1
|
Wang G, Fang K, Shang Y, Zhou X, Shao Q, Li S, Wang P, Chen CD, Zhang L, Wang S. Testis-Specific PDHA2 Is Required for Proper Meiotic Recombination and Chromosome Organisation During Spermatogenesis. Cell Prolif 2025:e70003. [PMID: 39973374 DOI: 10.1111/cpr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Proper segregation of homologous chromosomes during meiosis requires crossovers that are tightly regulated by the chromosome structure. PDHA2 is the testis-specific paralog of PDHA1, a core subunit of pyruvate dehydrogenase. However, its role during spermatogenesis is unclear. We show that PDHA2 knockout results in male infertility in mice, but meiotic DSBs in spermatocytes occur normally and are efficiently repaired. Detailed analysis reveals that mid/late recombination intermediates are moderately reduced, resulting in fewer crossovers and many chromosomes without a crossover. Furthermore, defective chromosome structure is observed, including aberrant histone modifications, defective chromosome ends, precocious release of REC8 from chromosomes and fragmented chromosome axes after pachytene. These defects contribute to the failure of pyruvate conversion to acetyl-CoA, resulting in decreased acetyl-CoA and precursors for metabolites and energy in the absence of PDHA2. These findings reveal the important functions of PDHA2 in ensuring proper crossover formation and in modulating chromosome structure during spermatogenesis.
Collapse
Affiliation(s)
- Guoqiang Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Kailun Fang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Qiqi Shao
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Si Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Ping Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
| |
Collapse
|
2
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Assessing Bovine Male Fertility in a Technological Age. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:297-329. [PMID: 40272592 DOI: 10.1007/978-3-031-70126-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
New and emerging technologies allow for a deeper and more comprehensive understanding of sperm physiology that can be harnessed to improve bull fertility selection. This chapter focuses on (1) the use of conventional and emerging flow cytometry techniques to further enhance functional sperm assessments; (2) new developments in proteomic and metabolomic biomarkers of bull fertility and how they can better inform fertility evaluations; and (3) the use of sperm selection technologies to optimize the fertility outcomes of bulls in artificial insemination service. As our knowledge of sperm physiology continues to expand, technology will allow for a faster translational capacity and continuous development of techniques. The technologies and techniques presented are current tools that can be used to enhance the efficiency, precision and accuracy of bull fertility assessments and better inform herd management.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Ma K, Song J, Li D, Li T, Ma Y. Genetic Diversity and Selection Signal Analysis of Hu Sheep Based on SNP50K BeadChip. Animals (Basel) 2024; 14:2784. [PMID: 39409733 PMCID: PMC11476051 DOI: 10.3390/ani14192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
This research is designed to examine the genetic diversity and kinship among Hu sheep, as well as to discover genes associated with crucial economic traits. A selection of 50 unrelated adult male Hu sheep underwent genotyping with the SNP50K BeadChip. Seven indicators of genetic diversity were assessed based on high-quality SNP data: effective population size (Ne), polymorphic information content (PIC), polymorphic marker ratio (PN), expected heterozygosity (He), observed heterozygosity (Ho), effective number of alleles, and minor allele frequency (MAF). Plink software was employed to compute the IBS genetic distance matrix and detect runs of homozygosity (ROHs), while the G matrix and principal component analysis were performed using GCTA software. Selective sweep analysis was carried out using ROH, Pi, and Tajima's D methodologies. This study identified a total of 64,734 SNPs, of which 56,522 SNPs remained for downstream analysis after quality control. The population displayed relatively high genetic diversity. The 50 Hu sheep were ultimately grouped into 12 distinct families, with families 6, 8, and 10 having the highest numbers of individuals, each consisting of 6 sheep. Furthermore, a total of 294 ROHs were detected, with the majority having lengths between 1 and 5 Mb, and the inbreeding coefficient FROH was 0.01. In addition, 41, 440, and 994 candidate genes were identified by ROH, Pi, and Tajima's D methods, respectively, with 3 genes overlapping (BMPR1B, KCNIP4, and FAM13A). These results offer valuable insights for future Hu sheep breeding, genetic assessment, and population management.
Collapse
Affiliation(s)
| | | | | | | | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (K.M.); (J.S.); (D.L.); (T.L.)
| |
Collapse
|
4
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
5
|
Karanwal S, Pal A, Josan F, Patel A, Chera JS, Yadav S, Gaur V, Verma P, Badrhan S, Chauhan V, Bhakat M, Datta TK, Kumar R. Higher abundance of DLD protein in buffalo bull spermatozoa causes elevated ROS production leading to early sperm capacitation and reduction in fertilizing ability. J Anim Sci Biotechnol 2024; 15:126. [PMID: 39256863 PMCID: PMC11389063 DOI: 10.1186/s40104-024-01085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUD Before fertilization, spermatozoa undergo a crucial maturation step called capacitation, which is a unique event regulates the sperm's ability for successful fertilization. The capacitation process takes place as the spermatozoa pass through the female reproductive tract (FRT). Dihydrolipoamide dehydrogenase (DLD) protein is a post-pyruvate metabolic enzyme, exhibiting reactive oxygen species (ROS) production which causes capacitation. Additionally, other vital functions of DLD in buffalo spermatozoa are hyperactivation and acrosome reaction. DLD produces the optimum amount of ROS required to induce capacitation process in FRT. Depending on physiological or pathophysiological conditions, DLD can either enhance or attenuate the production of reactive oxygen species (ROS). Aim of this study was to investigate whether changes in the production of ROS in sperm cells can impact their ability to fertilize by triggering the capacitation and acrosome reaction. RESULTS In this study, abundance of DLD protein was quantified between high (n = 5) and low fertile bull (n = 5) spermatozoa. It was found that compared to high-fertile (HF) bulls, low-fertile (LF) bulls exhibited significantly (P < 0.05) higher DLD abundances. Herein, we optimised the MICA concentration to inhibit DLD function, spermatozoa were treated with MICA in time (0, 1, 2, 3, 4, and 5 h) and concentrations (1, 2.5, 5, and 10 mmol/L) dependent manner. Maximum DLD inhibition was found to be at 4 h in 10 mmol/L MICA concentration, which was used for further experimentation in HF and LF. Based on DLD inhibition it was seen that LF bull spermatozoa exhibited significantly (P < 0.05) higher ROS production and acrosome reaction in comparison to the HF bull spermatozoa. The kinematic parameters of the spermatozoa such as percent total motility, velocity parameters (VCL, VSL, and VAP) and other parameters (BCF, STR, and LIN) were also decreased in MICA treated spermatozoa in comparison to the control (capacitated) spermatozoa. CONCLUSIONS The present study provides an initial evidence explaining the buffalo bull spermatozoa with higher DLD abundance undergo early capacitation, which subsequently reduces their capacity to fertilize.
Collapse
Affiliation(s)
- Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fanny Josan
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sonam Yadav
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikrant Gaur
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Preeti Verma
- NBGC Laboratory, National Bureau of Animal Genetics Resources, Karnal, Haryana, India
| | - Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-Central Institute of Research On Goat, Makhdoom, Mathura, Uttar Pradesh, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-Central Institute for Research On Buffaloes, Hisar, Haryana, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
6
|
Rosyada ZNA, Pardede BP, Kaiin EM, Gunawan M, Maulana T, Said S, Tumbelaka LITA, Solihin DD, Ulum MF, Purwantara B. A proteomic approach to identifying spermatozoa proteins in Indonesian native Madura bulls. Front Vet Sci 2023; 10:1287676. [PMID: 38111731 PMCID: PMC10725959 DOI: 10.3389/fvets.2023.1287676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Proteins assist sperm mature, transit the female reproductive tract, and recognise sperm oocytes. Indigenous Indonesian bulls, Madura bulls, have not been studied for reproductive proteomics. As local Indonesian beef livestock, Madura cattle assist in achieving food security; hence, their number must be improved. Thus, the identification of molecular proteomics-based bull fertility biomarkers is needed. This study aimed to characterise the sperm fertility function of the superior Madura bull (Bos indicus × Bos Javanicus) spermatozoa proteome. Frozen semen from eight Madura superior bulls (Bos indicus × Bos javanicus) aged 4-8 years was obtained from the artificial insemination centre (AIC) in Singosari and Lembang. Madura superior bulls are those that have passed the bull breeding soundness evaluation. Frozen sperm were thawed and centrifuged at 3000 × g for 30 min. Proteins in sperm were characterised through proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The resulting gene symbols for each protein were then subjected to bioinformatics tools, including UniProt, DAVID, and STRING databases. Regarding sperm fertility, the analysis revealed that 15 proteins were identified in the sperm of Madura bulls. Amongst the identified proteins, the superior Madura bull sperm contained several motilities, energy-related proteins, and chaperone proteins. A substantial portion of characterised proteins are linked to metabolic pathways and the tricarboxylic acid (TCA) cycle, contributing to sperm energy production. In conclusion, the first in-depth proteome identification of sperm related to sperm quality and bull fertility of a unique indigenous Madura breed of Indonesia was performed using the LC-MS/MS proteomic method. These findings may serve as a reference point for further studies related to the functions of bovine sperm and biomarkers of fertility and sperm quality.
Collapse
Affiliation(s)
- Zulfi Nur Amrina Rosyada
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Berlin Pandapotan Pardede
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Muhammad Gunawan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tulus Maulana
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ligaya I. T. A Tumbelaka
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | | | - Mokhamad Fakhrul Ulum
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
7
|
Chhikara N, Tomar AK, Datta SK, Yadav S. Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology 2023; 11:73-85. [PMID: 36057948 DOI: 10.1111/andr.13289] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The cellular and molecular mechanisms of the events that help spermatozoa acquire their fertilizing capability during capacitation and acrosome reaction are not completely understood. OBJECTIVE This study was performed with a postulation that the identification of sperm proteins and their changes during in vitro capacitation and acrosome reaction will unravel unknown molecular aspects of fertilization that impact male fertility. MATERIALS AND METHODS Spermatozoa collected from sequential conditions, that is, separation of ejaculated spermatozoa by Percoll gradient centrifugation, in vitro capacitation, and acrosome reaction were processed for tandem mass spectrometric analysis, followed by protein identification, label-free quantitation, and statistical analysis. RESULTS AND DISCUSSION Collectively, a total of 1088 sperm proteins were identified. In comparison to ejaculated spermatozoa, 44 and 141 proteins were differentially expressed in capacitated and acrosome reacted spermatozoa, respectively. A large number of proteins were found downregulated, including clusterin, pyruvate dehydrogenase E1 component, semenogelin-1 and 2, heat shock protein 90, beta-microseminoprotein, and keratin. It was expected as sperm-membrane-associated proteins are removed during capacitation. There were significant proteomic alterations in asthenozoospermia compared to normozoospermia; however, variation was more noticeable among proteins of acrosome reacted spermatozoa and those released during the acrosome reaction. The processes enriched among downregulated proteins in asthenozoospermia included acrosome assembly, binding of spermatozoa to zona pellucida, nucleosome assembly, flagellated sperm motility, protein folding, oxidative phosphorylation, tricarboxylic acid cycle, chromatin silencing, gluconeogenesis, glycolytic process, and glycolysis. CONCLUSION The dynamic information generated about proteomic alterations in spermatozoa during capacitation and acrosome reaction and their variability in asthenozoospermia will contribute not only to enhancing our understanding of processes that prepare spermatozoa to acquire fertilization capability but also help in deciphering novel factors of male infertility.
Collapse
Affiliation(s)
- Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Amaral A. Energy metabolism in mammalian sperm motility. WIREs Mech Dis 2022; 14:e1569. [DOI: 10.1002/wsbm.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra Amaral
- Department of Developmental Genetics Max Planck Institute for Molecular Genetics Berlin Germany
| |
Collapse
|
9
|
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data. Life (Basel) 2022; 12:life12020280. [PMID: 35207567 PMCID: PMC8875138 DOI: 10.3390/life12020280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases.
Collapse
|
10
|
Alves LQ, Ruivo R, Valente R, Fonseca MM, Machado AM, Plön S, Monteiro N, García-Parraga D, Ruiz-Díaz S, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Castro LFC. A drastic shift in the energetic landscape of toothed whale sperm cells. Curr Biol 2021; 31:3648-3655.e9. [PMID: 34171300 DOI: 10.1016/j.cub.2021.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Mammalian spermatozoa are a notable example of metabolic compartmentalization.1 Energy in the form of ATP production, vital for motility, capacitation, and fertilization, is subcellularly separated in sperm cells. While glycolysis provides a local, rapid, and low-yielding input of ATP along the flagellum fibrous sheath, oxidative phosphorylation (OXPHOS), far more efficient over a longer time frame, is concentrated in the midpiece mitochondria.2 The relative weight of glycolysis and OXPHOS pathways in sperm function is variable among species and sensitive to oxygen and substrate availability.3-5 Besides partitioning energy production, sperm cell energetics display an additional singularity: the occurrence of sperm-specific gene duplicates and alternative spliced variants, with conserved function but structurally bound to the flagellar fibrous sheath.6,7 The wider selective forces driving the compartmentalization and adaptability of this energy system in mammalian species remain largely unknown, much like the impact of ecosystem resource availability (e.g., carbohydrates, fatty acids, and proteins) and dietary adaptations in reproductive physiology traits.8 Here, we investigated the Cetacea, an iconic group of fully aquatic and carnivorous marine mammals, evolutionarily related to extant terrestrial herbivores.9 In this lineage, episodes of profound trait remodeling have been accompanied by clear genomic signatures.10-14 We show that toothed whales exhibit impaired sperm glycolysis, due to gene and exon erosion, and demonstrate that dolphin spermatozoa motility depends on endogenous fatty acid β-oxidation, but not carbohydrates. Such unique energetic rewiring substantiates the observation of large mitochondria in toothed whale spermatozoa and emphasizes the radical physiological reorganization imposed by the transition to a carbohydrate-depleted marine environment.
Collapse
Affiliation(s)
- Luís Q Alves
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Miguel M Fonseca
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - André M Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Stephanie Plön
- Department of Pathology, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Nuno Monteiro
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal; CIBIO - Research Centre in Biodiversity and Genetic Resources, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| | - David García-Parraga
- Veterinary Services, L'Oceanográfic, Ciudad de las Artes y las Ciencias, Junta de Murs i Vals, s/n, 46013 Valencia, Spain
| | - Sara Ruiz-Díaz
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Mistral Fertility Clinics S.L., Clínica Tambre, 28002 Madrid, Spain
| | - Maria J Sánchez-Calabuig
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, 28040 Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
11
|
Huang S, Lu Y, Li S, Zhou T, Wang J, Xia J, Zhang X, Zhou Z. Key proteins of proteome underlying sperm malformation of rats exposed to low fenvalerate doses are highly related to P53. ENVIRONMENTAL TOXICOLOGY 2021; 36:1181-1194. [PMID: 33656234 DOI: 10.1002/tox.23117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Fenvalerate (Fen) is an endocrine disruptor, capable of interfering with the activity of estrogen and androgen. Our objective was to explore the molecular mechanisms of Fen on sperm in vivo. Adult male Sprague-Dawley rats were orally exposed to 0, 0.00625, 0.125, 2.5, 30 mg/kg/day Fen for 8 weeks. Sperm morphology, differential proteomics of sperm and testes, bioinformatic analysis, western blotting (WB), and RT-PCR were used to explore the mechanism of Fen on sperm. Data showed that low Fen doses significantly induced sperm malformations. In sperm proteomics, 47 differentially expressed (DE) proteins were enriched in biological processes (BPs) related to energy metabolism, response to estrogen, spermatogenesis; and enriched in cellular components (CCs) relating to energy-metabolism, sperm fibrous sheath and their outer dense fibers. In testicular proteomics, 56 DE proteins were highly associated with mRNA splicing, energy metabolism; and enriched in CCs relating to vesicles, myelin sheath, microtubules, mitochondria. WB showed that the expression of selected proteins was identical to their tendency in 2D gels. Literature indicates that key DE proteins in proteomic profiles (such as Trap1, Hnrnpa2b1, Hnrnpk, Hspa8, and Gapdh) are involved in P53-related processes or morphogenesis or spermatogenesis. Also, P53 mRNA and protein levels were significantly increased by Fen; bioinformatic re-analysis showed that 88.5% DE proteins and P53 formed a complex interacting network, and the key DE proteins were coenriched with P53-related BPs. Results indicate that key DE proteins of proteome underlying sperm malformations of rats exposed to low Fen doses are highly related to P53.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Suying Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Central Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Wang
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Jiangyan Xia
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xinxin Zhang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Ribeiro JC, Alves MG, Amado F, Ferreira R, Oliveira P. Insights and clinical potential of proteomics in understanding spermatogenesis. Expert Rev Proteomics 2021; 18:13-25. [PMID: 33567922 DOI: 10.1080/14789450.2021.1889373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: With the worldwide decline on male fertility potential, the importance of the insight of the spermatogenic process has been increasing. In recent years, proteomic methodologies have been applied to seminal fluid of infertile men to search for infertility potential biomarkers. However, to understand the spermatogenic event and to search for treatment to spermatogenic impairment, comparative analysis of testicular proteomics is considered a powerful methodology.Areas covered: Herein, we present a critical overview of the studies addressing proteomic alterations in the development of spermatogenesis during puberty, as well as during the different phases of the spermatogenic event. The comparative studies of the proteomic testicular profile of men with and without spermatogenic impairment are also discussed and key proteins and pathways involved highlighted.Expert opinion: The usage of whole human testicular tissue with its heterogeneous cellular composition makes proteome data interpretation particularly challenging. This may be minimized by controlled experiments involving the collection of testicular tissue and sperm from the same individuals, integrated in a clinically characterized cohort of healthy and infertile men. The analysis of specific subcellular proteomes can add more information to the proteomic puzzle, opening new treatment possibilities for infertile/subfertile men.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Yıldırım Y, Ouriachi T, Woehlbier U, Ouahioune W, Balkan M, Malik S, Tolun A. Linked homozygous BMPR1B and PDHA2 variants in a consanguineous family with complex digit malformation and male infertility. Eur J Hum Genet 2018; 26:876-885. [PMID: 29581481 PMCID: PMC5973948 DOI: 10.1038/s41431-018-0121-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/30/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
In affected members of a consanguineous family, a syndrome, which is concurrence of set of medical signs, is often observed and commonly assumed to have arisen from pleiotropy, i.e., the phenomenon of a single gene variant affecting multiple traits. We detected six sibs afflicted with a unique combination of digit malformation that includes brachydactyly, symphalangism and zygodactyly plus infertility in males owing to azoospermia, sperm immotility or necrospermia, which we hypothesised to have arisen from a defect in a single gene. We mapped the disease locus and by exome sequencing identified in patients homozygous missense variants bone morphogenetic protein receptor type IB (BMPR1B) c.640C>T (p.(Arg214Cys)) and alpha-2 pyruvate dehydrogenase (PDHA2) c.679A>G (p.(Met227Val)). Structural protein modelling, protein sequence conservation and in silico analysis indicate that both variants affect protein function. BMPR1B is known to be responsible for autosomal dominant brachydactyly and autosomal recessive acromesomelic chondrodysplasia. Our findings show that also recessive complex digit malformation can be caused by BMPR1B variant and not all biallelic BMPR1B variants cause acromesomelic dysplasia. PDHA2 is a novel candidate gene for male infertility; the protein product is a mitochondrial enzyme with highest expression in ejaculated sperm. Our findings are a unique example of two linked variants, ~ 711 Kb apart, in different genes that together manifest as a novel syndrome. They demonstrate that exome sequencing and not candidate gene approach should be employed in disease gene hunt, defining new diseases and genetic testing, to rule out the coincidental presence of two variants contributing together to the phenotype, which may be discerned as a novel disease.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Toufik Ouriachi
- Department of Pathology, University Hospital of Blida, Faculty of Medicine of Blida-1, Blida, Algeria
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Wahiba Ouahioune
- Department of Pathology, University Hospital of Blida, Faculty of Medicine of Blida-1, Blida, Algeria
| | - Mahmut Balkan
- Department of Medical Biology and Genetics, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Sajid Malik
- Human Genetics Program, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
14
|
Chen X, Xu W, Miao M, Zhu Z, Dai J, Chen Z, Fang P, Wu J, Nie D, Wang L, Wang Z, Qiao Z, Shi H. Alteration of sperm protein profile induced by cigarette smoking. Acta Biochim Biophys Sin (Shanghai) 2015; 47:504-15. [PMID: 26063603 DOI: 10.1093/abbs/gmv045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Cigarette smoking is associated with lower semen quality, but how cigarette smoking changes the semen quality remains unclear. The aim of this study was to screen the differentially expressed proteins in the sperm of mice with daily exposure to cigarette smoke. The 2D gel electrophoresis (2DE) and mass spectrometry (MS) analyses results showed that the mouse sperm protein profile was altered by cigarette smoking. And 22 of the most abundant proteins that correspond to differentially expressed spots in 2DE gels of the sperm samples were identified. These proteins were classified into different groups based on their functions, such as energy metabolism, reproduction, and structural molecules. Furthermore, the 2DE and MS results of five proteins (Aldoa, ATP5a1, Gpx4, Cs, and Spatc1) were validated by western blot analysis and reverse transcriptase-polymerase chain reaction. Results showed that except Spatc1 the other four proteins showed statistically significant different protein levels between the smoking group and the control group (P < 0.05). The expressions of three genes (Aldoa, Gpx4, and Spatc1) were significantly different (P < 0.05) at transcription level between the smoking group and the control group. In addition, five proteins (Aldoa, ATP5a1, Spatc1, Cs, and Gpx4) in human sperm samples from 30 male smokers and 30 non-smokers were detected by western blot analysis. Two proteins (Aldoa and Cs) that are associated with energy production were found to be significantly altered, suggesting that these proteins may be potential diagnostic markers for evaluation of smoking risk in sperm. Further study of these proteins may provide insight into the pathogenic mechanisms underlying infertility in smoking persons.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Shanghai Institute of Medical Genetics, Shanghai 200040, China
| | - Wangjie Xu
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maohua Miao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Zijue Zhu
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingbo Dai
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong Chen
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Peng Fang
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junqing Wu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Dongsheng Nie
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lianyun Wang
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoxia Wang
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongdong Qiao
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Shanghai Institute of Medical Genetics, Shanghai 200040, China
| | - Huijuan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Changes in Sperm Motility and Capacitation Induce Chromosomal Aberration of the Bovine Embryo following Intracytoplasmic Sperm Injection. PLoS One 2015; 10:e0129285. [PMID: 26061876 PMCID: PMC4465702 DOI: 10.1371/journal.pone.0129285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/06/2015] [Indexed: 01/04/2023] Open
Abstract
Intracytoplasmic sperm injection (ICSI) has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS) produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF) and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP), a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.
Collapse
|
16
|
Naresh S, Atreja SK. The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology 2015; 70:211-6. [PMID: 25828199 DOI: 10.1016/j.cryobiol.2015.03.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/07/2015] [Accepted: 03/21/2015] [Indexed: 11/26/2022]
Abstract
Before the process of fertilization, spermatozoa necessitate a period of residence in the female reproductive environment, and undergo a sequence of physiological and biochemical changes collectively referred to as capacitation. Accumulated evidences from several laboratories indicated that the protein tyrosine phosphorylation (PTP) is one of the most important intracellular signaling events regulating sperm function, and is a meaningful indicator of capacitation. Different factors that affect PTP are cholesterol efflux, influx of HCO3(-), increased intracellular Ca(2+), cAMP and reactive oxygen species (ROS). cAMP/PKA and extracellular signal regulated kinases (ERKs) are the known important signaling pathways primarily involved in PTP. Advanced proteomics approaches have revealed several proteins that undergo tyrosine phosphorylation during capacitation. Semen cryopreservation subjects spermatozoa to frequent stressors, which result in capacitation like changes (cryo-capacitation). The cryo-capacitated spermatozoa usually show different patterns of PTP than the normal in vitro capacitated spermatozoa. In the current manuscript, we have summarized some information about the proteins undergoing tyrosine phosphorylation during capacitation and the effect of cryopreservation on PTP as well as the possibilities to reduce the changes associated with cryopreservation process.
Collapse
Affiliation(s)
- Sai Naresh
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - Suresh Kumar Atreja
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
17
|
Kwon WS, Rahman MS, Pang MG. Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphotyrosine proteins. J Proteome Res 2014; 13:4505-17. [PMID: 25223855 DOI: 10.1021/pr500524p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Male infertility refers to the inability of a man to achieve a pregnancy in a fertile female. In more than one-third of cases, infertility arises due to the male factor. Therefore, developing strategies for the diagnosis and prognosis of male infertility is critical. Simultaneously, a satisfactory model for the cellular mechanisms that regulate normal sperm function must be established. In this regard, tyrosine phosphorylation is one of the most common mechanisms through which several signal transduction pathways are adjusted in spermatozoa. It regulates the various aspects of sperm function, for example, motility, hyperactivation, capacitation, the acrosome reaction, fertilization, and beyond. Several recent large-scale studies have identified the proteins that are phosphorylated in spermatozoa to acquire fertilization competence. However, most of these studies are basal and have not presented an overall mechanism through which tyrosine phosphorylation regulates male infertility. In this review, we focus of this mechanism, discussing most of the tyrosine-phosphorylated proteins in spermatozoa that have been identified to date. We categorized tyrosine-phosphorylated proteins in spermatozoa that regulate male infertility using MedScan Reader (v5.0) and Pathway Studio (v9.0).
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | | | | |
Collapse
|
18
|
Pinheiro A, Silva MJ, Graça I, Silva J, Sá R, Sousa M, Barros A, Tavares de Almeida I, Rivera I. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis. Gene 2012; 506:173-8. [PMID: 22750801 DOI: 10.1016/j.gene.2012.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
Abstract
During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.
Collapse
Affiliation(s)
- Ana Pinheiro
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jagan Mohanarao G, Atreja SK. Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Res Vet Sci 2011; 93:618-23. [PMID: 22035659 DOI: 10.1016/j.rvsc.2011.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/27/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022]
Abstract
To acquire the fertilizing competence, spermatozoa must undergo a cascade of physiological and biochemical changes collectively defined as capacitation. Compelling evidence signifies that the global increase in protein tyrosine phosphorylation is the driving factor for capacitation. In our laboratory, we previously demonstrated that nitric oxide (NO) induces capacitation in buffalo sperm and is associated with an increase in protein tyrosine phosphorylation. The aim of the present study is to identify the proteins undergo tyrosine phosphorylation during NO induced buffalo sperm capacitation using 2-D immunoblotting and mass spectrometry. The percentage of progressively motile and capacitated sperm was more in presence of l-arginine. Along with known tyrosine phosphoproteins like ATP synthase subunit beta, pyruvate dehydrogenase E1 component subunit beta, GST mu 3, F-actin capping protein subunit beta 2, GPD2 and VDAC2, interestingly novel tyrosine phosphoprotein substrates such as actin, serine/threonine-protein phosphatase PP1-gamma catalytic subunit, and glutamine synthetase were also identified which might be specific to the NO induced signaling and also emphasizes the species specificity with respect to tyrosine phosphorylation of proteins during capacitation. In conclusion, this study forms an essential step in delineating the proteins undergo tyrosine phosphorylation in response to NO induced signaling pathways during capacitation of buffalo sperm.
Collapse
Affiliation(s)
- G Jagan Mohanarao
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132 001, Haryana, India.
| | | |
Collapse
|
20
|
Ijiri TW, Merdiushev T, Cao W, Gerton GL. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 2011; 11:4047-62. [PMID: 21805633 DOI: 10.1002/pmic.201100075] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/03/2011] [Accepted: 07/11/2011] [Indexed: 01/16/2023]
Abstract
Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two-dimensional gels. Of eight caput epididymal sperm-differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm-differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ-actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S-transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post-translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm-differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm-differential proteins are involved in ATP production that promotes sperm functions such as motility.
Collapse
Affiliation(s)
- Takashi W Ijiri
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6080, USA
| | | | | | | |
Collapse
|
21
|
Odet F, Gabel SA, Williams J, London RE, Goldberg E, Eddy EM. Lactate dehydrogenase C and energy metabolism in mouse sperm. Biol Reprod 2011; 85:556-64. [PMID: 21565994 DOI: 10.1095/biolreprod.111.091546] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC.
Collapse
Affiliation(s)
- Fanny Odet
- Laboratories of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | |
Collapse
|
22
|
Forné I, Castellana B, Marín-Juez R, Cerdà J, Abián J, Planas JV. Transcriptional and proteomic profiling of flatfish (Solea senegalensis) spermatogenesis. Proteomics 2011; 11:2195-211. [PMID: 21538881 DOI: 10.1002/pmic.201000296] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 02/14/2011] [Accepted: 02/21/2011] [Indexed: 11/08/2022]
Abstract
The Senegalese sole (Solea senegalensis) is a marine flatfish of high economic value and a target species for aquaculture. The efforts to reproduce this species in captivity have been hampered by the fact that farmed males (F1) often show lower sperm production and fertilization capacity than wild-type males (F0). Our knowledge on spermatogenesis is however limited to a few studies. In a previous work, we identified by 2-D DIGE several potential protein markers in testis for the poor reproductive performance of F1 males. Therefore, the objectives of the present study were, first, to investigate changes in genes and proteins expressed in the testis throughout spermatogenesis in F0 males by using a combination of transcriptomic and proteomic approaches and, second, to further compare the testis proteome between late spermatogenic stages of F0 and F1 fish to identify potential indicators of hampered reproductive performance in F1 fish. We identified approximately 400 genes and 49 proteins that are differentially expressed during the progression of spermatogenesis and that participate in processes such as transcriptional activation, the ubiquitin-proteasome system, sperm maturation and motility or cytoskeletal remodeling. Interestingly, a number of these proteins differed in abundance between F0 and F1 fish, pointing toward alterations in cytoskeleton, sperm motility, the ubiquitin-proteasome system and the redox state during spermiogenesis as possible causes for the decreased fertility of F1 fish.
Collapse
Affiliation(s)
- Ignasi Forné
- CSIC/UAB Proteomics Laboratory, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Facultat de Medicina, UAB, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Identification of capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) and cattle spermatozoa. Anim Reprod Sci 2011; 123:40-7. [DOI: 10.1016/j.anireprosci.2010.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/28/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
|
24
|
Kota V, Rai P, Weitzel JM, Middendorff R, Bhande SS, Shivaji S. Role of glycerol-3-phosphate dehydrogenase 2 in mouse sperm capacitation. Mol Reprod Dev 2010; 77:773-83. [PMID: 20602492 DOI: 10.1002/mrd.21218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A tyrosine phosphoproteome study of hamster spermatozoa indicated that glycerol-3-phosphate dehydrogenase 2 (GPD2), is one of the proteins that enables tyrosine phosphorylation during sperm capacitation. Further, enzymatic activity of GPD2 correlated positively with sperm capacitation [Kota et al., 2009; Proteomics 9:1809-1826]. Therefore, understanding the function of GPD2 would help to unravel the molecular mechanism of sperm capacitation. In this study, involving the use of spermatozoa from Gpd2(+/+) and Gpd2(-/-) mice, it has been demonstrated that in the absence of Gpd2, hyperactivation and acrosome reaction were significantly altered, and a few changes in protein tyrosine phosphorylation were also observed during capacitation. Evidence is provided to demonstrate that GPD2 activity is required for ROS generation in mouse spermatozoa during capacitation, failing which, capacitation is impaired. These results imply that GPD2 is involved in sperm capacitation.
Collapse
Affiliation(s)
- Venkatesh Kota
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
25
|
Capacitation status of activated bovine sperm cultured in media containing methyl-β-cyclodextrin affects the acrosome reaction and fertility. ZYGOTE 2010; 19:21-30. [PMID: 20727245 DOI: 10.1017/s0967199410000304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian sperm undergo a series of biochemical transformations in the female reproductive tract that are collectively known as capacitation. One of the key processes involved in capacitation is the activation of sperm motility. Here, we investigated the capacitation and fertility status of activated sperm which had been cultured in media containing methyl-β-cyclodextrin (MBCD). In order to do this, single activated sperm were caught using a micropipette and stained with chlortetracycline (CTC). Firstly, we investigated the effects of preincubation upon motility, capacitation of activated sperm and fertility. Culture in preincubation media supplemented with MBCD increased the rates of activation and fertilization compared with sperm cultured by control methods (p < 0.05). Following capture, individual activated sperm mostly exhibited a pattern characteristic of capacitation.Secondly we examined the effects of culturing sperm in media with or without glucose (G) and pyruvate acid (P) upon activated motility, the capacitation of activated sperm and fertility. Supplementation of culture media with G and P resulted in higher proportions of activated sperm and increased fertilization rates compared to culture without G and P (p < 0.05). Most of the sperm activated by culture in G and P exhibited patterns characteristic of capacitation. Without G and P, individual activated sperm mostly exhibited patterns characteristic of the acrosome reaction (p < 0.05). In conclusion, activated sperm exhibited patterns characteristic of capacitation. In addition, sperm activated in media containing an energy source (glucose and pyruvate acid) appeared to exhibit acrosome reactiveness and fertility.
Collapse
|
26
|
Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion 2010; 10:419-28. [DOI: 10.1016/j.mito.2010.05.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/24/2010] [Accepted: 05/28/2010] [Indexed: 11/30/2022]
|
27
|
The role of mitochondrial proteins in sperm capacitation. J Reprod Immunol 2009; 83:14-8. [DOI: 10.1016/j.jri.2009.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 08/06/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022]
|
28
|
Gyamera-Acheampong C, Vasilescu J, Figeys D, Mbikay M. PCSK4-null sperm display enhanced protein tyrosine phosphorylation and ADAM2 proteolytic processing during in vitro capacitation. Fertil Steril 2009; 93:1112-23. [PMID: 19342015 DOI: 10.1016/j.fertnstert.2008.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/31/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study the molecular basis for the accelerated capacitation rate in PCSK4-null sperm. DESIGN Comparative and controlled experimental research study. SETTING Academic medical institute. ANIMAL(S) Male mice C57BL/6J wild-type or null congenics for the Pcsk4 allele. INTERVENTION(S) Cauda and epididymal sperm were capacitated for varying times. MAIN OUTCOME MEASURE(S) Differences in sperm protein tyrosine phosphorylation and proteolytic processing of sperm-egg ligands ADAM2 and ADAM3. RESULT(S) The PCSK4-null sperm proteins are hyper-tyrosine phosphorylated during capacitation. This hyperphosphorylation is dependent on protein kinase A (PKA), albumin, and calcium. There is also more ADAM2 proteolytic processing from a 46-kDa form of ADAM2 to a 27-kDa form in PCSK4-null sperm than in wild-type sperm. This processing is dependent on cholesterol efflux. CONCLUSION(S) Lack of PCSK4 is associated with quantitative changes in the phosphorylation and proteolysis of sperm proteins during capacitation; therefore, alterations in signal transduction and proteolytic processing during capacitation may underlie the fertilization incompetence of PCSK4-null sperm. More investigation is needed to determine how and to what extent these changes might contribute to the loss of fertilizing ability of PCSK4-null sperm.
Collapse
|
29
|
Kota V, Dhople VM, Shivaji S. Tyrosine phosphoproteome of hamster spermatozoa: Role of glycerol-3-phosphate dehydrogenase 2 in sperm capacitation. Proteomics 2009; 9:1809-26. [DOI: 10.1002/pmic.200800519] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Muratori M, Luconi M, Marchiani S, Forti G, Baldi E. Molecular markers of human sperm functions. ACTA ACUST UNITED AC 2009; 32:25-45. [DOI: 10.1111/j.1365-2605.2008.00875.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Kumar V, Kota V, Shivaji S. Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase. Biol Reprod 2008; 79:190-9. [PMID: 18401010 DOI: 10.1095/biolreprod.107.066704] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recently, we demonstrated that pyruvate dehydrogenase A2 (PDHA2) is tyrosine phosphorylated in capacitated hamster spermatozoa. In this report, using bromopyruvate (BP), an inhibitor of PDHA, we demonstrated that hamster sperm hyperactivation was blocked regardless of whether PDHA was inhibited prior to or after the onset of hyperactivation, but the acrosome reaction was blocked only if PDHA was inhibited prior to the onset of the acrosome reaction. Further, inhibition of PDHA activity did not inhibit capacitation-associated protein tyrosine phosphorylation observed in hamster spermatozoa. It is demonstrated that the essentiality of PDHA for sperm capacitation is probably dependent on its ability to generate effectors of capacitation such as reactive oxygen species (ROS) and cAMP, which are significantly decreased in the presence of BP. MICA (5-methoxyindole-2-carboxylic acid, a specific inhibitor of dihydrolipoamide dehydrogenase [DLD]), another component of the pyruvate dehydrogenase complex (PDHc), also significantly inhibited ROS generation and cAMP levels thus implying that these enzymes of the PDHc are required for ROS and cAMP generation. Furthermore, dibutryl cyclic adenosine monophosphate could significantly reverse the inhibition of hyperactivation observed in the presence of BP and inhibition of acrosome reaction observed in the presence of BP or MICA. The calcium ionophore, A23187, could also significantly reverse the inhibitory effect of BP and MICA on sperm acrosome reaction. These results establish that PDHA is required for hamster sperm hyperactivation and acrosome reaction, and DLD is required for hamster acrosome reaction. This study also provides evidence that ROS, cAMP, and calcium are involved downstream to PDHA.
Collapse
Affiliation(s)
- Vivek Kumar
- Centre for Cellular and Molecular Biology, 500 007 Hyderabad, India
| | | | | |
Collapse
|