1
|
Dong Y, Tan K, Yan X, Su B, Lim LS, Waiho K, Kwan KY, Tan K. Functional characterization of a novel FpVgR: A special focus on ovarian development in Fenneropenaeus penicillatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101478. [PMID: 40112605 DOI: 10.1016/j.cbd.2025.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Redtail shrimp Fenneropenaeus penicillatus are commercially important shrimp species. However, the aquaculture of this species is hindered by insufficient seed supply, mainly caused by frequent inadequate gonad development. The vitellogenin receptor (VgR) plays an important role in the gonad development of oviparous animals by facilitating the accumulation of vitellogenin and nutrients in the oocytes. Therefore, in this study, we cloned and functionally characterized a novel VgR from F. penicillatus (FpVgR). In general, FpVgR has a length of 3795 bp, encoding 1264 amino acid residues and encompassing 28 exons. The calculated molecular weight and theoretical isoelectric point of FpVgR were 139.18 kDa and 4.76, respectively. FpVgR mRNA was highly expressed in the ovary at developmental stages 3 and 4, and localized in the oocyte's plasma membrane. Knocking down FpVgR significantly reduced transcription levels in ovarian tissue, resulting in DNA damage and cell apoptosis within the ovarian tissues. The results of transcriptomic profiling following FpVgR knockdown also revealed that the apoptosis signaling pathway and oxytocin signaling pathway were involved in regulating ovary development and maintaining homeostasis. These findings offer valuable understanding into the mechanisms governing vitellogenesis and the maturation of oocytes, with a specific focus on FpVgR, contributing to future research on vitellogenesis and ovarian development in F. penicillatus.
Collapse
Affiliation(s)
- Yaxin Dong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China
| | - Xueyu Yan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China
| | - Boyu Su
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| | - Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
2
|
Zhang X, Yin Y, Fan H, Zhou Q, Jiao L. Arginine Promoted Ovarian Development in Pacific White Shrimp Litopenaeus vannamei via the NO-sGC-cGMP and TORC1 Signaling Pathways. Animals (Basel) 2024; 14:1986. [PMID: 38998098 PMCID: PMC11240395 DOI: 10.3390/ani14131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to evaluate the effects of arginine (0.5%, 1%, 1.5%, 2%, and 2.5% arginine supplementation levels were selected) on the ovarian development of Pacific white shrimp (Litopenaeus vannamei). The analyzed arginine supplementation levels in each diet were 2.90%, 3.58%, 4.08%, 4.53%, 5.04%, and 5.55%, respectively. A total of 540 shrimp (an initial weight of approximately 14 g) with good vitality were randomly distributed into six treatments, each of which had three tanks (300 L in volume filled with 200 L of water), with 30 shrimp per duplicate. Shrimp were fed three times a day (6:00 a.m., 11:00 a.m., and 6:00 p.m.). The results showed that after the 12-week raring cycle, shrimp fed with 4.08% and 4.53% Arg achieved better ovary development, which was identified by ovarian stage statistics, ovarian morphology observation, serum hormone levels (methylfarneside (MF); 5-hydroxytryptamine (5-HT); estradiol (E2); and gonadotropin-releasing hormone (GnRH)), gene expression (DNA meiotic recombinase 1 (dmc1), proliferating cell nuclear antigen (pcna), drosophila steroid hormone 1 (cyp18a), retinoid X receptor (rxra), and ecdysone receptor (ecr)). Further in-depth analysis showed that 4.08% and 4.53% Arg supplementation increased the concentration of vitellogenin in hepatopancreas and serum (p < 0.05) and upregulated the expression level of hepatopancreatic vg and vgr (p < 0.05), which promoted the synthesis of hepatopancreas exogenous vitellogenin and then transported it into the ovary through the vitellogenin receptor and further promoted ovarian maturation in L. vannamei. Meanwhile, compared with the control group, the expression level of vg in the ovary of the 4.53% Arg group was significantly upregulated (p < 0.05), which indicated endogenous vitellogenin synthesis in ovarian maturation in L. vannamei. Moreover, the expression of genes related to the mechanistic target of the rapamycin complex 1 (mTORC1) pathway and protein levels was regulated by dietary arginine supplementation levels. Arginine metabolism-related products, including nitric oxide synthase (NOS), nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), were also affected. RNA interference was applied here to study the molecular regulation mechanism of arginine on ovarian development in L. vannamei. A green fluorescent protein (GFP)-derived double-stranded RNA (dsGFP) is currently commonly used as a control, while TOR-derived dsRNA (dsTOR) and NOS-derived dsRNA (dsNOS) were designed to build the TOR and NOS in vivo knockdown model. The results showed that the mTORC1 and NO-sGC-cGMP pathways were inhibited, while the vitellogenin receptor and vitellogenin gene expression levels were downregulated significantly in the hepatopancreas and ovary. Overall, dietary arginine supplementation could enhance endogenous and exogenous vitellogenin synthesis to promote ovary development in L. vannamei, and the appropriate dosages were 4.08% and 4.53%. The NO-sGC-cGMP and mTORC1 signaling pathways mediated arginine in the regulation of ovary development in L. vannamei.
Collapse
Affiliation(s)
- Xin Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yanan Yin
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Haitao Fan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Tan K, Ma X, Su B, Zhan C, Yang X, Waiho K, Lim LS, Kwan KY. Targeting TtVgR via siRNA Knockdown Elicits Ovarian Cell Death in the Tri-spine Horseshoe Crab. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:575-587. [PMID: 38676851 DOI: 10.1007/s10126-024-10319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The vitellogenin present in the bloodstream undergoes internalization into developing oocytes through the vitellogenin receptor (VgR), a process mediated by receptor-mediated endocytosis. VgR plays a crucial role in facilitating the accumulation of vitellogenin and the maturation of oocytes. In this study, we characterized a Tachypleus tridentatus vitellogenin receptor (TtVgR) gene from the tri-spine horseshoe crab, revealing a length of 1956 bp and encoding 652 amino acid residues with 12 exons. TtVgR has a molecular weight of 64.26 kDa and an isoelectric point of 5.95. Predictions indicate 85 phosphorylation sites and 7 glycosylation sites within TtVgR. Transcriptional analysis demonstrated specific expression of TtVgR in the ovary and yellow connective tissue. TtVgR was identified and distributed in the plasma membrane of oocytes. The siRNA-mediated TtVgR knockdown significantly reduced the transcriptional activity of TtVgR. This depletion induced excessive ROS production, resulting in DNA damage in ovarian primary cells. TUNEL and flow cytometry analyses confirmed ovarian cell apoptosis following TtVgR knockdown, indicating DNA damage in ovarian primary cells. These findings underscore the importance of TtVgR in ovarian cell development, suggesting its potential involvement in vitellogenesis and oocyte maturation. This knowledge may inform innovative breeding strategies and contribute to the sustainable management and conservation of the tri-spine horseshoe crab.
Collapse
Affiliation(s)
- Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Fourth Institute of Oceanography, Beihai, 536000, Guangxi, China
| | - Boyu Su
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Chen Zhan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Xin Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus City, Terengganu, Malaysia
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu City, Sabah, Malaysia
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China.
| |
Collapse
|
4
|
Duan H, Shao X, Liu W, Xiang J, Pan N, Wang X, Du G, Li Y, Zhou J, Sui L. Spatio-temporal patterns of ovarian development and VgR gene silencing reduced fecundity in parthenogenetic Artemia. Open Biol 2023; 13:230172. [PMID: 37963545 PMCID: PMC10645507 DOI: 10.1098/rsob.230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
The halophilic zooplankton brine shrimp Artemia has been used as an experimental animal in multidisciplinary studies. However, the reproductive patterns and its regulatory mechanisms in Artemia remain unclear. In this study, the ovarian development process of parthenogenetic Artemia (A. parthenogenetica) was divided into five stages, and oogenesis or egg formation was identified in six phases. The oogenesis mode was assumed to be polytrophic. We also traced the dynamic translocation of candidate germline stem cells (cGSCs) using EdU labelling and elucidated several key cytological events in oogenesis through haematoxylin and eosin staining and fluorescence imaging. Distinguished from the ovary structure of insects and crustaceans, Artemia germarium originated from ovariole buds and are located at the base of the ovarioles. RNA-seq based on five stages of ovarian development identified 2657 upregulated genes related to reproduction by pair-to-pair comparison. Gbb, Dpp, piwi, vasa, nanos, VgA and VgR genes associated with cGSCs recognition and reproductive development were screened and verified using qPCR. Silencing of the VgR gene in A. parthenogenetica (Ap-VgR) at ovarian development Stage II led to a low level of gene expression (less than 10%) within 5 days, which resulted in variations in oogenesis-related gene expression and significantly inhibited vitellogenesis, impeded oocyte maturation, and eventually decreased the number of offspring. In conclusion, we have illustrated the patterns of ovarian development, outlined the key spatio-temporal features of oogenesis and identified the negative impacts of VgR gene knockdown on oogenesis using A. parthenogenetica as an experimental animal. The findings of this study also lay a foundation for the further study of reproductive biology of invertebrates.
Collapse
Affiliation(s)
- Hu Duan
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
- Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Xuanxuan Shao
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Wei Liu
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, People's Republic of China
| | - Namin Pan
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Xuehui Wang
- Tianjin Fisheries Research Institute, Tianjin 300221, People's Republic of China
| | - Guoru Du
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Ying Li
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Jiaping Zhou
- Research Center of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Liying Sui
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
- Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| |
Collapse
|
5
|
Luo JY, Shen SQ, Xu HJ, Yang JS, Ma WM. The transcription factor masculinizer in sexual differentiation and achieved full functional sex reversal in prawn. iScience 2023; 26:106968. [PMID: 37534170 PMCID: PMC10391606 DOI: 10.1016/j.isci.2023.106968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
Some Zinc finger (ZnF) proteins are required for masculinization in silkworms. In the present study, a masculinizer gene (Mr-Masc) with multi-tissue expression is identified in the freshwater prawn Macrobrachium rosenbergii. The Mr-Masc is clustered into a separate branch with ZnF proteins from decapoda by phylogenetic tree analysis. Moreover, Mr-Masc silencing in male postlarvae prawn results in functional sex reversal females known as neo-females, which are applied to all-male monosex offspring breeding. This manipulation has been significant in sexually dimorphic cultured species. In addition, several significantly expressed transcripts are enriched and the effects of crucial signal pathways are focused through the comparative transcriptomic analysis in Mr-Masc gene knockdown. The significantly differentially expressed epidermal growth factor, upregulated low-density lipoprotein receptor, flotillin, and sex-lethal unigenes, downregulated heat shock proteins and forkhead box homologs are focused. The finding offers an innovative perspective on Masc proteins' evolution and physiological function.
Collapse
Affiliation(s)
- Jing-Yu Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Shuai-Qi Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Hai-Jing Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Wen-Ming Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| |
Collapse
|
6
|
Liu X, Qiao X, Yu S, Li Y, Wu S, Liu J, Wang L, Song L. The DUF1943 and VWD domains endow Vitellogenin from Crassostrea gigas with the agglutination and inhibition ability to microorganism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104679. [PMID: 36921701 DOI: 10.1016/j.dci.2023.104679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Vitellogenin (Vg) is the major precursor of the egg-yolk proteins, which mainly acts as an energy reserve molecule for providing nutrients during embryonic development. Vg also plays an immune function in vertebrates such as fish, but there are few studies on the immune function of Vg in invertebrates. In the present study, a Vg homologue (CgVg) was identified and characterized in oyster Crassostrea gigas. There are three domains in the CgVg protein, including a Vitellogenin_N domain, a domain of unknown function 1943 (DUF1943) and a von Willebrand factor type D domain (VWD). The mRNA transcripts of CgVg were detected in all tested tissues with high expression in the gonad, hepatopancreas and haemocytes, which was 466.29-, 117.15- and 57.49-fold (p < 0.01) of that in adductor muscle, respectively. After Vibrio splendidus stimulation, the mRNA expression level of CgVg in haemocytes increased significantly at 6, 12 and 24 h, which was 1.97-, 3.58- and 1.3-fold (p < 0.01) of that in the seawater group, respectively. The immunofluorescence assay showed that positive signals of CgVg protein were mainly located at the cytoplasm of haemocytes. The recombinant protein of DUF1943 domain (rDUF1943) and VWD domain (rVWD) was able to bind lipopolysaccharide (LPS), mannose (MAN), peptidoglycan (PGN) and poly (I:C), as well as Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), Gram-negative bacteria (Escherichia coli and V. splendidus) and fungi (Pichia pastoris). rDUF1943 exhibited stronger agglutination activity towards S. aureus, M. luteus, E. coli, V. splendidus and P. pastoris, while agglutination was only observed in the rVWD group towards P. pastoris. The rVWD inhibited the growth of E. coli, S. aureus and V. splendidus, while no antibacterial activity was detected in rDUF1943 group. Collectively, CgVg not only functioned as a pattern recognition receptor (PRR) to bind various microorganisms and PAMPs, but also as an immune effector participating in the clearance of invaders, in which DUF1943 and VWD domain were mainly responsible for agglutinating and inhibiting microorganism respectively.
Collapse
Affiliation(s)
- Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Shasha Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
7
|
Jiang S, Qiao H, Fu H, Gu Z. Hepatopancreas Proteomic Analysis Reveals Key Proteins and Pathways in Regulatory of Ovary Maturation of Macrobrachium nipponense. Animals (Basel) 2023; 13:ani13060977. [PMID: 36978518 PMCID: PMC10044353 DOI: 10.3390/ani13060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
A TMT-based (Tandem Mass Tag) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was employed to explore differentially expressed proteins (DEPs) and KEGG pathways in hepatopancreas of 5 ovary stages. In total, 17,999 peptides were detected, among which 3395 proteins were identified. Further analysis revealed 26, 24, 37, and 308 DEPs in HE-I versus HE-II, HE-II versus HE-Ⅲ, HE-Ⅲ versus HE-Ⅳ, and HE-Ⅳ versus HE-Ⅴ, respectively (HE-I, HE-II, HE-III, HE-IV, and HE-V means hepatopancreas sampled from ovary stage I to V.). Gene ontology (GO) analysis indicated that DEPs were significantly enriched in "catalytic activity", "metabolic process", and "cell" of 4 comparison groups in turn. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that in hepatopancreas, as the ovaries developed to maturation, carbohydrate metabolism, lipid metabolism, amino acid metabolism, and lysosome played important roles in turn. The mRNA expression of 15 selected DEPs were consistent with proteome results by qPCR analysis. Further mRNA expression investigation results suggested 4 proteins (fatty acid-binding protein, NPC intracellular cholesterol transporter 1, Serine hydroxymethyltransferase, and Crustapin) were involved in ovary maturation. These results enhance the understanding of the regulatory role of hepatopancreas in M. nipponense ovary maturation and provide new insights for understanding the crustacean regulation mechanisms.
Collapse
Affiliation(s)
- Sufei Jiang
- College of Fisheries, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zemao Gu
- College of Fisheries, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
8
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Cannea FB, Follesa C, Porcu C, Rossino R, Olianas A, Rescigno A, Padiglia A. Antibodies targeting the European lobster (Palinurus elephas) vitellogenin developed by mRNA isolation and in-silico-designed antigenic peptides. Biol Open 2022; 11:275088. [PMID: 35452506 PMCID: PMC9116138 DOI: 10.1242/bio.059019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Vitellogenin is an essential protein involved in ovary maturation in many animals. Detection of this protein correlated with reproductive capacity may be important if carried out on marine organisms such as the red spiny lobster Palinurus elephas, a crustacean that is an economically important crop from wild fish catches. Moreover, in recent years, vitellogenin has assumed an important role as a possible biomarker of marine environmental pollution, as its expression levels can be influenced by the presence of similar estrogen pollutants and can affect the reproductive sphere of marine organisms such as crustaceans. The P. elephas vitellogenin protein and its coding gene have never been isolated, so there is little information about its presence in this lobster. The aim of the present study was to develop a molecular strategy to create, for the first time, an antibody for the detection and quantization of vitellogenin in P. elephas. Summary: The development of anti-vitellogenin antibodies of Palinurus elephas could be applied to building a non-invasive reading system for monitoring the reproductive status of these crustaceans and as a useful tool for controlling the quality of their aquatic environment.
Collapse
Affiliation(s)
- Faustina B Cannea
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Biomedical section, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Cristina Follesa
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Biomedical section, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy.,Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Marine Bioecology section, University of Cagliari, via T. Fiorelli 1, 09126, Cagliari, Italy
| | - Cristina Porcu
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Biomedical section, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy.,Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Marine Bioecology section, University of Cagliari, via T. Fiorelli 1, 09126, Cagliari, Italy
| | - Rossano Rossino
- Dipartimento di Scienze Mediche e Sanità Pubblica (DSMSP), University of Cagliari, AOU Presidio microcitemico via Jenner, 09121 Cagliari, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Biomedical section, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Antonio Rescigno
- Dipartimento di Scienze Biomediche (DiSB), Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Alessandra Padiglia
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Biomedical section, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
10
|
Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 Plays an Important Role in the Development and Reproduction of Nilaparvata lugens. INSECTS 2022; 13:insects13030303. [PMID: 35323600 PMCID: PMC8951764 DOI: 10.3390/insects13030303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary The brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae), is a destructive insect pest of rice. It causes reductions in rice yield and great economic losses. In this study, we used RNAi to explore the function of the inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) gene in the development and reproduction of the brown planthopper. Our results revealed that ITIH4 influences the survival, ovarian development, egg production, and egg hatching of this insect, indicating that ITIH4 plays important roles in development and reproduction. Considering the importance of ITIH4 in the brown planthopper, it may be a potential target for pest management. Abstract The brown planthopper, Nilaparvata lugens, is a difficult-to-control insect pest affecting rice yields in Asia. As a structural component of the inter-alpha-trypsin inhibitor (ITI), the inter-alpha-trypsin inhibitor heavy chain (ITIH) has been reported to be involved in various inflammatory or malignant disorders, ovarian development, and ovulation. To reveal the function of ITIH4 in N. lugens, the gene encoding N. lugens ITIH4 (NlITIH4) was cloned and characterized. NlITIH4 contains a signal peptide, a vault protein inter-alpha-trypsin domain, and a von Willebrand factor type A domain. qPCR analysis showed that NlITIH4 was expressed at all developmental stages and in all tissues (fat body, ovary, and gut), with the highest expression in the fat body. Double stranded NlITIH4 (dsNlITIH4) injection clearly led to an RNAi-mediated inhibition of the expression of NlITIH4 and resulted in reduced survival, delayed ovarian development, and reduced egg production and egg hatching. These results indicate that NlITIH4 plays an important role in the development and reproduction of N. lugens.
Collapse
|
11
|
Wahl M, Levy T, Manor R, Aflalo ED, Sagi A, Aizen J. Genes Encoding the Glycoprotein Hormone GPA2/GPB5 and the Receptor LGR1 in a Female Prawn. Front Endocrinol (Lausanne) 2022; 13:823818. [PMID: 35399936 PMCID: PMC8990981 DOI: 10.3389/fendo.2022.823818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
In vertebrate reproduction, metabolism, growth and development, essential roles are played by glycoprotein hormones, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH), all of which are heterodimers consisting of two subunits, a structurally identical alpha subunit, and a variable beta subunit, which provides specificity. A 'new' glycoprotein hormone heterodimer identified in both vertebrates and invertebrates, including decapod crustaceans, was shown to be composed of the glycoprotein alpha 2 (GPA2) and glycoprotein beta 5 (GPB5) subunits. The putative receptor for GPA2/GPB5 in invertebrates is the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1). In this study in the giant freshwater prawn, Macrobrachium rosenbergii, we identified and characterized the GPA2 (MrGPA2), GPB5 (MrGPB5) and LGR1 (MrLGR1) encoding genes and revealed their spatial expression patterns in female animals. Loss-of-function RNA interference (RNAi) experiments in M. rosenbergii females demonstrated a negative correlation between MrGPA2/MrGPB5 silencing and MrLGR1 transcript levels, suggesting a possible ligand-receptor interaction. The relative transcript levels of M. rosenbergii vitellogenin (MrVg) in the hepatopancreas were significantly reduced following MrGPA2/MrGPB5 knockdown. MrLGR1 loss-of-function induced MrVg receptor (MrVgR) transcript levels in the ovary and resulted in significantly larger oocytes in the silenced group compared to the control group. Our results provide insight into the possible role of GPA2/GPB5-LGR1 in female reproduction, as shown by its effect on MrVg and MrVgR expression and on the oocyte development. Here, we suggest that the GPA2/GPB5 heterodimer act as a gonad inhibiting factor in the eyestalk-hepatopancreas-ovary endocrine axis in M. rosenbergii.
Collapse
Affiliation(s)
- Melody Wahl
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D. Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Arugot, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Amir Sagi, ; Joseph Aizen,
| | - Joseph Aizen
- The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
- *Correspondence: Amir Sagi, ; Joseph Aizen,
| |
Collapse
|
12
|
Sun W, Li L, Li H, Zhou K, Li W, Wang Q. Vitellogenin receptor expression in ovaries controls innate immunity in the Chinese mitten crab (Eriocheir sinensis) by regulating vitellogenin accumulation in the hemolymph. FISH & SHELLFISH IMMUNOLOGY 2020; 107:480-489. [PMID: 32920203 DOI: 10.1016/j.fsi.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The vitellogenin receptor (Vgr), which is specific for vitellogenin (Vtg), recognises and transports Vtg into the ovaries. Accumulating evidence suggests that Vtg also performs an immune defence function and plays critical roles in innate immunity in oviparous animals. However, whether Vgr is involved in innate immunity in the Chinese mitten crab (Eriocheir sinensis) is unknown. In this study, we obtained a 3009 nucleotide partial cDNA of the E. sinensis vitellogenin receptor gene (Es-vgr) encoding an open reading frame of 1003 amino acid residues. Bioinformatics analysis showed that the domains of Es-vgr were conserved during evolution. Quantitative real-time PCR and western blotting revealed that the highest Es-vgr expression levels occurred in the ovary, and expression was specific. Comparison of the expression levels of Es-vgr and the Vtg gene (Es-vtg1) at different ovary developmental stages suggested that there may be some regulatory relationship between them. Bacterial challenge induced high-level expression of antimicrobial peptide genes and reduced Es-vgr expression in ovaries, resulting in massive accumulation of Vtg in the hemolymph. The survival rate of crabs increased significantly after injection with recombinant Es-vtg1 protein following bacterial infection. Collectively, these results demonstrate that Es-vgr plays critical roles in antimicrobial function by regulating the accumulation of Vtg in the hemolymph.
Collapse
Affiliation(s)
- Weikang Sun
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
13
|
Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci Rep 2020; 10:9914. [PMID: 32555307 PMCID: PMC7303178 DOI: 10.1038/s41598-020-66020-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
This study aimed to elucidate the physiological processes of oogenesis in Acropora tenuis. Genes/proteins related to oogenesis were investigated: Vasa, a germ cell marker, vitellogenin (VG), a major yolk protein precursor, and its receptor (LDLR). Coral branches were collected monthly from coral reefs around Sesoko Island (Okinawa, Japan) for histological observation by in situ hybridisation (ISH) of the Vasa (AtVasa) and Low Density Lipoprotein Receptor (AtLDLR) genes and immunohistochemistry (IHC) of AtVasa and AtVG. AtVasa immunoreactivity was detected in germline cells and ooplasm, whereas AtVG immunoreactivity was detected in ooplasm and putative ovarian tissues. AtVasa was localised in germline cells located in the retractor muscles of the mesentery, whereas AtLDLR was localised in the putative ovarian and mesentery tissues. AtLDLR was detected in coral tissues during the vitellogenic phase, whereas AtVG immunoreactivity was found in primary oocytes. Germline cells expressing AtVasa are present throughout the year. In conclusion, Vasa has physiological and molecular roles throughout the oogenic cycle, as it determines gonadal germline cells and ensures normal oocyte development, whereas the roles of VG and LDLR are limited to the vitellogenic stages because they act in coordination with lipoprotein transport, vitellogenin synthesis, and yolk incorporation into oocytes.
Collapse
|
14
|
Ruan Y, Wong NK, Zhang X, Zhu C, Wu X, Ren C, Luo P, Jiang X, Ji J, Wu X, Hu C, Chen T. Vitellogenin Receptor (VgR) Mediates Oocyte Maturation and Ovarian Development in the Pacific White Shrimp ( Litopenaeus vannamei). Front Physiol 2020; 11:485. [PMID: 32499719 PMCID: PMC7243368 DOI: 10.3389/fphys.2020.00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Oocyte maturation and ovarian development are sequentially coordinated events critical to reproduction. In the ovaries of adult oviparous animals such as birds, bony fish, insects, and crustaceans, vitellogenin receptor (VgR) is a plasma membrane receptor that specifically mediates vitellogenin (Vg) transport into oocytes. Accumulation of Vg drives sexual maturation of the female crustaceans by acting as a pivotal regulator of nutritional accumulation within oocytes, a process known as vitellogenesis. However, the mechanisms by which VgR mediates vitellogenesis are still not fully understood. In this study, we first identified a unique VgR (Lv-VgR) and characterized its genomic organization and protein structural domains in Litopenaeus vannamei, a predominant cultured shrimp species worldwide. This newly identified Lv-VgR phylogenetically forms a group with VgRs from other crustacean species within the arthropod cluster. Duplicated LBD/EGFD regions are found exclusively among arthropod VgRs but not in paralogs from vertebrates and nematodes. In terms of expression patterns, Lv-VgR transcripts are specifically expressed in ovaries of female shrimps, which increases progressively during ovarian development, and rapidly declines toward embryonic development. The cellular and subcellular locations were For analyzed by in situ hybridization and immunofluorescence, respectively. The Lv-VgR mRNA was found to be expressed in the oocytes of ovaries, and Lv-VgR protein was found to localize in the cell membrane of maturing oocytes while accumulation of the ligand Vg protein assumed an even cytoplasmic distribution. Silencing of VgR transcript expression by RNAi was effective for stunting ovarian development. This present study has thus provided new insights into the regulatory roles of VgR in crustacean ovarian development.
Collapse
Affiliation(s)
- Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaofen Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Jiatai Ji
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Haimao Investment Co., Ltd., Zhanjiang, China
| | - Xugan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
In S, Cho H, Lee KW, Won EJ, Lee YM. Cloning and molecular characterization of estrogen-related receptor (ERR) and vitellogenin genes in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A and its structural analogues. MARINE POLLUTION BULLETIN 2020; 154:111063. [PMID: 32319896 DOI: 10.1016/j.marpolbul.2020.111063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Although it has previously been shown that bisphenol (BP) analogues may interfere with the normal hormonal regulation by acting as endocrine disrupting chemicals (EDCs), little information is available on effects of BP analogues in invertebrates, particularly on cladocerans. In the present study, we identified estrogen-related receptors (EER), vitellogenin (VTG), and VTG receptor (VtgR) from the brackish water flea Diaphanosoma celebensis, and examined the effects of BPA and the substitutes, BPF and BPS, in different sublethal concentrations. Gene expression varied with time well matched with brooding, suggesting that DcEER, DcVTG, and DcVtgR play a role in reproduction in D. celebensis. qRT-PCR analysis showed that BPA and its substitutes differently modulated mRNA expressions of DcEER, DcVTG, and DcVtgR, indicating that these compounds adversely affect the normal reproduction-related pathway. This study facilitates better understanding of the molecular mode of action of BP analogues on the reproductive system of D. celebensis.
Collapse
Affiliation(s)
- Soyeon In
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyun-Woo Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Youngdo, Busan 49111, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
16
|
Kluebsoongnoen J, Panyim S, Udomkit A. Regulation of vitellogenin gene expression under the negative modulator, gonad-inhibiting hormone in Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110682. [PMID: 32092399 DOI: 10.1016/j.cbpa.2020.110682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/15/2022]
Abstract
Vitellogenesis is a principal process during ovarian maturation in crustaceans. This process is negatively regulated by gonad-inhibiting hormone (GIH), a neuronal peptide hormone from eyestalks. However, the detailed mechanism through which GIH regulates Vg expression is still ambiguous. In this study, suppression subtractive hybridization (SSH) under specific GIH-knockdown condition was utilized to determine the expression of genes in the ovary that may act downstream of GIH to control vitellogenin synthesis in Penaeus monodon. The total of 102 and 82 positive clones of up-regulated and down-regulated genes in GIH- knockdown shrimp were identified from the forward and reverse SSH libraries, respectively. Determination of the expression profiles of these reproduction-related genes during ovarian development revealed that the expression of calreticulin (CALR) was significantly reduced in vitellogenic ovary suggesting its role in vitellogenesis. Suppression of CALR by specific dsRNA showed elevated vitellogenin (Vg) transcript level in the ovary at day 7 post-dsRNA injection. Since CALR can bind to steroid hormone receptors and prevents the binding of the receptor to its responsive element to regulate gene expression, it is possible that CALR is an inhibitory mediator of vitellogenin synthesis via steroidal pathway. Our results posted a possible novel pathway of GIH signaling that might interfere the steroid signaling cascade to mediate Vg synthesis in the shrimp.
Collapse
Affiliation(s)
- Jakkapong Kluebsoongnoen
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
17
|
Transcriptome analyses reveal the synergistic effects of feeding and eyestalk ablation on ovarian maturation in black tiger shrimp. Sci Rep 2020; 10:3239. [PMID: 32094422 PMCID: PMC7040003 DOI: 10.1038/s41598-020-60192-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
Unilateral eyestalk ablation in the female black tiger shrimp Penaeus monodon is commonly employed to induce ovarian maturation. However, the importance of complementing this practice with the provision of live feed supplement (such as polychaetes) has not been emphasized in previous studies. Indeed, it has been less emphasized that female broodstock must be fed with live feeds such as polychaetes for this practice to be effective. While the effects of eyestalk ablation have been thoroughly studied in various aspects, the synergistic effects of feeding with live feeds and the ablation have never been elucidated at a transcriptome-wide level. With recent advances in the next-generation sequencing platforms, it is now possible to investigate the effects of eyestalk ablation and live feeds at the transcriptomic levels. This study employed both short-read Illumina RNA sequencing and long-read Pacific Biosciences (PacBio) isoform sequencing (Iso-seq) to generate the first high-quality ovarian reference transcriptome in P. monodon. This novel assembly allowed us to dissect the effects of feeds and eyestalk ablation and reveal their synergistic effects at the transcriptomic level through the regulation of important genes involved in fatty acid regulation, energy production, and hormone-mediated oocyte maturation pathways. The synergistic effects between the polychaete feeding and the eyestalk ablation in the process of ovarian maturation in black tiger shrimp suggest that without having proper nutrients from the polychaetes, female broodstock might not be ready to develop its ovary. However, even with proper nutrients, the eyestalk ablation is still necessary to perhaps manipulate the female endocrine of the black tiger shrimp. These findings shed the light on molecular mechanisms and key molecular pathways that lead to successful ovarian maturation.
Collapse
|
18
|
Levy T, Tamone SL, Manor R, Bower ED, Sagi A. The protandric life history of the Northern spot shrimp Pandalus platyceros: molecular insights and implications for fishery management. Sci Rep 2020; 10:1287. [PMID: 31992795 PMCID: PMC6987223 DOI: 10.1038/s41598-020-58262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022] Open
Abstract
The Northern spot shrimp, Pandalus platyceros, a protandric hermaphrodite of commercial importance in North America, is the primary target species for shrimp fisheries within Southeast Alaska. Fishery data obtained from the Alaska Department of Fish and Game indicate that spot shrimp populations have been declining significantly over the past 25 years. We collected spot shrimps in Southeast Alaska and measured reproductive-related morphological, gonadal and molecular changes during the entire life history. The appendix masculina, a major sexual morphological indicator, is indicative of the reproductive phase of the animal, lengthening during maturation from juvenile to the male phase and then gradually shortening throughout the transitional stages until its complete disappearance upon transformation to a female. This morphological change occurs in parallel with the degeneration of testicular tissue in the ovotestis and enhanced ovarian vitellogenesis. Moreover, we obtained the entire mRNA sequence of the yolk protein precursor, vitellogenin, and monitored its transcript levels throughout the entire shrimp life-cycle. Vitellogenin transcript levels in the hepatopancreas increased in the early transitional stage until reaching a peak prior to extruding eggs. Such transcriptomic analyses, coupled with a comprehensive description of the gonad, external sex characters and timing of the reproductive life history of spot shrimps contribute to a better understanding of the hermaphroditic reproduction process in the cold Southeast Alaskan waters. This knowledge can contribute to a revision of current conservation efforts to maintain wild populations sustainable for both commercial and ecological considerations.
Collapse
Affiliation(s)
- Tom Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Sherry L Tamone
- University of Alaska Southeast, 11066 Auke Lake Way Hwy, Juneau, AK, 99801, USA.
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Esther D Bower
- University of Alaska Southeast, 11066 Auke Lake Way Hwy, Juneau, AK, 99801, USA
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel. .,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel.
| |
Collapse
|
19
|
Abstract
Lipoproteins mediate the transport of apolar lipids in the hydrophilic environment of physiological fluids such as the vertebrate blood and the arthropod hemolymph. In this overview, we will focus on the hemolymph lipoproteins in Crustacea that have received most attention during the last years: the high density lipoprotein/β-glucan binding proteins (HDL-BGBPs), the vitellogenins (VGs), the clotting proteins (CPs) and the more recently discovered large discoidal lipoproteins (dLPs). VGs are female specific lipoproteins which supply both proteins and lipids as storage material for the oocyte for later use by the developing embryo. Unusual within the invertebrates, the crustacean yolk proteins-formerly designated VGs-are more related to the ApoB type lipoproteins of vertebrates and are now termed apolipocrustaceins. The CPs on the other hand, which are present in both sexes, are related to the (sex specific) VGs of insects and vertebrates. CPs serve in hemostasis and wound closure but also as storage proteins in the oocyte. The HDL-BGBPs are the main lipid transporters, but are also involved in immune defense. Most crustacean lipoproteins belong to the family of the large lipid transfer proteins (LLTPs) such as the intracellular microsomal triglyceride transfer protein, the VGs, CPs and the dLPs. In contrast, the HDL-BGBPs do not belong to the LLTPs and their relationship with other lipoproteins is unknown. However, they originate from a common precursor with the dLPs, whose functions are as yet unknown. The majority of lipoprotein studies have focused on decapod crustaceans, especially shrimps, due to their economic importance. However, we will present evidence that the HDL-BGBPs are restricted to the decapod crustaceans which raises the question as to the main lipid transporting proteins of the other crustacean groups. The diversity of crustaceans lipoproteins thus appears to be more complex than reflected by the present state of knowledge.
Collapse
Affiliation(s)
- Ulrich Hoeger
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099, Mainz, Germany.
| | - Sven Schenk
- MAX F. PERUTZ LABORATORIES, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
| |
Collapse
|
20
|
Guo H, Chen LL, Li GL, Deng SP, Zhu CH. Accumulation and Depuration of Nonylphenol and Its Effect on the Expressions of Vitellogenin and Vitellogenin Receptor in Freshwater Prawn Macrobrachium rosenbergii. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:729-733. [PMID: 31531704 DOI: 10.1007/s00128-019-02714-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Accumulation of nonylphenol (NP) in hepatopancreas, gonad, eyestalk, and muscle of freshwater prawn Macrobrachium rosenbergii following 72 h exposure to 100 µg/L NP, and depuration of NP in these tissues at 0.5-192 h post exposure were examined. We also examined the expressions of vitellogenin (Vg) and vitellogenin receptor (VgR) of prawn following 0-20 days exposure to 0, 1, 10, and 100 µg/L NP. NP accumulation in hepatopancreas and gonad with high concentration, and low concentration in muscle, but depurated faster in eyestalk and muscle. The expressions of vitellogenin (Vg) and vitellogenin receptor (VgR) increased directly with dose and time. In conclusion, NP accumulated significantly in gonad together with high Vg and VgR expressions, and depurated slow in hepatopancreas and gonad when prawns were removed back to control water. The induction of Vg and VgR under NP exposure might be a stress response in M. rosenbergii.
Collapse
Affiliation(s)
- Hui Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Luan-Luan Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Guang-Li Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Si-Ping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Chun-Hua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Sex identification from distinctive gene expression patterns in Antarctic krill (Euphausia superba). Polar Biol 2019. [DOI: 10.1007/s00300-019-02592-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Antarctic krill (Euphausia superba) is a highly abundant keystone species of the Southern Ocean ecosystem, directly connecting primary producers to high-trophic level predators. Sex ratios of krill vary remarkably between swarms and this phenomenon is poorly understood, as identification of krill sex relies on external morphological differences that appear late during development. Sex determination mechanisms in krill are unknown, but could include genetic, environmental or parasitic mechanisms. Similarly, virtually nothing is known about molecular sex differentiation. The krill genome has to date not been sequenced, and due to its enormous size and large amount of repetitive elements, it is currently not feasible to develop sex-specific DNA markers. To produce a reliable molecular marker for sex in krill and to investigate molecular sex differentiation we therefore focused on identifying sex-specific transcriptomic differences. Through transcriptomic analysis, we found large gene expression differences between testes and ovaries and identified three genes exclusively expressed in female whole krill from early juvenile stages onwards. The sex-specific expression of these three genes persisted through sexual regression, although our regressed samples originated from a krill aquarium and may differ from wild-regressed krill. Two slightly male-biased genes did not display sufficient expression differences to clearly differentiate sexes. Based on the expression of the three female-specific genes we developed a molecular test that for the first time allows the unambiguous sex determination of krill samples lacking external sex-specific features from juvenile stages onwards, including the sexually regressed krill we examined.
Collapse
|
22
|
Girish B, Swetha CH, Srilatha M, Hemalatha M, Sreenivasula Reddy P. Evidence for retinoic acid involvement in the regulation of vitellogenesis in the fresh water edible crab, Oziotelphusa senex senex. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:1-6. [DOI: 10.1016/j.cbpa.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
|
23
|
Lafontaine A, Hanikenne M, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20661-20671. [PMID: 27470247 DOI: 10.1007/s11356-016-7273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.
Collapse
Affiliation(s)
- Anne Lafontaine
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium.
| | - Marc Hanikenne
- Center for Protein Engineering, Functional Genomics and Plant Molecular Imaging, University of Liège, 27 Boulevard du Rectorat, 4000, Liège, Belgium
- PhytoSYSTEMS, University of Liège, 27 Boulevard du Rectorat, 4000, Liège, Belgium
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Lebon, 76058, Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Lebon, 76058, Le Havre, France
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium
| |
Collapse
|
24
|
Zhou K, Wang M, Sun S. Effects of Elevated Temperature and Food Supply on the Termination of Over-Summering and Subsequent Development of the Calanoid Copepod Calanus sinicus: Morphology, Physiology and Gene Expression. PLoS One 2016; 11:e0161838. [PMID: 27652608 PMCID: PMC5031433 DOI: 10.1371/journal.pone.0161838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022] Open
Abstract
The copepod Calanus sinicus Brodsky dominates the zooplankton in the Yellow Sea, China, and undergoes over-summering within the Yellow Sea Cold Water Mass (YSCWM). Termination of over-summering and subsequent development are regarded as key processes in population recruitment, and are probably linked to environmental variations in the YSCWM. In this study, we examined the effects of temperature (9 and 18°C) and food conditions (0.1 μg C mL-1 and unfed) on metabolic rates, morphological characteristics, and relative gene expressions of six genes involved in molting, gonad development, lipid catabolism, and stress tolerance processes of C. sinicus during termination of over-summering and subsequent development. Both elevated temperature and external food supply rapidly ended over-summering of C. sinicus, accompanied by up-regulation of the ecdysteroid receptor (EcR) gene expression and increased metabolic rates. These environmental conditions resulted in irreversible termination of over-summering and ensure the success of molting. During subsequent development, the lipid reserve in oil sacs could permit only early gonad development. The food supply might be a trigger to activate the final maturity of gonad by up-regulating expression of the vitellogenin receptor (VgR) gene. Thus, food played an indispensable role in population recruitment after termination of over-summering, whereas the elevated temperature accelerated these physiological processes. This study revealed the first dynamic profiles of physiological processes involved in over-summering termination and the subsequent development of C. sinicus using morphological, physiological and molecular methods simultaneously, confirmed the quiescent state of over-summering C5 copepodites, detected the effects of environmental changes on over-summering termination and subsequent development, and provided a foundation for future investigations of the mechanisms involved in over-summering in YSCWM.
Collapse
Affiliation(s)
- Konglin Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Minxiao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
25
|
Bai H, Qiao H, Li F, Fu H, Jiang S, Zhang W, Yan Y, Xiong Y, Sun S, Jin S, Gong Y, Wu Y. Molecular and functional characterization of the vitellogenin receptor in oriental river prawn, Macrobrachium nipponense. Comp Biochem Physiol A Mol Integr Physiol 2016; 194:45-55. [PMID: 26773480 DOI: 10.1016/j.cbpa.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022]
Abstract
A complementary DNA (cDNA) that encodes the vitellogenin receptor (VgR) in the oriental river prawn, Macrobrachium nipponense, was cloned using expressed sequence tag analysis and a rapid amplification of cDNA ends approach. The coding region consists of 5920 base pairs (bp) that encode a 1902 amino acid protein, with a predicted molecular mass of 209 kDa. The coding region is flanked by a 45 bp 5'-untranslated region (UTR) and a 166 bp 3'-UTR. The deduced amino acid sequence of the M. nipponense VgR cDNA had typically conserved domains, such as an extracellular, lipoprotein-binding domain, epidermal growth factor-like and O-glycosylation domains, a transmembrane domain and a short C-terminal, cytosolic tail. Quantitative real-time PCR (qPCR) indicated that Mn-VgR is highly expressed in the female ovary. Expression analysis by qPCR demonstrated the larval and ovarian developmental stage-specific expression pattern. As the ovaries developed, the expression level of Mn-VgR gradually increased during the reproductive cycle (stage I), to reach a peak in stage III. Levels then dropped as a new development cycle was entered after reproduction molting. Eyestalk ablation led to a significant increase in the expression of Mn-VgR during the ovarian development stages (P<0.05), when compared with the eyestalk-intact group. The investigation revealed that eyestalk ablation initially affected Mn-VgR expression and then influenced vitellogenesis. In adult females, VgR RNA interference (RNAi) dramatically delayed the maturation of the ovary, in accordance with the gonad somatic index. In addition, Mn-VgR RNAi led to vitellin depletion in the oocytes and the accumulation of vitellin in the hepatopancreas.
Collapse
Affiliation(s)
- Hongkun Bai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fajun Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Weifang University of Science and Technology, Shouguang 262700, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuedi Yan
- Shanghai Ocean University, Shanghai 201306, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
26
|
The Essential Role of Vitellogenin Receptor in Ovary Development and Vitellogenin Uptake in Bactrocera dorsalis (Hendel). Int J Mol Sci 2015; 16:18368-83. [PMID: 26262609 PMCID: PMC4581250 DOI: 10.3390/ijms160818368] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/16/2022] Open
Abstract
The vitellogenin receptor (VgR) functions as an essential component in uptaking and transporting vitellogenin (Vg) in female adults, which is involved in ovary development and oviposition. This study aimed to clarify the molecular characteristics and function of VgR in the oriental fruit fly Bactrocera dorsalis (Hendel). Here, we identified the full-length of BdVgR (GenBank Accession No. JX469118), encoding a 1925 residue (aa) protein with a 214.72 kDa molecular mass and several typical motifs of low-density lipoprotein receptor superfamily (LDLR). Phylogenic analysis suggested that BdVgR was evolutionary conserved with other Dipteran VgRs. The expression of BdVgR was exclusively detected in the ovaries rather than head, thorax or other tissues. The developmental expression patterns showed that the signal of BdVgR was detectable in very beginning of adult stage, and positively correlated with the growth rate of ovaries and the expression levels of its ligands. In addition, we also demonstrated that the expression level of BdVgR, and ovary development were significantly suppressed after being injected with BdVgR-targeted dsRNA. Together, all of these results indicated that BdVgR was critical for yolk protein absorption and ovary maturation in B. dorsalis, playing a vital role in female reproduction.
Collapse
|
27
|
Rotllant G, Wade NM, Arnold SJ, Coman GJ, Preston NP, Glencross BD. Identification of genes involved in reproduction and lipid pathway metabolism in wild and domesticated shrimps. Mar Genomics 2015; 22:55-61. [PMID: 25890100 DOI: 10.1016/j.margen.2015.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
The aims of this study were to identify genes involved in reproduction and lipid pathway metabolism in Penaeus monodon and correlate their expression with reproductive performance. Samples of the hepatopancreas and ovaries were obtained from a previous study of the reproductive performance of wild and domesticated P. monodon broodstock. Total mRNA from the domesticated broodstock was used to create two next generation sequencing cDNA libraries enabling the identification of 11 orthologs of key genes in reproductive and nutritional metabolic pathways in P. monodon. These were identified from the library of de novo assembled contigs, including the description of 6 newly identified genes. Quantitative RT-PCR of these genes in the hepatopancreas prior to spawning showed that the domesticated mature females significantly showed higher expression of the Pm Elovl4, Pm COX and Pm SUMO genes. The ovaries of domesticated females had a significantly decreased expression of the Pm Elovl4 genes. In the ovaries of newly spawned females, a significant correlation was observed between hepatosomatic index and the expression of Pm FABP and also between total lipid content and the expression of Pm CYP4. Although not significant, the highest levels of correlation were found between relative fecundity and Pm CRP and Pm CYP4 expression, and between hatching rate and Pm Nvd and Pm RXR expression. This study reports the discovery of genes involved in lipid synthesis, steroid biosynthesis and reproduction in P. monodon. These results indicate that genes encoding enzymes involved in lipid metabolism pathways might be potential biomarkers to assess reproductive performance.
Collapse
Affiliation(s)
- Guiomar Rotllant
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, E-08003 Barcelona, Spain.
| | - Nicholas M Wade
- CSIRO, Agricultural Productivity Flagship, Ecosciences Precinct, GPO Box 2583, Brisbane, 4001, Australia
| | - Stuart J Arnold
- CSIRO, Agricultural Productivity Flagship, Ecosciences Precinct, GPO Box 2583, Brisbane, 4001, Australia
| | - Gregory J Coman
- CSIRO, Agricultural Productivity Flagship, Ecosciences Precinct, GPO Box 2583, Brisbane, 4001, Australia
| | - Nigel P Preston
- CSIRO, Agricultural Productivity Flagship, Ecosciences Precinct, GPO Box 2583, Brisbane, 4001, Australia
| | - Brett D Glencross
- CSIRO, Agricultural Productivity Flagship, Ecosciences Precinct, GPO Box 2583, Brisbane, 4001, Australia
| |
Collapse
|
28
|
Girish BP, Swetha CH, Reddy PS. Expression of RXR, EcR, E75 and VtG mRNA levels in the hepatopancreas and ovary of the freshwater edible crab, Oziothelphusa senex senex (Fabricius, 1798) during different vitellogenic stages. Naturwissenschaften 2015; 102:20. [DOI: 10.1007/s00114-015-1272-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Lu K, Shu Y, Zhou J, Zhang X, Zhang X, Chen M, Yao Q, Zhou Q, Zhang W. Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål). JOURNAL OF INSECT PHYSIOLOGY 2015; 73:20-9. [PMID: 25617689 DOI: 10.1016/j.jinsphys.2015.01.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 05/13/2023]
Abstract
Vitellogenin receptors (VgRs), members of the low-density lipoprotein receptor (LDLR) superfamily, are responsible for taking vitellogenin (Vg) into developing oocytes. Here the first full-length VgR cDNA from a hemipteran insect, the brown planthopper (Nilaparvata lugens), was cloned and sequenced. The complete mRNA sequence was 6174 bp in length with an open reading frame (ORF) of 5796 bp encoding 1931 amino acid residues. N. lugens VgR (NlVgR) contained two ligand-binding domains with five LDLR Class A cysteine-rich repeats in the first domain and eight in the second domain, which was similar to other insect VgRs. NlVgR was specifically expressed in the ovary, and the mRNA level started to increase after adult female emergence, with a peak on day 7 in the adult stage, and then declined. Western blot analysis of NlVgR protein revealed an ovary-specific expression pattern, which was consistent with NlVgR transcript detection. Injection with NlVgR double-stranded RNA (dsRNA) significantly disturbed NlVgR, which led to a decrease in NlVg protein content in the ovaries, an accumulation of NlVg protein in the hemolymph, the arrested development of ovaries, and the failure of insects to reproduce. Besides, NlVgR expression was significantly upregulated after the topical application of juvenile hormone (JH) III. These results suggest that VgR is critical for Vg uptaking of oocytes and it plays an important role in insect fecundity.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghua Shu
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| | - Jialiang Zhou
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| | - Xiaoyi Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| | - Mingxiao Chen
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| | - Qiong Yao
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
In-depth transcriptome analysis of the red swamp crayfish Procambarus clarkii. PLoS One 2014; 9:e110548. [PMID: 25338101 PMCID: PMC4206422 DOI: 10.1371/journal.pone.0110548] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022] Open
Abstract
The red swamp crayfish Procambarus clarkii is a highly adaptable, tolerant, and fecund freshwater crayfish that inhabits a wide range of aquatic environments. It is an important crustacean model organism that is used in many research fields, including animal behavior, environmental stress and toxicity, and studies of viral infection. Despite its widespread use, knowledge of the crayfish genome is very limited and insufficient for meaningful research. This is the use of next-generation sequencing techniques to analyze the crayfish transcriptome. A total of 324.97 million raw reads of 100 base pairs were generated, and a total of 88,463 transcripts were assembled de novo using Trinity software, producing 55,278 non-redundant transcripts. Comparison of digital gene expression between four different tissues revealed differentially expressed genes, in which more overexpressed genes were found in the hepatopancreas than in other tissues, and more underexpressed genes were found in the testis and the ovary than in other tissues. Gene ontology (GO) and KEGG enrichment analysis of differentially expressed genes revealed that metabolite- and immune-related pathway genes were enriched in the hepatopancreas, and DNA replication-related pathway genes were enriched in the ovary and the testis, which is consistent with the important role of the hepatopancreas in metabolism, immunity, and the stress response, and with that of the ovary and the testis in reproduction. It was also found that 14 vitellogenin transcripts were highly expressed specifically in the hepatopancreas, and 6 transcripts were highly expressed specifically in the ovary, but no vitellogenin transcripts were highly expressed in both the hepatopancreas and the ovary. These results provide new insight into the role of vitellogenin in crustaceans. In addition, 243,764 SNP sites and 43,205 microsatellite sequences were identified in the sequencing data. We believe that our results provide an important genome resource for the crayfish.
Collapse
|
31
|
Characterization of the shrimp neuroparsin (MeNPLP): RNAi silencing resulted in inhibition of vitellogenesis. FEBS Open Bio 2014; 4:976-86. [PMID: 25431753 PMCID: PMC4244560 DOI: 10.1016/j.fob.2014.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/21/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022] Open
Abstract
The full-length Metapenaeus ensis neuroparsin (MeNPLP) cDNA was cloned which encodes a shrimp protein homologous to the insect neuroparsin and vertebrate insulin-like growth factor binding protein (IGFBP). MeNPLP cDNA is 1389 bp in length and the longest open reading frame is 303 bp in length. The first 27 aa are predicted to be the signal peptide and aa 28-101 is the mature peptide with an estimated molecular weight of 7.83 kDa and pI of 5. It shows high amino acid sequence similarity (42-68%) to the neuroparsin of insects and N-terminal end of the IGFBP of vertebrates. The cysteine residues in MeNPLP responsible for disulfide bond formation are conserved as in other neuroparsin-like proteins. The expression level of MeNPLP is the highest in the hepatopancreas, followed by the nerve cord, brain, heart, ovary, and muscle. However, it was not expressed in the testis. Using an insect neuroparsin antibody, MeNPLP could only be detected in the hepatopancreatic tubules, suggesting that MeNPLP may be a secretary product. Although MeNPLP expression was stimulated in the ovary, it was inhibited in the hepatopancreas after treatment with neurotransmitter serotonin (5-HT). In vivo gene silencing of MeNPLP could cause a significant decrease of vitellogenin transcript level in the hepatopancreas and ovary. As a result, a corresponding decrease in vitellogenin protein level was observed in the hemolymph and ovary. In conclusion, this study has provided the first evidence that MeNPLP is involved in the initial stage of ovary maturation in shrimp.
Collapse
|
32
|
Jiang H, Xing Z, Lu W, Qian Z, Yu H, Li J. Transcriptome analysis of red swamp crawfish Procambarus clarkii reveals genes involved in gonadal development. PLoS One 2014; 9:e105122. [PMID: 25118947 PMCID: PMC4132113 DOI: 10.1371/journal.pone.0105122] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022] Open
Abstract
Background The red swamp crawfish, Procambarus clarkii, has become one of the most economically important cultured species in China. Currently, little is known about the gonadal development of this species. Isolation and characterization of genes are an initial step towards understanding gonadal development of P. clarkii. Results Using the 454 pyrosequencing technology, we obtained a total of 1,134,993 high quality sequence reads from the crawfish testis and ovary libraries. We aimed to identify different genes with a potential role in gonad development. The assembly formed into 22,652 isotigs, distributed by GO analysis across 55 categories in the three ontologies, ‘molecular function’, ‘cellular component’, and ‘biological processes’. Comparative transcript analysis showed that 1,720 isotigs in the ovary were up-regulated and 2138 isotigs were down-regulated. Several gonad development related genes, such as vitellogenin, cyclin B, cyclin-dependent kinases 2, Dmc1 and ubiquitin were identified. Quantitative real-time PCR verified the expression profiles of 14 differentially expressed genes, and confirmed the reliability of the 454 pyrosequencing. Conclusions Our findings provide an archive for future research on gonadal development at a molecular level in P. clarkii and other crustacean. This data will be helpful to develop new ideas for artificial regulation of the reproductive process in crawfish aquaculture.
Collapse
Affiliation(s)
- Hucheng Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Zhijun Xing
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Wei Lu
- Jiangsu Xuyi Riverred Crawfish Eco-Park CO. LTD, Xuyi, China
| | - Zhaojun Qian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Hongwei Yu
- Jiangsu Xuyi Riverred Crawfish Eco-Park CO. LTD, Xuyi, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Zhang W, Xia Y. ER type I signal peptidase subunit (LmSPC1) is essential for the survival of Locusta migratoria manilensis and affects moulting, feeding, reproduction and embryonic development. INSECT MOLECULAR BIOLOGY 2014; 23:269-285. [PMID: 24467622 DOI: 10.1111/imb.12080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The endoplasmic reticulum type I signal peptidase complex (ER SPC) is a conserved enzyme that cleaves the signal peptides of secretory or membrane preproteins. The deletion of this enzyme leads to the accumulation of uncleaved proteins in biomembranes and cell death. However, the physiological functions of ER SPC in insects are not fully understood. Here, a catalytic subunit gene of ER SPC, LmSPC1, was cloned from Locusta migratoria manilensis and its physiological functions were analysed by RNA interference (RNAi). The LmSPC1 open reading frame encoded a protein of 178 amino acids with all five conserved regions of signal peptidases. RNAi-mediated knockdown of LmSPC1 resulted in high mortality. Sixty-nine per cent of dead nymphs died of abnormal moulting, corresponding to decreased activity of moulting fluid protease. Moreover, insects in the RNAi group experienced a decline in food intake, and a decrease in the secretion of total protein and digestive enzymes from midgut tissues to the midgut lumen. Furthermore, the females produced fewer eggs and eggs with disrupted embryogenesis. These results indicate that LmSPC1 is required for the secretion of secretory proteins, affects physiological functions, including moulting, feeding, reproduction and embryonic development, and is essential for survival. Therefore, LmSPC1 may be a potential target for locust control.
Collapse
Affiliation(s)
- W Zhang
- Genetic Engineering Research Center, School of Life Science, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University, Chongqing, China
| | | |
Collapse
|
34
|
Lee JH, Kim BK, Seo YI, Choi JH, Kang SW, Kang CK, Park WG, Kim HW. Four cDNAs encoding lipoprotein receptors from shrimp (Pandalopsis japonica): structural characterization and expression analysis during maturation. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:51-62. [PMID: 24389120 DOI: 10.1016/j.cbpb.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
As in all other oviparous animals, lipoprotein receptors play a critical role in lipid metabolism and reproduction in decapod crustaceans. Four full-length cDNAs encoding lipoprotein receptors (Paj-VgR, Paj-LpR1, Paj-LpR2A, and Paj-LpR2B) were identified from Pandalopsis japonica through a combination of EST screening and PCR-based cloning. Paj-LpR1 appears to be the first crustacean ortholog of insect lipophorin receptors, and its two paralogs, Paj-LpR2A and Paj-LpR2B, exhibited similar structural characteristics. Several transcriptional isoforms were also identified for all three Paj-LpRs. Each expression pattern was unique, suggesting different physiological roles for these proteins. Paj-VgR is an ortholog of vitellogenin (Vg) receptors from other decapod crustaceans. A phylogenetic analysis of lipoproteins and their receptors suggested that the nomenclature of Vgs from decapod crustaceans may need to be changed. A PCR-based transcriptional analysis showed that Paj-VgR and Paj-LpR2B are expressed almost exclusively in the ovary, whereas Paj-LpR1 and Paj-LpR2A are expressed in multiple tissues. The various transcriptional isoforms of the three Paj-LpRs exhibited unique tissue distribution profiles. A transcriptional analysis of each receptor using tissues with different GSI values showed that the change in transcription of Paj-VgRs, Paj-LpR2A and Paj-LpR1 was not as significant as that of Vgs during maturation. However, the transcriptional levels of Paj-LpR2B decreased in ovary at maturation, suggesting that their transcriptional regulation is involved in reproduction.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Bo Kwang Kim
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Young-Il Seo
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Jung Hwa Choi
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Seung-Wan Kang
- Gyeongsangnam-do Fisheries Resources Research Institute, South Korea
| | - Chang-Keun Kang
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Won-gyu Park
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea; Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea.
| |
Collapse
|
35
|
Smith AD, Reuben Kaufman W. Molecular characterization of the vitellogenin receptor from the tick, Amblyomma hebraeum (Acari: Ixodidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1133-1141. [PMID: 24128609 DOI: 10.1016/j.ibmb.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
We have identified the full-length cDNA encoding a vitellogenin receptor (VgR) from the African bont tick Amblyomma hebraeum Koch (1844). VgRs are members of the low-density lipoprotein receptor superfamily that promote the uptake of the yolk protein vitellogenin (Vg), from the haemolymph. The AhVgR (GenBank accession No. JX846592) is 5703 bp, and encodes an 1801 aa protein with a 196.5 kDa molecular mass following cleavage of a 22 aa signal peptide. Phylogenetic analysis indicates that AhVgR is highly similar to other tick VgRs. AhVgR is expressed in only the ovary of mated, engorged females, and is absent in all other female tissues and in both fed and unfed males. Unfed, adult females injected with a VgR-dsRNA probe to knock-down VgR expression experienced a significant delay in ovary development and started oviposition significantly later than controls. These results indicate that the expression of AhVgR is important for the uptake of Vg and subsequent maturation of the oocytes.
Collapse
Affiliation(s)
- Alexander D Smith
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada.
| | | |
Collapse
|
36
|
Gene silencing in crustaceans: from basic research to biotechnologies. Genes (Basel) 2013; 4:620-45. [PMID: 24705266 PMCID: PMC3927571 DOI: 10.3390/genes4040620] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/14/2013] [Accepted: 10/08/2013] [Indexed: 11/16/2022] Open
Abstract
Gene silencing through RNA interference (RNAi) is gaining momentum for crustaceans, both in basic research and for commercial development. RNAi has proven instrumental in a growing number of crustacean species, revealing the functionality of novel crustacean genes essential among others to development, growth, metabolism and reproduction. Extensive studies have also been done on silencing of viral transcripts in crustaceans, contributing to the understanding of the defense mechanisms of crustaceans and strategies employed by viruses to overcome these. The first practical use of gene silencing in aquaculture industry has been recently achieved, through manipulation of a crustacean insulin-like androgenic gland hormone. This review summarizes the advancements in the use of RNAi in crustaceans, and assesses the advantages of this method, as well as the current hurdles that hinder its large-scale practice.
Collapse
|
37
|
Roth Z, Weil S, Aflalo ED, Manor R, Sagi A, Khalaila I. Identification of receptor-interacting regions of vitellogenin within evolutionarily conserved β-sheet structures by using a peptide array. Chembiochem 2013; 14:1116-22. [PMID: 23733483 DOI: 10.1002/cbic.201300152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/11/2022]
Abstract
Vitellogenesis, a key process in oviparous animals, is characterized by enhanced synthesis of the lipoprotein vitellogenin, which serves as the major yolk-protein precursor. In most oviparous animals, and specifically in crustaceans, vitellogenin is mainly synthesized in the hepatopancreas, secreted to the hemolymph, and taken up into the ovary by receptor-mediated endocytosis. In the present study, localization of the vitellogenin receptor and its interaction with vitellogenin were investigated in the freshwater prawn Macrobrachium rosenbergii. The receptor was immuno-histochemically localized to the cell periphery and around yolk vesicles. A receptor blot assay revealed that the vitellogenin receptor interacts with most known vitellogenin subunits, the most prominent being the 79 kDa subunit. The receptor was, moreover, able to interact with trypsin-digested vitellogenin peptides. By combining a novel peptide-array approach with tandem mass spectrometry, eleven vitellogenin-derived peptides that interacted with the receptor were identified. A 3D model of vitellogenin indicated that four of the identified peptides are N-terminally localized. One of the peptides is homologous to the receptor-recognized site of vertebrate vitellogenin, and assumes a conserved β-sheet structure. These findings suggest that this specific β-sheet region in the vitellogenin N-terminal lipoprotein domain is the receptor-interacting site, with the rest of the protein serving to enhance affinity for the receptor. The conservation of the receptor recognition site in invertebrate and vertebrate vitellogenin might have vast implications for oviparous species reproduction, development, immunity, and pest management.
Collapse
Affiliation(s)
- Ziv Roth
- Avram and Stella Goldstein-Goren Department of Biotechnology, Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Roth Z, Khalaila I. Identification and characterization of the vitellogenin receptor in Macrobrachium rosenbergii and its expression during vitellogenesis. Mol Reprod Dev 2013; 79:478-87. [PMID: 22674884 DOI: 10.1002/mrd.22055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In oviparous organisms, oocyte maturation depends on massive production of the egg yolk-precursor protein, vitellogenin (Vg). Vg is taken up by the developing oocytes through receptor-mediated endocytosis (RME), a process essential to successful reproduction. The aims of this study were to identify and characterize the yet-unknown vitellogenin receptor (VgR) from the pleocyamate crustacean Macrobrachium rosenbergii, and to investigate its expression levels during vitellogenesis and its interaction with Vg. The VgR gene was cloned, and its translated protein was specifically located at the oocyte membrane. Moreover, for the first time, a VgR protein was identified and sequenced by mass spectrometry. The putative MrVgR displayed high sequence similarity to VgRs from crustaceans, insects, and vertebrates, and its structure includes typical elements, such as an extracellular, lipoprotein-binding domain (LBD), EGF-like, and O-glycosylation domains, a transmembrane domain, and a short, C-terminal, cytosolic tail. In this article, we identify the first crustacean VgR protein, and present data demonstrating its high affinity for a Vg column followed by elution with suramin and EDTA. Additionally we demonstrate that VgR expression in the oocyte is elevated during vitellogenesis. Our results contribute to the fundamental understanding of oocyte maturation in crustaceans, and particularly elucidate Vg uptake through RME via the VgR.
Collapse
Affiliation(s)
- Ziv Roth
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
39
|
Hirono I, Fagutao FF, Kondo H, Aoki T. Uncovering the mechanisms of shrimp innate immune response by RNA interference. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:622-8. [PMID: 20396922 DOI: 10.1007/s10126-010-9292-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/16/2010] [Indexed: 05/19/2023]
Abstract
Because of the importance of shrimp in world aquaculture, there is much interest in understanding their immune system in order to improve their resistance to pathogenic microorganisms. An effective tool in studying genes involved in the immune response in shrimp is RNA interference (RNAi). RNAi, first recognized as an antiviral response against RNA viruses, is a cellular mechanism that is triggered by double-stranded RNAs and results in the degradation of homologous genes. In this review, we describe the current studies of genes in shrimp that employed RNAi technology to elucidate or confirm their functions. We also review the potential of RNAi to elicit antiviral response in shrimp.
Collapse
Affiliation(s)
- Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan.
| | | | | | | |
Collapse
|
40
|
Sellars MJ, Rao M, Arnold SJ, Wade NM, Cowley JA. Penaeus monodon is protected against gill-associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. DISEASES OF AQUATIC ORGANISMS 2011; 95:19-30. [PMID: 21797032 DOI: 10.3354/dao02343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gill-associated virus (GAV) is a nidovirus that commonly infects Penaeus monodon (black tiger shrimp) in eastern Australia, causing morbidity and mortalities in the acute stage of disease. Here we explored the possibility of inhibiting GAV replication and disease using double-stranded (ds)RNAs expressed in bacteria and delivered either orally or by muscle injection. To enhance potential RNA interference (RNAi) responses, 5 long dsRNAs were used that targeted open reading frame 1a/1b (ORF1a/b) gene regions and thus only the genomic length RNA. To examine oral delivery, P. monodon were fed pellets incorporating a pool of formalin-fixed bacteria containing the 5 GAV-specific dsRNAs before being injected with a minimal lethal GAV dose. Feeding with the pellets continued post-challenge but did not reduce mortality accumulation and elevation in GAV loads. In contrast, muscle injection of the dsRNAs purified from bacteria was highly effective at slowing GAV replication and protecting shrimp against acute disease and mortalities. In synergy with these data, dsRNA targeted to P. monodon beta-actin mRNA caused 100% mortality following injection, whilst its oral delivery caused no mortality. Findings confirm that injected dsRNA can mount effective RNAi responses in P. monodon to endogenous shrimp mRNA and exogenous viral RNAs, but when delivered orally in bacteria as a feed component, the same dsRNAs are ineffective. The efficacy of the RNAi response against GAV provided by injection of dsRNAs targeted to multiple genome sites suggests that this strategy might have general applicability in enhancing protection against other shrimp single-stranded (ss)RNA viruses, particularly in hatcheries or breeding programs where injection-based delivery systems are practical.
Collapse
Affiliation(s)
- Melony J Sellars
- CSIRO Food Futures National Research Flagship, CSIRO Marine and Atmospheric Research, Cleveland, Queensland 4163, Australia.
| | | | | | | | | |
Collapse
|
41
|
Lu HL, Vinson SB, Pietrantonio PV. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J 2009; 276:3110-23. [PMID: 19490112 DOI: 10.1111/j.1742-4658.2009.07029.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ant species in which mating flights are a strategic life-history trait for dispersal and reproduction, maturation of virgin queens occurs. However, the specific molecular mechanisms that mark this transition and the effectors that control premating ovarian growth are unknown. The vitellogenin receptor (VgR) is responsible for vitellogenin uptake during egg formation in insects. In the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), virgin queens have more abundant VgR transcripts than newly mated queens, but limited egg formation. To elucidate whether the transition to egg production involved changes in VgR expression, we investigated both virgin and mated queens. In both queens, western blot analysis showed an ovary-specific VgR band (approximately 202 kDa), and immunofluorescence analysis of ovaries detected differential VgR localization in early- and late-stage oocytes. However, the VgR signal was much lower in virgin queens ready to fly than in mated queens 8 h post mating flight. In virgin queens, the receptor signal was first observed at the oocyte membrane beginning at day 12 post emergence, coinciding with the 2 weeks of maturation required before a mating flight. Thus, the membrane localization of VgR appears to be a potential marker for queen mating readiness. Silencing of the receptor in virgin queens through RNA interference abolished egg formation, demonstrating that VgR is involved in fire ant ovary development pre mating. To our knowledge, this is the first report of RNA interference in any ant species and the first report of silencing of a hymenopteran VgR.
Collapse
Affiliation(s)
- Hsiao-Ling Lu
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | | | |
Collapse
|
42
|
Tiu SHK, Hui HL, Tsukimura B, Tobe SS, He JG, Chan SM. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods. Gen Comp Endocrinol 2009; 160:36-46. [PMID: 18992748 DOI: 10.1016/j.ygcen.2008.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
This study reports the molecular characterization of the vitellogenin (Vg) of the lobster, Homarus americanus. Based on the annual collection of female lobsters, vitellogenesis commences in early March and continues through to September of each year. Using an antibody to vitellin of the lobster, H. americanus, several immunoreactive ovarian proteins were initially identified by Western blot analysis. The 80kDa protein contained the amino acid sequence APWGGNTPRC, identified subsequently by cDNA cloning to be identical to the lobster Vg. In common with the shrimp Metapenaeus ensis and crab Charybdis feriatus, the lobster HaVg1 gene comprises 14 introns and 15 exons. The deduced HaVg1 precursor is most similar to the Vg of the crayfish Cherax quadricarinatus (57%), followed by M. ensis (40-43% identity) and C. feriatus (38%). The results from genomic and RT-PCR cloning also confirmed the presence of multiple Vg genes in lobster. At early reproductive stages, the hepatopancreas HaVg1 transcript levels are low but increased to a maximum in animals with mature oocytes. The ovary, however, also expressed low levels of HaVg1. Using in vitro explant culture, treatment of hepatopancreas fragments with farnesoic acid or 20-hydroxyecdysone resulted in a significant stimulation in HaVg1 expression. From this study, it appears that Vg gene organization and expression pattern in decapods is highly conserved. Similar endocrine mechanisms may govern the process of vitellogenesis across the decapods.
Collapse
Affiliation(s)
- Shirley Hiu Kwan Tiu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | | | | | |
Collapse
|