1
|
Savy V, Alberio V, Vans Landschoot G, Moro LN, Olea FD, Rodríguez-Álvarez L, Salamone DF. Effect of Embryo Aggregation on In Vitro Development of Adipose-Derived Mesenchymal Stem Cell-Derived Bovine Clones. Cell Reprogram 2021; 23:277-289. [PMID: 34648384 DOI: 10.1089/cell.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine. These are the use of less-differentiated donor cells to facilitate nuclear reprogramming and the embryo aggregation (EA) strategy that is thought to compensate for aberrant epigenome reprogramming. We carefully assessed the optimal time of EA by using in vitro-fertilized (IVF) embryos and evaluated whether the use of adipose-derived mesenchymal stem cells (ASCs) as donor for SCNT together with EA improves the blastocyst rates and quality. Based on our results, we determined that the EA improves the preimplantation embryo development per well of IVF and SCNT embryos. We also demonstrated that day 0 (D0) is the optimal aggregation time that leads to a single blastocyst with uniform distribution of the original blastomeres. This was confirmed in bovine IVF embryos and then, the optimal condition was translated to SCNT embryos. Notably, the relative expression of the trophectoderm (TE) marker KRT18 was significantly different between aggregated and nonaggregated ASC-derived embryos. In the bovine, no effect of the donor cell is observed on the developmental rate, or the embryo quality. Therefore, no synergistic effect of the use of both strategies is observed. Our results suggest that EA at D0 is a simple and accessible strategy that improves the blastocyst rate per well in bovine SCNT and IVF embryos and influence the expression of a TE-related marker. The aggregation of two ASC-derived embryos seems to positively affect the embryo quality, which may improve the postimplantation development.
Collapse
Affiliation(s)
- Virginia Savy
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Virgilia Alberio
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldina Vans Landschoot
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Fernanda Daniela Olea
- Laboratorio de Medicina Regenerativa Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Favaloro, Buenos Aires, Argentina
| | - Lleretny Rodríguez-Álvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Koike T, Wakai T, Jincho Y, Sakashita A, Kobayashi H, Mizutani E, Wakayama S, Miura F, Ito T, Kono T. DNA Methylation Errors in Cloned Mouse Sperm by Germ Line Barrier Evasion. Biol Reprod 2016; 94:128. [PMID: 27103445 DOI: 10.1095/biolreprod.116.138677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/08/2016] [Indexed: 11/01/2022] Open
Abstract
The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier.
Collapse
Affiliation(s)
- Tasuku Koike
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takuya Wakai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuko Jincho
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiko Sakashita
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Eiji Mizutani
- Department of Biotechnology, University of Yamanashi, Yamanashi, Japan
| | - Sayaka Wakayama
- Department of Biotechnology, University of Yamanashi, Yamanashi, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
3
|
Ogawa H, Watanabe H, Fukuda A, Kono T. Deficiency of genomic reprogramming in trophoblast stem cells following nuclear transfer. Cell Reprogram 2015; 17:115-23. [PMID: 25826724 DOI: 10.1089/cell.2014.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To examine the genomic reprogrammability of trophoblast stem (TS) cells using a nuclear transfer technique, we produced TS cloned embryos using five TS cell lines from three strains of mice (ICR, B6D2F1, and B6CBF1) as donors and observed developmental ability during preimplantation development. The developmental rates of the TS cloned embryos that developed to the two-cell, four- to eight-cell, morula, and blastocyst stages were 58-83%, 0-38.6%, 0-21.3%, and 0-15.9%, respectively, indicating that more than 50% of TS cloned embryos arrested at the two-cell stage. These TS cloned two-cell embryos were expressed low level of Dappa3 (also known as PGC7/Stella), indicating that zygotic gene activation (ZGA) was disrupted in these embryos. However, a small portion of the TS cloned embryos (0-15.9%) reached the blastocyst stage. In these TS cloned blastocysts, the numbers of trophectoderm (TE) and inner cell mass (ICM) cells were 31.9 ± 4.6 and 12.1 ± 3.0, respectively, which were not significantly different from those in the fertilized embryos. In addition, the gene expression analysis showed that Oct3/4, and Cdx2, which are ICM- and TE-specific marker genes, respectively, and Dppa3, and Hdac1, which are zygotic gene activation-related genes, were expressed in TS cloned blastocysts at the same levels as in the fertilized blastocysts. These results indicate that although TS cloned embryos are able to differentiate into ICM cells, the genomic reprogrammability of TS cells is very low following nuclear transfer.
Collapse
Affiliation(s)
- Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, 156-8502, Japan
| | | | | | | |
Collapse
|
4
|
The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat Commun 2014; 5:5464. [PMID: 25394724 PMCID: PMC4243243 DOI: 10.1038/ncomms6464] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022] Open
Abstract
Maintaining a single active X-chromosome by repressing Xist is crucial for embryonic development in mice. Although the Xist activator RNF12/RLIM is present as a maternal factor, maternal Xist (Xm-Xist) is repressed during preimplantation phases to establish imprinted X-chromosome inactivation (XCI). Here we show, using a highly reproducible chromatin immunoprecipitation method that facilitates chromatin analysis of preimplantation embryos, that H3K9me3 is enriched at the Xist promoter region, preventing Xm-Xist activation by RNF12. The high levels of H3K9me3 at the Xist promoter region are lost in embryonic stem (ES) cells, and ES-cloned embryos show RNF12-dependent Xist expression. Moreover, lack of Xm-XCI in the trophectoderm, rather than loss of paternally expressed imprinted genes, is the primary cause of embryonic lethality in 70–80% of parthenogenotes immediately after implantation. This study reveals that H3K9me3 is involved in the imprinting that silences Xm-Xist. Our findings highlight the role of maternal-specific H3K9me3 modification in embryo development. During mouse preimplantation phases, a repressive imprint is imposed on the maternal allele of Xist, which encodes a large non-coding RNA required for X-chromosome inactivation. Here the authors show that trimethylation of histone H3 at lysine 9 on Xist promoter chromatin is responsible for the maternally determined Xist repression.
Collapse
|
5
|
LONG CHARLESR, WESTHUSIN MARKE, GOLDING MICHAELC. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 2014; 81:183-93. [PMID: 24167064 PMCID: PMC3953569 DOI: 10.1002/mrd.22271] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/20/2013] [Indexed: 12/11/2022]
Abstract
Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.
Collapse
Affiliation(s)
- CHARLES R. LONG
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MARK E. WESTHUSIN
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MICHAEL C. GOLDING
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
6
|
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110329. [PMID: 23166393 DOI: 10.1098/rstb.2011.0329] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
7
|
Abstract
The nuclear transfer (NT) technique in the mouse has enabled us to generate cloned mice and to establish NT embryonic stem (ntES) cells. Direct nuclear injection into mouse oocytes with a piezo impact drive unit can aid in the bypass of several steps of the original cell fusion procedure. It is important to note that only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification as well as generating live animals from single cells. Thus, these techniques could also be applied to the preservation of genetic material from any mouse strain instead of preserving embryos or gametes. Moreover, with this technique, we can use not only living cells but also the nuclei of dead cells from frozen mouse carcasses for NT. This chapter describes our most recent protocols of NT into the mouse oocyte for cloning mice and for the establishment of ntES cells from cloned embryos.
Collapse
Affiliation(s)
- Eiji Mizutani
- Center for Developmental Biology, RIKEN Kobe institute, Kobe, Japan,
| | | | | |
Collapse
|
8
|
Sugimura S, Kobayashi S, Hashiyada Y, Ohtake M, Kaneda M, Yamanouchi T, Matsuda H, Aikawa Y, Watanabe S, Nagai T, Kobayashi E, Konishi K, Imai K. Follicular growth-stimulated cows provide favorable oocytes for producing cloned embryos. Cell Reprogram 2011; 14:29-37. [PMID: 22204594 DOI: 10.1089/cell.2011.0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the influence of recipient oocytes on in vitro development, oxygen consumption, and gene expression in the resulting cloned bovine embryos. Oocytes derived from slaughterhouse ovaries and ovum pickup (OPU)-derived oocytes were used as recipient cytoplasts for the production of cloned embryos. A series of OPU sessions was conducted on Holstein cows without follicular growth treatment (FGT). In the same cows, we then performed dominant follicle ablation and subsequently administered follicle-stimulating hormone and prostaglandin F(2α) with controlled internal drug release device before a second series of OPU. Cumulus cells collected from single Holstein cows were used as donor cells. After measurement of oxygen consumption at the blastocyst stage with modified scanning electrochemical microscopy, analysis of 10 genes (CDX2, IFN-tau, PLAC8, OCT4, SOX2, NANOG, ATP5A1, GLUT1, AKR1B1, and IGF2R) was performed with real-time RT-PCR. Rates of fusion, cleavage, and blastocyst formation were not different among the treatment groups. Levels of oxygen consumption in cloned blastocysts derived from slaughterhouse ovaries or OPU without FGT were significantly lower than in blastocysts derived from artificial insemination (AI). However, oxygen consumption was increased in cloned blastocysts derived from OPU with FGT, depending on the individual oocyte donor. Furthermore, gene expression of IFN-tau and OCT4 in cloned blastocysts derived from OPU with FGT was similar to that in AI-derived blastocysts, whereas expression of those genes in cloned blastocysts derived from slaughterhouse ovaries or OPU without FGT was significantly different from that in AI-derived blastocysts. Thus, recipient oocytes collected by OPU in combination with manipulation of follicular growth in donor cows are suitable for producing cloned embryos.
Collapse
|
9
|
Fukuda A, Cao F, Morita S, Yamada K, Jincho Y, Tane S, Sotomaru Y, Kono T. Identification of inappropriately reprogrammed genes by large-scale transcriptome analysis of individual cloned mouse blastocysts. PLoS One 2010; 5:e11274. [PMID: 20614022 PMCID: PMC2894852 DOI: 10.1371/journal.pone.0011274] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/02/2010] [Indexed: 01/11/2023] Open
Abstract
Although cloned embryos generated by somatic/embryonic stem cell nuclear transfer (SECNT) certainly give rise to viable individuals, they can often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. In an effort to gain further insights into reprogramming and the properties of SECNT embryos, we performed a large-scale gene expression profiling of 87 single blastocysts using GeneChip microarrays. Sertoli cells, cumulus cells, and embryonic stem cells were used as donor cells. The gene expression profiles of 87 blastocysts were subjected to microarray analysis. Using principal component analysis and hierarchical clustering, the gene expression profiles were clearly classified into 3 clusters corresponding to the type of donor cell. The results revealed that each type of SECNT embryo had a unique gene expression profile that was strictly dependent upon the type of donor cells, although there was considerable variation among the individual profiles within each group. This suggests that the reprogramming process is distinct for embryos cloned from different types of donor cells. Furthermore, on the basis of the results of comparison analysis, we identified 35 genes that were inappropriately reprogrammed in most of the SECNT embryos; our findings demonstrated that some of these genes, such as Asz1, Xlr3a and App, were appropriately reprogrammed only in the embryos with a transcriptional profile that was the closest to that of the controls. Our findings provide a framework to further understand the reprogramming in SECNT embryos.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Feng Cao
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinnosuke Morita
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaori Yamada
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuko Jincho
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shouji Tane
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yusuke Sotomaru
- Natural Science Centre for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465:175-81. [PMID: 20418860 PMCID: PMC3987905 DOI: 10.1038/nature09017] [Citation(s) in RCA: 605] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 03/17/2010] [Indexed: 11/08/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have been generated by enforced expression of defined sets of transcription factors in somatic cells. It remains controversial whether iPSCs are molecularly and functionally equivalent to blastocyst-derived embryonic stem (ES) cells. By comparing genetically identical mouse ES cells and iPSCs, we show here that their overall messenger RNA and microRNA expression patterns are indistinguishable with the exception of a few transcripts encoded within the imprinted Dlk1-Dio3 gene cluster on chromosome 12qF1, which were aberrantly silenced in most of the iPSC clones. Consistent with a developmental role of the Dlk1-Dio3 gene cluster, these iPSC clones contributed poorly to chimaeras and failed to support the development of entirely iPSC-derived animals ('all-iPSC mice'). In contrast, iPSC clones with normal expression of the Dlk1-Dio3 cluster contributed to high-grade chimaeras and generated viable all-iPSC mice. Notably, treatment of an iPSC clone that had silenced Dlk1-Dio3 with a histone deacetylase inhibitor reactivated the locus and rescued its ability to support full-term development of all-iPSC mice. Thus, the expression state of a single imprinted gene cluster seems to distinguish most murine iPSCs from ES cells and allows for the prospective identification of iPSC clones that have the full development potential of ES cells.
Collapse
Affiliation(s)
- Matthias Stadtfeld
- Massachusetts General Hospital Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 42 Church Street, Cambridge, MA 02138, USA
| | - Effie Apostolou
- Massachusetts General Hospital Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 42 Church Street, Cambridge, MA 02138, USA
| | - Hidenori Akutsu
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsushi Fukuda
- Department of BioScience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Patricia Follett
- Massachusetts General Hospital Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
| | | | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Toshi Shioda
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 42 Church Street, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Early alteration of the self-renewal/differentiation threshold in trophoblast stem cells derived from mouse embryos after nuclear transfer. Dev Biol 2009; 334:325-34. [DOI: 10.1016/j.ydbio.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 02/04/2023]
|
12
|
Xing X, Magnani L, Lee K, Wang C, Cabot RA, Machaty Z. Gene expression and development of early pig embryos produced by serial nuclear transfer. Mol Reprod Dev 2009; 76:555-63. [PMID: 18951379 DOI: 10.1002/mrd.20974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During nuclear transfer, reprogramming makes the donor nucleus capable of directing development of the reconstructed embryo. In most cases reprogramming is incomplete, which leads to abnormal expression of early embryonic genes and subsequently, to reduced developmental potential. In the present study, we monitored the expression of Oct4, Nanog, and Sox2 in cloned porcine embryos and evaluated whether serial nuclear transfer, the transfer of nuclei of cloned embryos into enucleated oocytes, has the potential to provide a more complete reprogramming of the donor genome. The data suggested that Nanog and Sox2 expression is properly reactivated after nuclear transfer, but the relative abundance of Oct4 transcripts is abnormally low in cloned porcine blastocysts compared to control embryos produced by in vitro fertilization. When the nuclei of 8- to 16-cell stage cloned embryos were introduced into enucleated oocytes to expose the chromosomes repeatedly to the ooplasmic factors, the resulting embryos showed poor developmental potential: a significantly lower percentage of embryos developed to the 4-cell (12.0% vs. 31.8%), 8-cell (3.1% vs. 15.0%) and blastocyst (0% vs. 8.7%) stages compared to those produced following a single round of nuclear transfer (P < 0.05). The additional time for reprogramming also did not improve gene expression. By the late 4-cell stage, Oct4 and Sox2 expression levels were low in serial nuclear transfer embryos compared to those in embryos generated by in vitro fertilization or nuclear transfer. Overall, both developmental and gene expression data indicated that reprogramming of the donor nucleus could not be improved by serial nuclear transfer in the pig.
Collapse
Affiliation(s)
- Xiaojun Xing
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | |
Collapse
|
13
|
Uhm SJ, Gupta MK, Das ZC, Kim JH, Park C, Kim T, Lee HT. Effect of transgene introduction and recloning on efficiency of porcine transgenic cloned embryo production in vitro. Reprod Domest Anim 2009; 44:106-115. [PMID: 19019068 DOI: 10.1111/j.1439-0531.2007.01005.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retrovirus-mediated exogenous gene transfection of somatic cells is an efficient method to produce transgenic embryos by somatic cell nuclear transfer (SCNT). This study evaluated whether efficiency of transgenic embryos production, by SCNT using fibroblast cells transfected by retrovirus vector, is influenced by the introduced transgene and whether recloning could further improve its efficiency. Transgenic cloned embryos were produced by SCNT of porcine foetal fibroblast cells transfected by either LNbeta-Z or LNbeta-enhanced green fluorescent protein (EGFP) retrovirus vector and evaluated for their developmental ability in vitro. Blastomeres from four-cell stage porcine embryos, produced by SCNT of foetal fibroblast cells transfected with LNbeta-EGFP retroviral vector, were subsequently recloned into enucleated metaphase II oocytes and evaluated for changes in chromatin configuration, in vitro embryo development and gene expression. Analysis of results showed that cleavage and blastocyst rates of porcine SCNT embryos, using LacZ (53.6 +/- 6.4%; 12.0 +/- 5.7%) or EGFP (57.5 +/- 6.3%; 10.1 +/- 4.1%) transfected fibroblasts, did not differ (p > 0.05) from those of non-transfected controls (60.9 +/- 8.2%; 12.3 +/- 4.0%). Recloning of blastomeres did not further improve the in vitro development rate. Interestingly, the nuclei of blastomere underwent slower remodelling process than somatic cell nuclei. Both cloned and recloned embryos showed 100% transgene expression and there were no evidence of mosaicism. In conclusion, our data shows that the efficiency of transgenic cloned embryos production by SCNT of somatic cells transfected with replication-defective retrovirus vector is not influenced by the transgene introduction into donor cells and recloning of four-cell stage blastomere could not further improve its efficiency.
Collapse
Affiliation(s)
- S J Uhm
- Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Oback B. Cloning from stem cells: different lineages, different species, same story. Reprod Fertil Dev 2009; 21:83-94. [DOI: 10.1071/rd08212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions (‘reprogramming ability’) and the ability of the nuclear donor cell to be reprogrammed (‘reprogrammability’). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.
Collapse
|
15
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
16
|
Wakisaka N, Inoue K, Ogonuki N, Miki H, Sekita Y, Hanaki K, Akatsuka A, Kaneko-Ishino T, Ishino F, Ogura A. Ultrastructure of placental hyperplasia in mice: comparison of placental phenotypes with three different etiologies. Placenta 2008; 29:753-9. [PMID: 18602690 DOI: 10.1016/j.placenta.2008.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 11/28/2022]
Abstract
Hyperplastic placentas have been reported in several experimental mouse models, including animals produced by somatic cell nuclear transfer, by inter(sub)species hybridization, and by somatic cytoplasm introduction to oocytes followed by intracytoplasmic sperm injection. Of great interest are the gross and histological features common to these placental phenotypes--despite their quite different etiologies--such as the enlargement of the spongiotrophoblast layers. To find morphological clues to the pathways leading to these similar placental phenotypes, we analyzed the ultrastructure of the three different types of hyperplastic placenta. Most cells affected were of trophoblast origin and their subcellular ultrastructural lesions were common to the three groups, e.g., a heavy accumulation of cytoplasmic vacuoles in the trophoblastic cells composing the labyrinthine wall and an increased volume of spongiotrophoblastic cells with extraordinarily dilatated rough endoplasmic reticulum. Although the numbers of trophoblastic glycogen cells were greatly increased, they maintained their normal ultrastructural morphology, including a heavy glycogen deposition throughout the cytoplasm. The fetal endothelium and small vessels were nearly intact. Our ultrastructural study suggests that these three types of placental hyperplasias, with different etiologies, may have common pathological pathways, which probably exclusively affect the development of certain cell types of the trophoblastic lineage during mouse placentation.
Collapse
Affiliation(s)
- N Wakisaka
- Bioresouce Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jincho Y, Sotomaru Y, Kawahara M, Ono Y, Ogawa H, Obata Y, Kono T. Identification of genes aberrantly expressed in mouse embryonic stem cell-cloned blastocysts. Biol Reprod 2007; 78:568-76. [PMID: 17978277 DOI: 10.1095/biolreprod.107.064634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During development, cloned embryos often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. The long-term effects resulting from embryo cloning procedures would manifest after birth as early death, obesity, various functional disorders, and so forth. Despite extensive studies, the parameters affecting the developmental features of cloned embryos remain unclear. The present study carried out extensive gene expression analysis to screen a cluster of genes aberrantly expressed in embryonic stem cell-cloned blastocysts. Differential screening of cDNA subtraction libraries revealed 224 differentially expressed genes in the cloned blastocysts: eighty-five were identified by the BLAST search as known genes performing a wide range of functions. To confirm their differential expression, quantitative gene expression analyses were performed by real-time PCR using single blastocysts. The genes Skp1a, Canx, Ctsd, Timd2, and Psmc6 were significantly up-regulated, whereas Aqp3, Ak3l1, Rhot1, Sf3b3, Nid1, mt-Rnr2, mt-Nd1, mt-Cytb, and mt-Co2 were significantly down-regulated in the majority of embryonic stem cell-cloned embryos. Our results suggest that an extraordinarily high frequency of multiple functional disorders caused by the aberrant expression of various genes in the blastocyst stage is involved in developmental arrest and various other disorders in cloned embryos.
Collapse
Affiliation(s)
- Yuko Jincho
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
It has been postulated that mammalian nuclear transfer (NT) cloning efficiency is inversely correlated with donor cell differentiation status. To test this hypothesis, we compared genetically identical and increasingly differentiated donors within the myogenic lineage. Bovine male fetal muscle cells were cultured for 1-6 days in vitro. The proportion of cells displaying the following antigens was quantified by immunofluorescence microscopy: MYOD1, MYF5, PAX7, MYOG, DES, MYH, and 5-Bromo-2-deoxyuridine. Based on the antigen profile of both bulk populations and individually size-selected cells prepared for NT, donors serum-starved for 1, 4, and 5 days were classified as myogenic precursors (MPCs), myotubes (MTs), and muscle-derived fibroblasts (MFs) with purities of 92%, 85%, and 99%, respectively. Expression of the following transcripts was measured by RT-PCR in 1) cells selected for NT, 2) metaphase II oocytes, 3) NT couplets, 4) NT reconstructs, 5) NT two-cell embryos, and 6) NT blastocysts: MYOD1, MYF5, PAX7, MYOG, MYF6, ACTB, and 18S rRNA. Muscle-specific genes were silenced and remained undetectable up to the blastocyst stage, whereas housekeeping genes 18S and ACTB continued to be expressed. Differentiation status affected development to transferable embryos (118 [23%] of 520 vs. 93 [11%] of 873 vs. 66 [38%] of 174 for MPC vs. MT vs. MF, respectively, P < 0.001). However, there were no significant differences in pregnancy rate and development to weaning between the cell types (pregnancy rate: 14 [64%] of 22 vs. 8 [35%] of 23 vs. 10 [45%] of 22, and development: 4 [18%] of 22 vs. 2 [9%] of 23 vs. 3 [14%] of 22 for MPC vs. MT vs. MF, respectively).
Collapse
Affiliation(s)
- A L Green
- Ruakura Research Centre, Reproductive Technologies, AgResearch Ltd., Hamilton, New Zealand
| | | | | |
Collapse
|
19
|
Berg DK, Li C, Asher G, Wells DN, Oback B. Red Deer Cloned from Antler Stem Cells and Their Differentiated Progeny1. Biol Reprod 2007; 77:384-94. [PMID: 17522075 DOI: 10.1095/biolreprod.106.058172] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The significance of donor cell differentiation status for successful cloning by somatic cell nuclear transfer (SCNT) is unclear. Here, we cloned a new species, red deer (Cervus elaphus), from multipotent antler stem cells and their differentiated progeny. Cultured donor cell lines from male antlerogenic periosteum (AP) were left undifferentiated or chemically induced to initiate osteogenesis or adipogenesis. Based on their morphology and marker gene expression profile, donor cells were classified as undifferentiated AP cells, presumptive osteoblasts, or adipocytes. Adipocytes upregulated adipogenic markers procollagen type I alpha 2 (COL1A2), peroxisome proliferator-activated receptor gamma 2 (PPARG), and gylceraldehyde-3-phosphate dehydrogenase (GAPDH), and downregulated antlerogenic transcripts POU-domain class 5 transcription factor (POU5F1) and parathyroid hormone (PTH)-like hormone (PTHLH). Despite differences prior to NT, transcript abundance of donor-specific markers COL1A2, PPARG, GAPDH, and POU5F1 did not differ significantly in cloned blastocysts (P = 0.10, 0.50, 0.61, and 0.16, respectively). However, donor cell and blastocyst expression levels were completely different for most genes analyzed, indicating their successful reprogramming. The type of donor cell used for NT (AP, bone, and fat cells), had no effect on in vitro development to blastocysts (93 [38%] of 248 vs. 32 [44%] of 73 vs. 59 [32%] of 183, respectively). Likewise, development to weaning was not significantly different between the three cell types (2 [4%] of 46 vs. 2 [29%] of 7 vs. 4 [13%] of 31, for AP vs. bone vs. fat, respectively). Microsatellite DNA analysis confirmed that the eight cloned red deer calves were genetically identical to the cells used for NT.
Collapse
Affiliation(s)
- Debra K Berg
- Reproductive Technologies, Ruakura Research Centre, AgResearch Ltd., Hamilton, New Zealand
| | | | | | | | | |
Collapse
|
20
|
Oback B, Wells DN. Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Mol Reprod Dev 2007; 74:646-54. [PMID: 17039535 DOI: 10.1002/mrd.20654] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compared to other assisted reproductive technologies, mammalian nuclear transfer (NT) cloning is inefficient in generating viable offspring. It has been postulated that nuclear reprogramming and cloning efficiency can be increased by choosing less differentiated cell types as nuclear donors. This hypothesis is mainly supported by comparative mouse cloning experiments using early blastomeres, embryonic stem (ES) cells, and terminally differentiated somatic donor cells. We have re-evaluated these comparisons, taking into account different NT procedures, the use of donor cells from different genetic backgrounds, sex, cell cycle stages, and the lack of robust statistical significance when post-blastocyst development is compared. We argue that while the reprogrammability of early blastomeres appears to be much higher than that of somatic cells, it has so far not been conclusively determined whether differentiation status affects cloning efficiency within somatic donor cell lineages.
Collapse
Affiliation(s)
- B Oback
- Reproductive Technologies, AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
21
|
Kuznyetsov V, Kuznyetsova I, Chmura M, Verlinsky Y. Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization. Reprod Biomed Online 2007; 14:504-14. [PMID: 17425836 DOI: 10.1016/s1472-6483(10)60900-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is currently no technique for evaluating the sperm genome before fertilization. However, sperm genome duplication could offer a way forward, whereby one of the sister blastomeres of a 2-cell haploid androgenetic embryo could be analysed. A method was developed for production of human androgenotes by enucleation of oocytes at telophase II (TII) after intracellular sperm injection (ICSI). The results were compared with those obtained via the more usual procedure of oocyte enucleation at metaphase II (MII) prior to ICSI. TII enucleation led to an improvement in the rate of embryo survival, increased the production rate of 1PN-embryos, and also the production of 2- to 8-cell-stage embryos (85.0, 74.9 and 65.8% in TII enucleation, versus 73.8, 48.9 and 33.3% in MII enucleation). Fluorescence in-situ hybridization (FISH) analysis of 30 2- to 5-cell androgenic embryos for two to seven chromosomes revealed the correct chromosome distribution in 76.7% of haploid human androgenotes.
Collapse
Affiliation(s)
- Valeriy Kuznyetsov
- Reproductive Genetic Institute, 2825 North Halsted Street, Chicago, IL 60657, USA
| | | | | | | |
Collapse
|
22
|
Suzuki T, Minami N, Kono T, Imai H. Zygotically activated genes are suppressed in mouse nuclear transferred embryos. CLONING AND STEM CELLS 2007; 8:295-304. [PMID: 17196094 DOI: 10.1089/clo.2006.8.295] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mammalian oocytes have the ability to confer totipotency to terminally differentiated somatic cell nuclei. Viable cloned animals have been produced by somatic cell nuclear transfer (NT) into oocytes in many mammalian species including mouse. However, the success rates of the production were quite low in all species. Many studies have measured differences in gene expression between NT and fertilized embryos in relatively advanced stages of development such as pre- and post-natal stages or the blastocyst stage. In the present study, we compared gene expression patterns using differential display RT-PCR (DDRT-PCR) between the NT and IVF embryos at the 2-cell stage to detect some abnormalities affecting later development of NT embryos. Aberrant gene expression was detected in NT embryos compared with IVF embryos, and MuERV-L and Dnaja2 genes were down-regulated and Inpp5b and Chst12 genes were up-regulated in the NT embryos. Further analysis showed that the expression of zygotically activated genes such as Interferon-gamma, Dub-1, Spz1, DD2106 (unknown gene), and DD2111 (unknown gene) were suppressed in NT embryos, suggesting that the cellular process involved in the nuclear reprogramming of somatic nucleus is not appropriately regulated.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|