 10.3390/biomedicines12051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Reactive oxygen species (ROS) play an important and controversial role in carcinogenesis. Microsomal redox chains containing NADH- and NADPH-dependent oxidoreductases are among the main sites of intracellular ROS synthesis, but their role in the oxidative balance has not been fully studied. Here, we studied the activity of cytochrome b5 reductase (CYB5R) and cytochrome P450 reductase (CYPOR) in ovarian cancer tissues and cells isolated from peritoneal fluid, along with the antioxidant capacity of peritoneal fluid. We used the developed a chemiluminescence assay based on stimulation with NADH and NADPH, which reflects the activity of CYB5R and CYPOR, respectively. The activity of CYB5R and CYPOR was significantly higher in moderately and poorly differentiated ovarian adenocarcinomas compared with well-differentiated adenocarcinomas and cystadenomas. For the chemotherapy-resistant tumors, the activity of tissue CYB5R and CYPOR was lower compared to the non-resistant tumors. In the peritoneal fluid, the antioxidant capacity significantly increased in this series, benign tumors < well-differentiated < moderately and poorly differentiated adenocarcinomas, so the antioxidant excess was observed for moderately and poorly differentiated adenocarcinomas. The antioxidant capacity of peritoneal fluid and the activity of CYB5R and CYPOR of cells isolated from peritoneal fluid were characterized by a direct moderate correlation for moderately and poorly differentiated adenocarcinomas. These results indicate the significant role of NAD(P)H oxidoreductases and the antioxidant potential of peritoneal fluid in cancer biochemistry. The parameters studied are useful for diagnostics and prognostics. The developed assay can be used to analyze CYB5R and CYPOR activity in other tissues and cells.
Collapse
Affiliation(s)
- Maria V. Fedorova
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 111123 Moscow, Russia;
| | | | - Elena A. Sosnova
- Department of Obstetrics and Gynecology No. 1, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119048 Moscow, Russia;
| | | |
Collapse
|
2
|
Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int J Mol Sci 2023; 24:ijms24043379. [PMID: 36834790 PMCID: PMC9960060 DOI: 10.3390/ijms24043379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
For decades now, sperm cryopreservation has been a pillar of assisted reproduction in animals as well as humans. Nevertheless, the success of cryopreservation varies across species, seasons, and latitudes and even within the same individual. With the dawn of progressive analytical techniques in the field of genomics, proteomics, and metabolomics, new options for a more accurate semen quality assessment have become available. This review summarizes currently available information on specific molecular characteristics of spermatozoa that could predict their cryotolerance before the freezing process. Understanding the changes in sperm biology as a result of their exposure to low temperatures may contribute to the development and implementation of appropriate measures to assure high post-thaw sperm quality. Furthermore, an early prediction of cryotolerance or cryosensitivity may lead to the establishment of customized protocols interconnecting adequate sperm processing procedures, freezing techniques, and cryosupplements that are most feasible for the individual needs of the ejaculate.
Collapse
|
3
|
AITKEN RJ, GIBB Z. Sperm oxidative stress in the context of male infertility: current evidence, links with genetic and epigenetic factors and future clinical needs. Minerva Endocrinol (Torino) 2022; 47:38-57. [DOI: 10.23736/s2724-6507.21.03630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Proskurnina EV, Fedorova MV, Sozarukova MM, Mitichkin AE, Panteleev IV, Svetlov EV. Microsomal reductase activity in patients with thyroid neoplasms. Endocrine 2021; 72:735-743. [PMID: 33011882 DOI: 10.1007/s12020-020-02513-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cytochrome b5-reductase (CYB5R) and cytochrome P450 reductase (CYPOR) are important for cell metabolism; however, their role in thyroid hormonogenesis and carcinogenesis has not been elucidated yet. The activity of CYB5R correlates with the metastasis in breast cancer, but there are no similar studies for CYB5R and CYPOR for thyroid tumors. The aim of this study was to elucidate the activity of CYB5R and CYPOR changes in benign euthyroid and hyperthyroid neoplasms and in papillary thyroid cancer for their potential application as biomarkers for diagnosis and prognosis prediction of thyroid cancer. METHODS Thirty-six patients with thyroid diseases participated in the study. The control euthyroid nodular goiter group included ten patients; the thyrotoxic nodular or diffuse goiter group included 14 patients; the papillary thyroid cancer T1-2N0-1M0 (PTC) group included 12 patients. The activity of CYB5R and CYPOR was assessed with lucigenin-enhanced chemiluminescence stimulated by NADH and NADPH, respectively. RESULTS Compared to the control euthyroid nodular goiter group, activity of CYB5R and CYPOR increased ~5 and 10 times, respectively, in toxic goiter, and 15 and 30 times, respectively, in half of cases of PTC. The change in activity of CYPOR was more pronounced compared to CYB5R. Within the PTC group, the subgroups with low and high activities of microsomal reductases were identified. Microsomal reductases in follicular adenoma was 2-4-fold less active compared to the euthyroid nodular goiter and the low-activity PTC group. CONCLUSIONS Activity of tissue microsomal reductases varies in thyroid pathology and can be considered as a promising biomarker for differential diagnostics of benign and malignant thyroid tumors.
Collapse
Affiliation(s)
| | - Maria V Fedorova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Madina M Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Igor V Panteleev
- Inozemtsev City Clinical Hospital of Moscow Department of Health, Moscow, Russia
| | - Evgeny V Svetlov
- Inozemtsev City Clinical Hospital of Moscow Department of Health, Moscow, Russia
| |
Collapse
|
5
|
Silva Balbin Villaverde AI, Ogle RA, Lewis P, Carbone V, Velkov T, Netherton JK, Baker MA. Sialylation of Asparagine 612 Inhibits Aconitase Activity during Mouse Sperm Capacitation; a Possible Mechanism for the Switch from Oxidative Phosphorylation to Glycolysis. Mol Cell Proteomics 2020; 19:1860-1875. [PMID: 32839225 DOI: 10.1074/mcp.ra120.002109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Indexed: 11/06/2022] Open
Abstract
After ejaculation, mammalian spermatozoa must undergo a process known as capacitation in order to successfully fertilize the oocyte. Several post-translational modifications occur during capacitation, including sialylation, which despite being limited to a few proteins, seems to be essential for proper sperm-oocyte interaction. Regardless of its importance, to date, no single study has ever identified nor quantified which glycoproteins bearing terminal sialic acid (Sia) are altered during capacitation. Here we characterize sialylation during mouse sperm capacitation. Using tandem MS coupled with liquid chromatography (LC-MS/MS), we found 142 nonreductant peptides, with 9 of them showing potential modifications on their sialylated oligosaccharides during capacitation. As such, N-linked sialoglycopeptides from C4b-binding protein, endothelial lipase (EL), serine proteases 39 and 52, testis-expressed protein 101 and zonadhesin were reduced following capacitation. In contrast, mitochondrial aconitate hydratase (aconitase; ACO2), a TCA cycle enzyme, was the only protein to show an increase in Sia content during capacitation. Interestingly, although the loss of Sia within EL (N62) was accompanied by a reduction in its phospholipase A1 activity, a decrease in the activity of ACO2 (i.e. stereospecific isomerization of citrate to isocitrate) occurred when sialylation increased (N612). The latter was confirmed by N612D recombinant protein tagged with both His and GFP. The replacement of Sia for the negatively charged Aspartic acid in the N612D mutant caused complete loss of aconitase activity compared with the WT. Computer modeling show that N612 sits atop the catalytic site of ACO2. The introduction of Sia causes a large conformational change in the alpha helix, essentially, distorting the active site, leading to complete loss of function. These findings suggest that the switch from oxidative phosphorylation, over to glycolysis that occurs during capacitation may come about through sialylation of ACO2.
Collapse
Affiliation(s)
- Ana Izabel Silva Balbin Villaverde
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Peter Lewis
- Centre for Chemical Biology and Clinical Pharmacology, Department of Biology, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Vincenzo Carbone
- AgResearchGrasslands Research Centre, Palmerston North, New Zealand
| | - Tony Velkov
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, NSW, Australia
| | - Jacob K Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
6
|
V. Mikheev I, M. Sozarukova M, V. Proskurnina E, E. Kareev I, A. Proskurnin M. Non-Functionalized Fullerenes and Endofullerenes in Aqueous Dispersions as Superoxide Scavengers. Molecules 2020; 25:molecules25112506. [PMID: 32481516 PMCID: PMC7321068 DOI: 10.3390/molecules25112506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Endohedral metal fullerene are potential nanopharmaceuticals for MRI; thus, it is important to study their effect on reactive oxygen species (ROS) homeostasis. Superoxide anion radical is one of the key ROS. The reactivity of aqueous dispersions of pristine (non-functionalized) fullerenes and Gd@C82 endofullerene have been studied with respect to superoxide in the xanthine/xanthine oxidase chemiluminescence system. It was found that C60 and C70 in aqueous dispersions react with superoxide as scavengers by a similar mechanism; differences in activity are determined by cluster parameters, primarily the concentration of available, acting molecules at the surface. Gd endofullerene is characterized by a significantly (one-and-a-half to two orders of magnitude) higher reactivity with respect to C60 and C70 and is likely to exhibit nanozyme (SOD-mimic) properties, which can be accounted for by the nonuniform distribution of electron density of the fullerene cage due to the presence of the endohedral atom; however, in the cell model, Gd@C82 showed the lowest activity compared to C60 and C70, which can be accounted for by its higher affinity for the lipid phase.
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | | | - Ivan E. Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia;
| | - Mikhail A. Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-939-4648
| |
Collapse
|
7
|
Netherton JK, Hetherington L, Ogle RA, Gavgani MM, Velkov T, Villaverde AIB, Tanphaichitr N, Baker MA. Mass Spectrometry Reveals New Insights into the Production of Superoxide Anions and 4-Hydroxynonenal Adducted Proteins in Human Sperm. Proteomics 2020; 20:e1900205. [PMID: 31846556 DOI: 10.1002/pmic.201900205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Indexed: 01/09/2023]
Abstract
The free-radical theory of male infertility suggests that reactive oxygen species produced by the spermatozoa themselves are a leading cause of sperm dysfunction, including loss of sperm motility. However, the field is overshadowed on several fronts, primarily because: i) the probes used to measure reactive oxygen species (ROS) are imprecise; and ii) many reports suggesting that oxygen radicals are detrimental to sperm function add an exogenous source of ROS. Herein, a more reliable approach to measure superoxide anion production by human spermatozoa based on MS analysis is used. Furthermore, the formation of the lipid-peroxidation product 4-hydroxynonenal (4-HNE) during in vitro incubation using proteomics is also investigated. The data demonstrate that neither superoxide anion nor other free radicals that cause 4-HNE production are related to the loss of sperm motility during incubation. Interestingly, it appears that many of the 4-HNE adducted proteins, found within spermatozoa, originate from the prostate. A quantitative SWATH analysis demonstrate that these proteins transiently bind to sperm and are then shed during in vitro incubation. These proteomics-based findings propose a revised understanding of oxidative stress within the male reproductive tract.
Collapse
Affiliation(s)
| | - Louise Hetherington
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | - Rachel Anne Ogle
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | | | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| | | | - Nuch Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Obstetrics and Gynaecology and, Department of Biochemistry, Microbiology, Immunology, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Mark Andrew Baker
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
8
|
From Past to Present: The Link Between Reactive Oxygen Species in Sperm and Male Infertility. Antioxidants (Basel) 2019; 8:antiox8120616. [PMID: 31817049 PMCID: PMC6943565 DOI: 10.3390/antiox8120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) can be generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. In sperm cells, while ROS may function as signalling molecules for some physiological pathways, the oxidative stress arising from the ubiquitous production of these compounds has been implicated in the pathogenesis of male infertility. In vitro studies have undoubtedly shown that spermatozoa are indeed susceptible to free radicals. However, many reports correlating ROS with sperm function impairment are based on an oxidative stress scenario created in vitro, lacking a more concrete observation of the real capacity of sperm in the production of ROS. Furthermore, sample contamination by leukocytes and the drawbacks of many dyes and techniques used to measure ROS also greatly impact the reliability of most studies in this field. Therefore, in addition to a careful scrutiny of the data already available, many aspects of the relationship between ROS and sperm physiopathology are still in need of further controlled and solid experiments before any definitive conclusions are drawn.
Collapse
|
9
|
Gosálvez J, Fernández JL, Esteves SC. Response: Nitroblue tetrazolium (NBT) assay. Reprod Biomed Online 2018; 36:92-93. [DOI: 10.1016/j.rbmo.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
10
|
Aitken RJ. Nitroblue tetrazolium (NBT) assay. Reprod Biomed Online 2018; 36:90-91. [DOI: 10.1016/j.rbmo.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
11
|
Villaverde AISB, Hetherington L, Baker MA. Quantitative Glycopeptide Changes in Rat Sperm During Epididymal Transit1. Biol Reprod 2016; 94:91. [DOI: 10.1095/biolreprod.115.134114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/04/2016] [Indexed: 12/29/2022] Open
|
12
|
Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 2016; 28:1-10. [DOI: 10.1071/rd15325] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.
Collapse
|
13
|
The spermatozoa structure peculiarities of the subgenus Sumeriomys (Rodentia, Arvicolinae, Microtus). RUSSIAN JOURNAL OF THERIOLOGY 2015. [DOI: 10.15298/rusjtheriol.14.1.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Baker MA, Weinberg A, Hetherington L, Villaverde AISB, Velkov T. Analysis of protein thiol changes occurring during rat sperm epididymal maturation. Biol Reprod 2014; 92:11. [PMID: 25411390 DOI: 10.1095/biolreprod.114.123679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The maturation of spermatozoa throughout the epididymal environment occurs in the complete absence of nuclear protein biosynthesis. As such, these cells rely heavily on posttranslational modifications of existing proteins in order to obtain the potential for fertilization. We have used an OxiCat approach to label both free and oxidized cysteine residues in rat sperm proteins and compared the ratio of reduced:oxidized peptides as these cells undergo epididymal transit. In all, 20 peptides, corresponding to 15 proteins, underwent a change in their redox status. Included in this list were A-kinase anchoring protein 4 and fatty acid-binding protein 9. Both of these proteins undergo intradisulfide bonding, leading to reduced solubility and, in the case of the latter, is likely to cause a loss of protein function. Interestingly, two glycolytic enzymes, hexokinase-1 and lactate dehydrogenase, also display increased cysteine oxidation during epididymal transit, which may be involved in the regulation of the enzyme activities.
Collapse
Affiliation(s)
- Mark A Baker
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | - Anita Weinberg
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | | | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Yuan J. Protein degradation and phosphorylation after freeze thawing result in spermatozoon dysfunction. Proteomics 2014; 14:155-6. [PMID: 24382660 DOI: 10.1002/pmic.201300564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/09/2022]
Abstract
Cryopreservation is widely used in many assisted conception units. Semen cryopreservation is the only proven method that offers many couples the chance to have children. However, spermatozoa are exposed to physical and chemical stressors during freezing and thawing that result in adverse changes in membrane lipid composition, sperm motility, viability, and acrosome status. Wang et al. (Proteomics 2014, 14, 298-310) evaluate the protein content of freeze-thawed sperm samples relative to that of fresh sperm samples from the same normozoospermic donors. Four proteins are verified via Western blot and immunofluorescent staining, which are putatively involved in spermatozoon dysfunction. These marked differences demonstrated by Wang et al. suggest that dysfunctional spermatozoon after cryopreservation may be due to protein degradation and protein phosphorylation.
Collapse
Affiliation(s)
- Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| |
Collapse
|
16
|
Wang S, Wang W, Xu Y, Tang M, Fang J, Sun H, Sun Y, Gu M, Liu Z, Zhang Z, Lin F, Wu T, Song N, Wang Z, Zhang W, Yin C. Proteomic characteristics of human sperm cryopreservation. Proteomics 2014; 14:298-310. [PMID: 24259508 DOI: 10.1002/pmic.201300225] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/16/2013] [Accepted: 11/07/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Shangqian Wang
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Wei Wang
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Yang Xu
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Min Tang
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Jianzheng Fang
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Hongyong Sun
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Yangyang Sun
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Meijuan Gu
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Zhili Liu
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Zhaoxia Zhang
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Faxi Lin
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Ting Wu
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Ninghong Song
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Wei Zhang
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Changjun Yin
- State Key Laboratory of Reproductive Medicine; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
- Human Sperm Bank; Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
17
|
Nikiforova AB, Fadeev RS, Kruglov AG. Rapid fluorescent visualization of multiple NAD(P)H oxidoreductases in homogenate, permeabilized cells, and tissue slices. Anal Biochem 2013; 440:189-96. [PMID: 23747529 DOI: 10.1016/j.ab.2013.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/27/2022]
Abstract
Intracellular NAD(P)H oxidoreductases are a class of diverse enzymes that are the key players in a number of vital processes. The method we present and validate here is based on the ability of many NAD(P)H oxidoreductases to reduce the superoxide probe lucigenin, which is structurally similar to flavins, to its highly fluorescent water-insoluble derivative dimethylbiacridene. Two modifications of the method are proposed: (i) an express method for tissue homogenate and permeabilized cells in suspensions and (ii) a standard procedure for cells in culture and acute thin tissue slices. The method allows one to assess, visualize, and localize, using fluorescent markers of cellular compartments, multiple NADH and NADPH oxidoreductase activities. The application of selective inhibitors (e.g., VAS2870, a NOX2 inhibitor; plumbagin, a NOX4 inhibitor) allows one to distinguish and compare specific NAD(P)H oxidoreductase activities in cells and tissues and to attribute them to known enzymes. The method is simple, rapid, and flexible. It can be easily adapted to a variety of tasks. It will be useful for investigations of the role of various NAD(P)H oxidoreductases in a number of physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Anna B Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
18
|
Aitken RJ, Smith TB, Lord T, Kuczera L, Koppers AJ, Naumovski N, Connaughton H, Baker MA, De Iuliis GN. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology 2013; 1:192-205. [PMID: 23316012 DOI: 10.1111/j.2047-2927.2012.00056.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/26/2022]
Abstract
Oxidative stress is known to have a major impact on human sperm function and, as a result, there is a need to develop sensitive methods for measuring reactive oxygen species (ROS) generation by these cells. A variety of techniques have been developed for this purpose including chemiluminescence (luminol and lucigenin), flow cytometry (MitoSOX Red, dihydroethidium, 4,5-diaminofluorescein diacetate and 2',7'-dichlorodihydrofluorescein diacetate) and spectrophotometry (nitroblue tetrazolium). The relative sensitivity of these assays and their comparative ability to detect ROS generated in different subcellular compartments of human spermatozoa, have not previously been investigated. To address this issue, we have compared the performance of these assays when ROS generation was triggered with a variety of reagents including 2-hydroxyestradiol, menadione, 4-hydroxynonenal and arachidonic acid. The results revealed that menadione predominantly induced release of ROS into the extracellular space where these metabolites could be readily detected by luminol-peroxidase and, to a lesser extent, 2',7'-dichlorodihydrofluorescein. However, such sensitivity to extracellular ROS meant that these assays were particularly vulnerable to interference by leucocytes. The remaining reagents predominantly elicited ROS generation by the sperm mitochondria and could be optimally detected by MitoSOX Red and DHE. Examination of spontaneous ROS generation by defective human spermatozoa revealed that MitoSOX Red was the most effective indicator of oxidative stress, thereby emphasizing the general importance of mitochondrial dysregulation in the aetiology of defective sperm function.
Collapse
Affiliation(s)
- R J Aitken
- Discipline of Biological Sciences and Priority Research Centre in Reproductive Science, Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
20
|
Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ, Tyurin VA, Tyurina YY, Fink B, Manole MD, Puccio AM, Okonkwo DO, Cheng JP, Alexander H, Clark RSB, Kochanek PM, Wipf P, Kagan VE, Bayır H. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 2012; 15:1407-1413. [PMID: 22922784 DOI: 10.1016/j.freeradbiomed.2014.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 04/15/2014] [Accepted: 07/25/2012] [Indexed: 12/14/2022]
Abstract
The brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin, which, because of its polyunsaturation, can readily undergo oxygenation. Using global lipidomics analysis in experimental traumatic brain injury (TBI), we found that TBI was accompanied by oxidative consumption of polyunsaturated cardiolipin and the accumulation of more than 150 new oxygenated molecular species of cardiolipin. RNAi-based manipulations of cardiolipin synthase and cardiolipin levels conferred resistance to mechanical stretch, an in vitro model of traumatic neuronal injury, in primary rat cortical neurons. By applying a brain-permeable mitochondria-targeted electron scavenger, we prevented cardiolipin oxidation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that cardiolipin oxygenation generates neuronal death signals and that prevention of it by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery.
Collapse
Affiliation(s)
- Jing Ji
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, Dolman S, Condina MR, Aitken RJ. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res 2012; 11:5252-64. [PMID: 22954305 DOI: 10.1021/pr300468m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spermatozoa are functionally inert when they emerge from the testes. Functional competence is conferred upon these cells during a post-testicular phase of sperm maturation in the epididymis. Remarkably, this functional transformation of epididymal spermatozoa occurs in the absence of nuclear gene transcription or protein translation. To understand the cellular mechanisms underpinning epididymal maturation, we have performed a label-free, MS-based, comparative quantification of peptides from caput, corpus and caudal epididymal spermatozoa. In total, 68 phosphopeptide changes could be detected during epididymal maturation corresponding to the identification of 22 modified proteins. Included in this list are the sodium-bicarbonate cotransporter, the sperm specific serine kinase 1, AKAP4 and protein kinase A regulatory subunit. Furthermore, four phosphopeptide changes came from Izumo1, the sperm-egg fusion protein, in the cytoplasmic segment of the protein. 2D-PAGE confirmed that Izumo1 is post-translationally modified during epididymal transit. Interestingly, phosphorylation on Izumo1 was detected on residue S339 in the caput and corpus but not caudal cells. Furthermore, Izumo1 exhibited four phosphorylated residues when spermatozoa reached the cauda, which were absent from caput cells. A model is advanced suggesting that these phospho-regulations are likely to act as a scaffold for the association of adaptor proteins with Izumo1 as these cells prepare for fertilization.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 2012; 58:211-7. [DOI: 10.3109/19396368.2011.639844] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Del Principe D, Avigliano L, Savini I, Catani MV. Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 2011; 14:2289-318. [PMID: 20812784 DOI: 10.1089/ars.2010.3247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.
Collapse
Affiliation(s)
- Domenico Del Principe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
24
|
Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 2011; 14:367-81. [PMID: 20522002 DOI: 10.1089/ars.2010.3186] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defective sperm function is the largest single defined cause of human infertility and one of the major reasons we are witnessing an exponential increase in the uptake of assisted conception therapy in the developed world. A major characteristic of defective human spermatozoa is the presence of large amounts of DNA damage, which is, in turn, associated with reduced fertility, increased rates of miscarriage, and an enhanced risk of disease in the offspring. This DNA damage is largely oxidative and is closely associated with defects in spermiogenesis. To explain the origins of this DNA damage, we postulate that spermiogenesis is disrupted by oxidative stress, leading to the creation of defective gametes with poorly remodeled chromatin that are particularly susceptible to free radical attack. To compound the problem, these defective cells have a tendency to undergo an unusual truncated form of apoptosis associated with high amounts of superoxide generation by the sperm mitochondria. This leads to significant oxidative DNA damage that eventually culminates in the DNA fragmentation we see in infertile patients. In light of the significance of oxidative stress in the etiology of defective sperm function, a variety of antioxidant therapies are now being assessed for their therapeutic potential.
Collapse
Affiliation(s)
- Robert J Aitken
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | | |
Collapse
|
25
|
Baker MA, Smith ND, Hetherington L, Pelzing M, Condina MR, Aitken RJ. Use of Titanium Dioxide To Find Phosphopeptide and Total Protein Changes During Epididymal Sperm Maturation. J Proteome Res 2011; 10:1004-17. [DOI: 10.1021/pr1007224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | | | - Matthias Pelzing
- Bruker Biosciences, PTY LTD, 28 Albert St, Preston, VIC 3072, Australia
| | - Mark R. Condina
- Bruker Biosciences, PTY LTD, 28 Albert St, Preston, VIC 3072, Australia
| | | |
Collapse
|
26
|
Mirzaei SA, Yazdi MT, Sepehrizadeh Z. Secretory expression and purification of a soluble NADH cytochrome b5 reductase enzyme from Mucor racemosus in Pichia pastoris based on codon usage adaptation. Biotechnol Lett 2010; 32:1705-11. [DOI: 10.1007/s10529-010-0348-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022]
|
27
|
Baker MA, Smith ND, Hetherington L, Taubman K, Graham ME, Robinson PJ, Aitken RJ. Label-Free Quantitation of Phosphopeptide Changes During Rat Sperm Capacitation. J Proteome Res 2010; 9:718-29. [DOI: 10.1021/pr900513d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mark A. Baker
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Nathan D. Smith
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Louise Hetherington
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Kristy Taubman
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Mark E. Graham
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Phillip J. Robinson
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - R. John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
28
|
Pourova J, Kottova M, Voprsalova M, Pour M. Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf) 2010; 198:15-35. [PMID: 19732041 DOI: 10.1111/j.1748-1716.2009.02039.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract Reactive oxygen species (ROS) and reactive nitrogen species have generally been considered as being highly reactive and cytotoxic molecules. Besides their noxious effects, ROS participate in physiological processes in a carefully regulated manner. By way of example, microbicidal ROS are produced in professional phagocytes, ROS function as short-lived messengers having a role in signal transduction and, among other processes, participate in the synthesis of the iodothyronine hormones, reproduction, apoptosis and necrosis. Because of their ability to mediate a crosstalk between key molecules, their role might be dual (at least in some cases). The levels of ROS increase from a certain age, being associated with various diseases typical of senescence. The aim of this review is to summarize the recent findings on the physiological role of ROS. Other issues addressed are an increase in ROS levels during ageing, and the possibility of the physiological nature of this process.
Collapse
Affiliation(s)
- J Pourova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
29
|
|
30
|
Baker MA, Hetherington L, Reeves GM, Aitken RJ. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 2008; 8:1720-30. [PMID: 18340633 DOI: 10.1002/pmic.200701020] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteomic profiling of the mouse spermatozoon has generated a unique and valuable inventory of candidates that can be mined for potential contraceptive targets and to further our understanding of the PTMs that regulate the functionality of this highly specialized cell. Here we report the identification of 858 proteins derived from mouse spermatozoa, 23 of which demonstrated testis only expression. The list contained many proteins that are known constituents of murine spermatozoa including Izumo, Spaca 1, 3, and 5, Spam 1, Zonadhesin, Spesp1, Smcp, Spata 6, 18, and 19, Zp3r, Zpbp 1 and 2, Spa17, Spag 6, 16, and 17, CatSper4, Acr, Cylc2, Odf1 and 2, Acrbp, and Acrv1. Certain protein families were highly represented in the proteome. For example, of the 42 gene products classified as proteases, 26 belonged to the 26S-proteasome. Of the many chaperones identified in this proteome, eight proteins with a TCP-1 domain were found, as were seven Rab guanosine triphosphatases. Finally, our list yielded three putative seven-transmembrane proteins, two of which have no known tissue distribution, an extragenomic progesterone receptor and three unique testis-specific kinases all of which may have some potential in the future regulation of male fertility.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW, Australia.
| | | | | | | |
Collapse
|
31
|
Abstract
Reactive oxygen species have been implicated in gametogenesis and embryo development in animals. As peroxiredoxins are now recognized as important protective antioxidant enzymes as well as modulators of hydrogen peroxide-mediated signaling, we addressed here the putative role of this novel family of peroxidases in gamete maturation and during embryogenesis in mammals and insects.
Collapse
Affiliation(s)
- Isabelle Donnay
- Veterinary Unit, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | | |
Collapse
|
32
|
Leiser SF, Salmon AB, Miller RA. Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-lived pituitary dwarf mice. Mech Ageing Dev 2006; 127:821-9. [PMID: 16979221 DOI: 10.1016/j.mad.2006.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/06/2006] [Accepted: 08/09/2006] [Indexed: 11/16/2022]
Abstract
Fibroblast cell lines derived from the skin of young adult mice of the long-lived Snell dwarf mutant mouse stock have been shown to be resistant to the cytotoxic effects of multiple agents, including hydrogen peroxide, cadmium, heat, ultraviolet light, and the carcinogen methyl methanesulfonate. Snell dwarf fibroblasts are here reported to differ from control cell lines in two other respects: they are relatively resistant to the metabolic inhibition induced by low glucose concentrations, and also resistant to the effects of the mitochondrial poison rotenone, a blocker of Complex I of the electron transport chain. Furthermore, analysis of cell lines derived from a group of genetically heterogeneous mice established that cell lines resistant to peroxide-induced cytotoxicity were also relatively resistant to death induced by paraquat, cadmium, and ultraviolet light. Resistance to the metabolic effects of low glucose medium was associated with resistance to peroxide and cadmium in cells from heterogeneous mice and Snell dwarf mice, though unexpectedly not associated with resistance to the lethal effects of paraquat or UV light. Further analysis of the basis for metabolic abnormalities in these cell lines may provide insights into the cause of stress resistance in dwarf-derived cultures and to the longevity and disease-resistance of these long-lived mutant mice.
Collapse
Affiliation(s)
- Scott F Leiser
- Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200, USA
| | | | | |
Collapse
|
33
|
Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ. Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc Natl Acad Sci U S A 2006; 103:8965-70. [PMID: 16757556 PMCID: PMC1482549 DOI: 10.1073/pnas.0603327103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen peroxide (H(2)O(2)) is the major reactive oxygen species (ROS) produced in sperm. High concentrations of H(2)O(2) in sperm induce nuclear DNA fragmentation and lipid peroxidation and result in cell death. The respiratory chain of the mitochondrion is one of the most productive ROS generating systems in sperm, and thus the destruction of ROS in mitochondria is critical for the cell. It was recently reported that H(2)O(2) generated by the respiratory chain of the mitochondrion can be efficiently destroyed by the cytochrome c-mediated electron-leak pathway where the electron of ferrocytochrome c migrates directly to H(2)O(2) instead of to cytochrome c oxidase. In our studies, we found that mouse testis-specific cytochrome c (T-Cc) can catalyze the reduction of H(2)O(2) three times faster than its counterpart in somatic cells (S-Cc) and that the T-Cc heme has the greater resistance to being degraded by H(2)O(2). Together, these findings strongly imply that T-Cc can protect sperm from the damages caused by H(2)O(2). Moreover, the apoptotic activity of T-Cc is three to five times greater than that of S-Cc in a well established apoptosis measurement system using Xenopus egg extract. The dramatically stronger apoptotic activity of T-Cc might be important for the suicide of male germ cells, considered a physiological mechanism that regulates the number of sperm produced and eliminates those with damaged DNA. Thus, it is very likely that T-Cc has evolved to guarantee the biological integrity of sperm produced in mammalian testis.
Collapse
Affiliation(s)
- Zhe Liu
- *Institute of Biomedical Informatics, School of Medicine, and
- MOE Laboratory of Protein Science and Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Hao Lin
- *Institute of Biomedical Informatics, School of Medicine, and
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China; and
| | - Sheng Ye
- MOE Laboratory of Protein Science and Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Qin-ying Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China; and
| | - Zhaohui Meng
- MOE Laboratory of Protein Science and Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Chuan-mao Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China; and
| | - Yongjing Xia
- *Institute of Biomedical Informatics, School of Medicine, and
| | - Emanuel Margoliash
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
- To whom correspondence may be addressed. E-mail:
, , or
| | - Zihe Rao
- MOE Laboratory of Protein Science and Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- To whom correspondence may be addressed. E-mail:
, , or
| | - Xiang-jun Liu
- *Institute of Biomedical Informatics, School of Medicine, and
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
34
|
Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 2006; 368:53-76. [PMID: 16483560 DOI: 10.1016/j.cca.2005.12.039] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 12/24/2005] [Accepted: 12/30/2005] [Indexed: 11/24/2022]
Abstract
The detection and quantitation of reactive oxygen species (ROS) receives a great deal of interest because of their importance in a wide range of physiological and pathogenic events. Probe-assisted spectroscopy (electron spin resonance, spectrophotometry, fluorescence and luminescence) is the main tool for this application. This review discusses the properties of spectroscopic probes most commonly used for ROS detection and highlights their limitations in cellular systems. These include poor stability of some probes and/or products that may be subjected to cellular metabolism and lack of specificity in their reactions with oxidants or reductants. Additional problems often arise from undesired reactions of the probes and from their non-homogeneous distribution in the studied system, production of ROS by the probes themselves, perturbation of the systems under investigation by the probes, and artifacts due to the presence of ROS in the reaction medium. The limits imposed by these difficulties on the precise evaluation of the amounts and rates of formation of ROS are discussed critically.
Collapse
Affiliation(s)
- Grzegorz Bartosz
- Department of Molecular Biophysics, University of Lodz and Department of Biochemistry and Cell Biology, University of Rzeszow, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
35
|
Abstract
Oxidative damage is one threat spermatozoa have to face during epididymal maturation and storage. However, it is clear that reactive oxygen species (ROS) are also central for sperm physiology in processes such as sperm maturation and capacitation. It is therefore essential that there exists around sperm cells a fine balance between ROS production and recycling. To do so, sperm cells and epididymal epithelial cells rely on common enzymatic ROS scavengers such as superoxide dismutase (SOD), glutathione peroxidases (GPX) and catalase (CAT) as well as more specific types such as indoleamine dioxygenase (IDO). Among the catalytic triad (SOD/GPX/CAT), the glutathione peroxidase protein family occupies a peculiar position, since several GPX have been found to be present on and around epididymal transiting sperm cells. Here, we will review our present knowledge regarding GPX expression, presence and putative role(s) within the epididymis and on spermatozoa. Taking into account our recent findings regarding the epididymal expression of indoleamine dioxygenase in mouse we will also discuss how we think this superoxide anion recycling enzyme completes the complex ROS generation/recycling balance in this organ.
Collapse
Affiliation(s)
- Joël R Drevet
- Université Blaise Pascal, CNRS UMR 6547 GEEM, 24 Avenue des Landais, 63177 Aubière, France.
| |
Collapse
|
36
|
Baker MA, Aitken RJ. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol 2005; 3:67. [PMID: 16313680 PMCID: PMC1315356 DOI: 10.1186/1477-7827-3-67] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/29/2005] [Indexed: 11/10/2022] Open
Abstract
Human spermatozoa generate low levels of reactive oxygen species in order to stimulate key events, such as tyrosine phosphorylation, associated with sperm capacitation. However, if the generation of these potentially pernicious oxygen metabolites becomes elevated for any reason, spermatozoa possess a limited capacity to protect themselves from oxidative stress. As a consequence, exposure of human spermatozoa to intrinsically- or extrinsically- generated reactive oxygen intermediates can result in a state of oxidative stress characterized by peroxidative damage to the sperm plasma membrane and DNA damage to the mitochondrial and nuclear genomes. Oxidative stress in the male germ line is associated with poor fertilization rates, impaired embryonic development, high levels of abortion and increased morbidity in the offspring, including childhood cancer. In this review, we consider the possible origins of oxidative damage to human spermatozoa and reflect on the important contribution such stress might make to the origins of genetic disease in our species.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|