1
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
2
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Chen M, Zhao X, Chang Z, Liu H, Zhu L, Wang S, Zhang D, Wang J. Chenodeoxycholic acid fortified diet drives ovarian steroidogenesis to improve embryo implantation through enhancing uterine receptivity via progesterone receptor signaling pathway in rats. J Nutr Biochem 2024; 134:109774. [PMID: 39343323 DOI: 10.1016/j.jnutbio.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Infertility is a worldwide reproductive health problem influenced by the embryo implantation efficiency. We previously revealed that dietary chenodeoxycholic acid (CDCA) positively influence the early embryo implantation. But how CDCA regulate embryo implantation is largely unexplored. Herein, we investigated the mechanism behind CDCA's regulation on embryo implantation in rats. Results showed that CDCA promoted uterine receptivity, leading to increased number of implantation sites. Mechanistically, CDCA reshaped maternal amino acid metabolism and enhanced serum progesterone levels. CDCA enhanced ovarian progesterone synthesis by improving steroidogenesis-related protein (StAR and CYP11A1) expression via Takeda G-protein-coupled receptor 5. Elevated progesterone exaggerated uterine progesterone but weakened the estradiol signaling in the CDCA group, contributing to better uterine receptive for embryo implantation. Additionally, elevated transcription repressor Stat5b induced the down-regulation of progesterone-metabolizing enzyme 20-hydroxysteroid dehydrogenase 20α-HSD, complementally explained uterine progesterone signaling enhancement. Overall, our data revealed that CDCA drove ovarian steroidogenesis to improve embryo implantation through enhancing uterine receptivity via progesterone receptor pathway in rats. Therefore, CDCA diet may be a potential favorable nutritional strategy for infertility and pregnancy management.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Xiaoyi Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; College of Animal Science, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhuo Chang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Longlong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyang Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
4
|
Bazer FW, Wu G, Johnson GA. Fructose metabolism is unregulated in cancers and placentae. Exp Biol Med (Maywood) 2024; 249:10200. [PMID: 39529665 PMCID: PMC11550943 DOI: 10.3389/ebm.2024.10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Fructose and lactate are present in high concentrations in uterine luminal fluid, fetal fluids and fetal blood of ungulates and cetaceans, but their roles have been ignored and they have been considered waste products of pregnancy. This review provides evidence for key roles of both fructose and lactate in support of key metabolic pathways required for growth and development of fetal-placental tissues, implantation and placentation. The uterus and placenta of ungulates convert glucose to fructose via the polyol pathway. Fructose is sequestered within the uterus and cannot be transported back into the maternal circulation. Fructose is phosphorylated by ketohexokinase to fructose-1-PO4 (F1P) by that is metabolized via the fructolysis pathway to yield dihydoxyacetone phosphate and glyceraldehyde-3-PO4 that are downstream of phosphofructokinase. Thus, there is no inhibition of the fructolysis pathway by low pH, citrate or ATP which allows F1P to continuously generate substrates for the pentose cycle, hexosamine biosynthesis pathway, one-carbon metabolism and tricarboxylic acid cycle, as well as lactate. Lactate sustains the activity of hypoxia-inducible factor alpha and its downstream targets such as vascular endothelial growth factor to increase utero-placental blood flow critical to growth and development of the fetal-placental tissues and a successful outcome of pregnancy. Pregnancy has been referred to as a controlled cancer and this review addresses similarities regarding metabolic aspects of tumors and the placenta.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Martínez De Los Reyes N, Toledano-Díaz A, López-Sebastián A, Santiago Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. PPARG is dispensable for bovine embryo development up to tubular stages†. Biol Reprod 2024; 111:557-566. [PMID: 38832705 PMCID: PMC11402522 DOI: 10.1093/biolre/ioae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leopoldo González-Brusi
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inés Flores-Borobia
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nuria Martínez De Los Reyes
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adolfo Toledano-Díaz
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio López-Sebastián
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julián Santiago Moreno
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
6
|
Moses RM, Stenhouse C, Halloran KM, Sah N, Hoskins EC, Washburn SE, Johnson GA, Wu G, Bazer FW. Metabolic pathways for glucose and fructose: I synthesis and metabolism of fructose by ovine conceptuses†. Biol Reprod 2024; 111:148-158. [PMID: 38501845 DOI: 10.1093/biolre/ioae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Fructose, the most abundant hexose sugar in fetal fluids and the blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway, and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell-specific manner. The KHK-A protein was more abundant in the trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in the endoderm of Day 16 conceptuses and the chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the tricarboxylic cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway, and one-carbon metabolism required for conceptus development throughout pregnancy.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Claire Stenhouse
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katherine M Halloran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nirvay Sah
- Department of Pathology, University of California-San Diego, San Diego, California, USA
| | - Emily C Hoskins
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pathology, Texas A&M University, College Station Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
8
|
Wu G, Bazer FW, Johnson GA, Satterfield MC, Washburn SE. Metabolism and Nutrition of L-Glutamate and L-Glutamine in Ruminants. Animals (Basel) 2024; 14:1788. [PMID: 38929408 PMCID: PMC11201166 DOI: 10.3390/ani14121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - M. Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Shannon E. Washburn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
9
|
Kawashima C, Hayakawa H, Taniguchi A, Sugimoto Y, Kusaba N, Yamagishi N, Goto A. Supplementation of rumen-protected lysine during the close-up period improves vaginal discharge clearance in Holstein dairy cows. Reprod Domest Anim 2024; 59:e14558. [PMID: 38566368 DOI: 10.1111/rda.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
We aimed to evaluate the effects of rumen-protected lysine (RPL) supplementation during the close-up period on uterine involution and the resumption of ovarian function in dairy cows. Fifty-two multiparous Holstein cows were categorized based on parity and expected calving date and randomly assigned to the RPL or control (CON) groups. The RPL group received 80 g of RPL daily from day 21 before the expected calving date until parturition. Blood samples were obtained twice weekly from pre-supplementation to 6 weeks postpartum. The onset of luteal activity postpartum was determined via ultrasonography twice weekly for up to 6 weeks postpartum. Uterine involution was tracked at 3 and 5 weeks postpartum through the vaginal discharge score, percentage of polymorphonuclear cells (PMN) in endometrial cytology samples, presence of intrauterine fluid, and gravid horn diameter via ultrasonography. Before supplementation, the RPL group showed amino acid imbalance, which was improved by RPL supplementation. There were no significant differences in the onset of luteal activity, percentage of PMN, intrauterine fluid, or the diameter of the uterine horn between the two groups. The vaginal discharge score in the RPL group decreased from 3 to 5 weeks postpartum, whereas that in the CON groups did not decrease. The number of cows with clinical endometritis was lower in the RPL group. Overall, RPL supplementation during the close-up period enhanced vaginal discharge clearance, potentially averting clinical endometritis, but did not affect the first ovulation in dairy cows.
Collapse
Affiliation(s)
- Chiho Kawashima
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hina Hayakawa
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Aki Taniguchi
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | - Nobuyuki Kusaba
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Norio Yamagishi
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Akira Goto
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| |
Collapse
|
10
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
11
|
Peixoto PM, Bromfield JJ, Ribeiro ES, Santos JEP, Thatcher WW, Bisinotto RS. Transcriptome changes associated with elongation of bovine conceptuses II: Differentially expressed transcripts in the endometrium on day 17 after insemination. J Dairy Sci 2023; 106:9763-9777. [PMID: 37641338 DOI: 10.3168/jds.2023-23399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
The objective was to characterize endometrial transcriptome on d 17 of gestation in dairy cows according to conceptus length. Nonlactating Holstein cows (n = 48) were slaughtered 17 d after AI and the uterine horn ipsilateral to the corpus luteum (CL) was flushed with saline solution. Recovered conceptuses were classified as small (1.2-6.9 cm; n = 9), medium (10.5-16.0 cm; n = 9), or large (18.0-26.4 cm; n = 10). Samples of intercaruncular endometrium dissected from the caudal, intermediate, and cranial portions of the uterine horn ipsilateral to the pregnancy were pooled for analyses. Total mRNA was extracted from endometrial tissue and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between endometria of cows carrying large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 235, 21, and 94 differentially expressed transcripts, respectively. Top canonical pathways included the antigen presentation pathway and Th1/Th2 activation pathways, both for LvsS and MvsS. Interferon-α and -γ were identified as activated upstream regulators, primarily based on differently expressed transcripts such as IDO1, ISG20, WARS, LGALS9, IFI44, and PSMB9 (LvsS and MvsS). For LvsS, regulator analyses revealed predicted activation of FOXO1, IFN, NFACTC2, IL-12, IL-6, and IL-18, whereas it depicted inhibition of IL10RA and ZBTB1. Changes in these regulators were associated with a downstream activation of leukocytes, as well as quantity and expansion of T lymphocytes. Canonical pathways associated with the comparison LvsM included cell cycle G2/M DNA damage checkpoint regulation, cell cycle control of chromosomal replication. Moreover, tretinoin was predicted, as activated in upstream analysis for the same comparison. In conclusion, most of the differently expressed transcripts in the endometrium on d 17 of gestation were identified between cows carrying small conceptuses compared with counterparts carrying medium and large conceptuses and were involved with pathways associated with modulation of the immune response.
Collapse
Affiliation(s)
- P M Peixoto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive, and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J J Bromfield
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J E P Santos
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - W W Thatcher
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive, and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
12
|
Hao K, Wang J, Yu H, Chen L, Zeng W, Wang Z, Hu G. Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy. PPAR Res 2023; 2023:6422804. [PMID: 38020065 PMCID: PMC10651342 DOI: 10.1155/2023/6422804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key nuclear receptor transcription factor that is highly expressed in trophoblastic cells during embryonic attachment and is accompanied by rapid cell proliferation and increased lipid accumulation. We previously showed that the autophagy pathway is activated in cells after activation of PPARγ, accompanied by increased lipid accumulation. In this study, we used PPARγ agonist rosiglitazone and inhibitor GW9662, as well as autophagy activator rapamycin and inhibitor 3-methyladenine, to unravel the probable mechanism of PPARγ engaged in lipid metabolism in sheep trophoblast cells (STCs). After 12 h, 24 h, and 48 h of drug treatment, the levels of autophagy-related proteins were detected by Western blot, the triglyceride content and MDA level of cells were detected by colorimetry, and the lipid droplets and lysosomes were localized by immunofluorescence. We found that PPARγ inhibited the activity of mammalian target of rapamycin (mTOR) pathway in STCs for a certain period of time, promoted the increase of autophagy and lysosome formation, and enhanced the accumulation of lipid droplets and triglycerides. Compared with cells whose PPARγ function is activated, blocking autophagy before activating PPARγ will hinder lipid accumulation in STCs. Pretreatment of cells with rapamycin promoted autophagy with results similar to rosiglitazone treatment, while inhibition of autophagy with 3-methyladenine reduced lysosome and lipid accumulation. Based on these observations, we conclude that PPARγ can induce autophagy by blocking the mTOR pathway, thereby promoting the accumulation of lipid droplets and lysosomal degradation, providing an energy basis for the rapid proliferation of trophoblast cells during embryo implantation. In brief, this study partially revealed the molecular regulatory mechanism of PPARγ, mTOR pathway, and autophagy on trophoblast cell lipid metabolism, which provides a theoretical basis for further exploring the functional regulatory network of trophoblast cells during the attachment of sheep embryos.
Collapse
Affiliation(s)
- Kexing Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
13
|
Li X, Yao X, Li K, Guo J, Deng K, Liu Z, Yang F, Fan Y, Yang Y, Zhu H, Wang F. CREB1 Is Involved in miR-134-5p-Mediated Endometrial Stromal Cell Proliferation, Apoptosis, and Autophagy. Cells 2023; 12:2554. [PMID: 37947633 PMCID: PMC10649013 DOI: 10.3390/cells12212554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The successful establishment of endometrial receptivity is a key factor in ensuring the fertility of ewes and their economic benefits. Hu sheep have attracted attention due to their high fecundity and year-round estrus. In this study, we found that in the luteal phase, the uterine gland density, uterine coefficient, and number of uterine caruncles of high-fertility Hu sheep were higher than those of low-fertility Hu sheep. Thousands of differentially expressed genes were identified in the endometrium of Hu sheep with different fertility potential using RNA sequencing (RNA-Seq). Several genes involved in endometrial receptivity were screened using bioinformatics analysis. The qRT-PCR analysis further revealed the differential expression of cAMP reactive element binding protein-1 (CREB1) in the Hu sheep endometrium during the estrous cycle. Functionally, our results suggested that CREB1 significantly affected the expression level of endometrial receptivity marker genes, promoted cell proliferation by facilitating the transition from the G1 phase to the S phase, and inhibited cell apoptosis and autophagy. Moreover, we observed a negative linear correlation between miR-134-5p and CREB1 in the endometrium. In addition, CREB1 overexpression prevented the negative effect of miR-134-5p on endometrial stromal cell (ESC) growth. Taken together, these data indicated that CREB1 was regulated by miR-134-5p and may promote the establishment of uterine receptivity by regulating the function of ESCs. Moreover, this study provides new theoretical references for identifying candidate genes associated with fertility.
Collapse
Affiliation(s)
- Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahe Guo
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Newton MG, Stenhouse C, Halloran KM, Sah N, Moses RM, He W, Wu G, Bazer FW. Regulation of synthesis of polyamines by progesterone, estradiol, and their receptors in uteri of cyclic ewes†. Biol Reprod 2023; 109:309-318. [PMID: 37418162 DOI: 10.1093/biolre/ioad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
Progesterone (P4), estradiol (E2), and expression of their receptors (PGR and ESR1, respectively) by cells of the uterus regulate reproductive performance of mammals through effects on secretion and transport of nutrients into the uterine lumen. This study investigated the effect of changes in P4, E2, PGR, and ESR1 on expression of enzymes for the synthesis and secretion of polyamines. Suffolk ewes (n = 13) were synchronized to estrus (Day 0) and then, on either Day 1 (early metestrus), Day 9 (early diestrus), or Day 14 (late diestrus) of the estrous cycle, maternal blood samples were collected, and ewes were euthanized before obtaining uterine samples and uterine flushings. Endometrial expression of MAT2B and SMS mRNAs increased in late diestrus (P < 0.05). Expression of ODC1 and SMOX mRNAs decreased from early metestrus to early diestrus, and expression of ASL mRNA was lower in late diestrus than in early metestrus (P < 0.05). Immunoreactive PAOX, SAT1, and SMS proteins were localized to uterine luminal, superficial glandular, and glandular epithelia, stromal cells, myometrium, and blood vessels. Concentrations of spermidine and spermine in maternal plasma decreased from early metestrus to early diestrus and decreased further in late diestrus (P < 0.05). The abundances of spermidine and spermine in uterine flushings were less in late diestrus than early metestrus (P < 0.05). These results indicate that synthesis and secretion of polyamines are affected by P4 and E2, as well as the expression of PGR and ESR1 in the endometria of cyclic ewes.
Collapse
Affiliation(s)
- Makenzie G Newton
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Miles JR, Walsh SC, Rempel LA, Pannier AK. Mechanisms regulating the initiation of porcine conceptus elongation. Mol Reprod Dev 2023; 90:646-657. [PMID: 35719060 DOI: 10.1002/mrd.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Significant increases in litter size within commercial swine production over the past decades have led to increases in preweaning piglet mortality due to increase within-litter birthweight variation, typically due to mortality of the smallest littermate piglets. Therefore, identifying mechanisms to reduce variation in placental development and subsequent fetal growth are critical to normalizing birthweight variation and improving piglet survivability in high-producing commercial pigs. A major contributing factor to induction of within-litter variation occurs during the peri-implantation period as the pig blastocyst elongates from spherical to filamentous morphology in a short period of time and rapidly begins superficial implantation. During this period, there is significant within-litter variation in the timing and extent of elongation among littermates. As a result, delays and deficiencies in conceptus elongation not only contribute directly to early embryonic mortality, but also influence subsequent within-litter birthweight variation. This study will highlight key aspects of conceptus elongation and provide some recent evidence pertaining to specific mechanisms from -omics studies (i.e., metabolomics of the uterine environment and transcriptomics of the conceptus) that may specifically regulate the initiation of conceptus elongation to identify potential factors to reduce within-litter variation and improve piglet survivability.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Sophie C Walsh
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| | - Lea A Rempel
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| |
Collapse
|
16
|
Brandt KJ, Ault-Seay TB, Payton RR, Schneider LG, Edwards JL, Myer PR, Rhinehart JD, McLean KJ. The Impacts of Supplemental Protein during Development on Amino Acid Concentrations in the Uterus and Pregnancy Outcomes of Angus Heifers. Animals (Basel) 2023; 13:1995. [PMID: 37370505 DOI: 10.3390/ani13121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Replacement heifer development is one of the most critical components in beef production. The composition of the ideal uterine environment could maximize fertility and reproductive efficiency. Our hypothesis was that protein supplementation would affect the uterine environment of beef heifers without inhibiting development or reproduction. To test the effects of dietary supplementation on these outcomes, a randomized complete block design with repeated measures was implemented. Angus heifers (n = 60) were blocked by body weight (BW) and randomly assigned to one of three supplemental protein treatment groups (10% (CON), 20% (P20), and 40% (P40)). Mixed model ANOVAs were used to determine whether protein supplementation treatments, time, and the interaction or protein supplementation, semen exposure, and the interaction influenced uterine luminal fluid (ULF) and pregnancy outcomes. Amino acids (AAs) were impacted (p < 0.001), specifically, the essential AAs: Arg, Iso, Leu, Val, His, Lys, Met, Phe, Trp. Protein supplementation influenced multiple AAs post-insemination: Arg (p = 0.03), CC (p = 0.05), 1-MH (p = 0.001), and Orn (p = 0.03). In conclusion, protein supplementation did not affect the reproductive development via puberty attainment or the timing of conception even with alterations in growth. However, uterine AA concentrations did change throughout development and protein supplementation influenced ULF d 14 post-insemination, which may affect the conception rates.
Collapse
Affiliation(s)
- Kiernan J Brandt
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Taylor B Ault-Seay
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Liesel G Schneider
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Phillip R Myer
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Justin D Rhinehart
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
17
|
Anas M, Diniz WJS, Menezes ACB, Reynolds LP, Caton JS, Dahlen CR, Ward AK. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023; 13:metabo13050593. [PMID: 37233634 DOI: 10.3390/metabo13050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | | | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
18
|
Liu B, Paudel S, Flowers WL, Piedrahita JA, Wang X. Uterine histotroph and conceptus development: III. Adrenomedullin stimulates proliferation, migration and adhesion of porcine trophectoderm cells via AKT-TSC2-MTOR cell signaling pathway. Amino Acids 2023:10.1007/s00726-023-03265-6. [PMID: 37036518 DOI: 10.1007/s00726-023-03265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Adrenomedullin (ADM) as a highly conserved peptide hormone has been reported to increase significantly in the uterine lumen during the peri-implantation period of pregnancy in pigs, but its functional roles in growth and development of porcine conceptus (embryonic/fetus and its extra-embryonic membranes) as well as underlying mechanisms remain largely unknown. Therefore, we conducted in vitro experiments using our established porcine trophectoderm cell line (pTr2) isolated from Day-12 porcine conceptuses to test the hypothesis that porcine ADM stimulates cell proliferation, migration and adhesion via activation of mechanistic target of rapamycin (MTOR) cell signaling pathway in pTr2 cells. Porcine ADM at 10-7 M stimulated (P < 0.05) pTr2 cell proliferation, migration and adhesion by 1.4-, 1.5- and 1.2-folds, respectively. These ADM-induced effects were abrogated (P < 0.05) by siRNA-mediated knockdown of ADM (siADM) and its shared receptor component calcitonin-receptor-like receptor (CALCRL; siCALCRL), as well as by rapamycin, the inhibitor of MTOR. Using siRNA-mediated knockdown of CALCRL coupled with Western blot analyses, ADM signaling transduction was determined in which ADM binds to CALCRL to increase phosphorylation of MTOR, its downstream effectors (4EBP1, P70S6K, and S6), and upstream regulators (AKT and TSC2). Collectively, these results suggest that porcine ADM in histotroph acts on its receptor component CALCRL to activate AKT-TSC2-MTOR, particularly MTORC1 signaling cascade, leading to elongation, migration and attachment of conceptuses.
Collapse
Affiliation(s)
- Bangmin Liu
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - Sudikshya Paudel
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - William L Flowers
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
19
|
Wang X, Hu L, Jin C, Qian M, Jin Y. Effects of maternal exposure to procymidone on hepatic metabolism in the offspring of mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:833-843. [PMID: 36594664 DOI: 10.1002/tox.23729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
As an effective fungicide widely used in agricultural production, the excessive procymidone (PRO) residue has been detected in the environment and food. Our previous study demonstrated that PRO could destroy the intestinal barrier in mice and has a joint toxic effect. To explore the cross-generational impact of maternal exposure, 10-week-old C57BL/6 female mice were orally administrated to 10 and 100 mg/kg body weight/day of PRO during pregnancy and lactation. The offspring obtained nutrients from the maternal through the placenta and breast milk, and PRO residues were detected in the liver, intestine, and feces of F1 generation. Fecal examination found that the residual PRO had been completely metabolized when the offspring mice grew to 35 days. The drug residue of F1 generation male mice was higher than that of female mice. We attributed this result to the difference in cytochrome P450 (CYP450) enzyme expression between male and female mice. The transcriptional levels of CYP1A1, CYP1A2, CYP2D9, and CYP3A4, and CYP450 protein expression levels, were higher in female mice. Furthermore, targeted MS of plasma revealed abnormal amino acid levels. In addition, PRO-induced hepatic metabolite changes in F0 and F1-7w mice. KEGG pathway analysis further showed that PRO jointly changed the amino acid biosynthesis pathway of the maternal and offspring. In summary, these results indicated that maternal exposure to PRO during a special period would interfere with self metabolism, and offspring will also have metabolic disorders.
Collapse
Affiliation(s)
- Xiaofang Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lingyu Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Ault-Seay TB, Moorey SE, Mathew DJ, Schrick FN, Pohler KG, McLean KJ, Myer PR. Importance of the female reproductive tract microbiome and its relationship with the uterine environment for health and productivity in cattle: A review. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Once thought to be sterile, the reproductive tract microbiome has been characterized due to the transition from culture-dependent identification of bacteria to culture-independent sequencing methods. The urogenital microbiome was first identified in women through the Human Microbiome Project, which led to research in other species such as the bovine. Previous research focused on uterine bacteria associated with postpartum disease, but next generation sequencing methods identified a normal, healthy bacterial community of the reproductive tract of cows and heifers. Bacterial communities are now understood to differ between the uterus and vagina, and throughout the estrous cycle with changes in hormone dominance. In a healthy state, the bacterial communities largely interact with the uterine environment by assisting in maintaining the proper pH, providing and utilizing nutrients and metabolites, and influencing the immunological responses of the reproductive tract. If the bacterial communities become unbalanced due to an increase in potentially pathogenic bacteria, the health and fertility of the host may be affected. Although the presence of a reproductive tract microbiome has become widely accepted, the existence of a placental microbiome and in utero colonization of the fetus is still a popular debate due to conflicting study results. Currently, researchers are evaluating methods to manipulate the reproductive bacterial communities, such as diet changes and utilizing probiotics, to improve reproductive outcomes. The following review discusses the current understanding of the reproductive tract microbiome, how it differs between humans and cattle, and its relationship with the uterine environment.
Collapse
|
21
|
Stenhouse C, Newton MG, Halloran KM, Moses RM, Sah N, Suva LJ, Bazer FW. Phosphate, calcium, and vitamin D signaling, transport, and metabolism in the endometria of cyclic ewes. J Anim Sci Biotechnol 2023; 14:13. [PMID: 36631878 PMCID: PMC9835233 DOI: 10.1186/s40104-022-00803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recent evidence suggests important roles for progesterone (P4) and interferon tau in the regulation of calcium, phosphate, and vitamin D signaling in the uteri of pregnant sheep. However, the effects of P4 and estradiol (E2), with respect to the expression of their receptors PGR and ESR1, respectively, in uterine epithelia on mineral signaling during the estrous cycle has not been investigated. Estrous cycles of mature Suffolk ewes were synchronized, prostaglandin F2α was administered, and ewes were observed for estrus (designated as Day 0) in the presence of vasectomized rams. On Days 1, 9, or 14 of the estrous cycle, hysterectomies were performed. RESULTS 25-hydroxyvitamin D was more abundant in plasma from ewes on Day 14 than Day 1 (P < 0.05). Expression of fibroblast growth factor receptor 2 (FGFR2), a disintegrin and metalloprotease 17 (ADAM17), and parathyroid hormone-related protein (PTHrP) mRNAs was greater in endometria on Day 9 compared to Days 1 and 14 (P < 0.01). Similarly, expression of transient receptor potential cation channel subfamily V member 6 (TRPV6) mRNA was greater in endometria on Day 9 than Day 1 (P < 0.05). ATPase plasma membrane Ca2+ transporting 4 (ATP2B4) and S100 calcium binding protein G (S100G) mRNA expression was greater in endometria on Day 14 than on Days 1 and 9 (P < 0.01). In contrast, endometrial expression of vitamin D receptor (VDR) mRNA was lower on Days 9 and 14 than Day 1 (P < 0.01). Expression of klotho (KL) (P < 0.05) and cytochrome P450 family 24 subfamily A member 1 (CYP24) (P < 0.01) mRNAs was lower on Day 14 than Days 1 and 9. ADAM17, FGF23, CYP2R1, CYP27B1, KL, and VDR proteins immunolocalized to the uterine myometrium, blood vessels, and uterine luminal (LE), superficial glandular (sGE), and glandular (GE) epithelia. S100A9 protein was weakly expressed in the uterine myometrium, LE, sGE, and GE. Immunoreactivity of CYP2R1 and KL proteins in uterine LE and sGE was less on Day 1 than on Days 9 and 14. In contrast, S100G protein was expressed exclusively by GE, and immunoreactive S100G protein was less on Day 9. S100A12 protein localized to stromal cells of the uterine stratum spongiosum and blood vessels, but not by uterine epithelial cells. CONCLUSION Collectively, these results implicate E2, P4, and PGR in the regulation of phosphate, calcium, and vitamin D signaling in cyclic ewes.
Collapse
Affiliation(s)
- Claire Stenhouse
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Makenzie G. Newton
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Katherine M. Halloran
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Robyn M. Moses
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Nirvay Sah
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Larry J. Suva
- grid.264756.40000 0004 4687 2082Veterinary Physiology and Pharmacology, Texas A&M University, TX 77843 College Station, USA
| | - Fuller W. Bazer
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| |
Collapse
|
22
|
The ovine conceptus utilizes extracellular serine, glucose, and fructose to generate formate via the one carbon metabolism pathway. Amino Acids 2023; 55:125-137. [PMID: 36383272 DOI: 10.1007/s00726-022-03212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Highly proliferative cells rely on one carbon (1C) metabolism for production of formate required for synthesis of purines and thymidine for nucleic acid synthesis. This study was to determine if extracellular serine and/or glucose and fructose contribute the production of formate in ovine conceptuses. Suffolk ewes (n = 8) were synchronized to estrus, bred to fertile rams, and conceptuses were collected on Day 17 of gestation. Conceptuses were either snap frozen in liquid nitrogen (n = 3) or placed in culture in medium (n = 5) containing either: 1) 4 mM D-glucose + 2 mM [U-13C]serine; 2) 6 mM glycine + 4 mM D-glucose + 2 mM [U-13C]serine; 3) 4 mM D-fructose + 2 mM [U-13C]serine; 4) 6 mM glycine + 4 mM D-fructose + 2 mM [U-13C]serine; 5) 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine; or 6) 6 mM glycine + 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine. After 2 h incubation, conceptuses in their respective culture medium were homogenized and the supernatant analyzed for 12C- and 13C-formate by gas chromatography and amino acids by high performance liquid chromatography. Ovine conceptuses produced both 13C- and 12C-formate, indicating that the [U-13C]serine, glucose, and fructose were utilized to generate formate, respectively. Greater amounts of 12C-formate than 13C-formate were produced, indicating that the ovine conceptus utilized more glucose and fructose than serine to produce formate. This study is the first to demonstrate that both 1C metabolism and serinogenesis are active metabolic pathways in ovine conceptuses during the peri-implantation period of pregnancy, and that hexose sugars are the preferred substrate for generating formate required for nucleotide synthesis for proliferating trophectoderm cells.
Collapse
|
23
|
Ma Y, Song J, Cao X, Sun Z. Mechanism of Guilu Erxian ointment based on targeted metabolomics in intervening in vitro fertilization and embryo transfer outcome in older patients with poor ovarian response of kidney-qi deficiency type. Front Endocrinol (Lausanne) 2023; 14:1045384. [PMID: 36742408 PMCID: PMC9897313 DOI: 10.3389/fendo.2023.1045384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To study the effect of Guilu Erxian ointment on the outcome of IVF-ET in older patients with poor ovarian response infertility of kidney-qi deficiency type, and to verify and analyze the mechanism of action of traditional Chinese medicine on improving older patients with poor ovarian response infertility of kidney-qi deficiency type from the perspective of metabolomics using targeted metabolomics technology, identify the related metabolic pathways, and provide metabolic biomarker basis and clinical treatment ideas for improving older patients with poor ovarian response infertility. METHODS This study was a double-blind, randomized, placebo-controlled trial, and a total of 119 infertile patients who underwent IVF-ET at Shandong Center for Reproduction and Genetics of Integrated Traditional Chinese and Western Medicine were selected. Eighty older patients with infertility undergoing IVF were randomly divided into older treatment group and older placebo group, and another 39 young healthy women who underwent IVF-ET or ICSI due to male factors were selected as the normal control group. Flexible GnRH antagonist protocol was used for ovulation induction in all three groups, and Guilu Erxian ointment and placebo groups started taking Guilu Erxian ointment and placebo from the third day of menstruation until IVF surgery. And ultra-high performance liquid chromatography-triple quadrupole mass spectrometer (UHPLC-QTRAP MS) was used to detect metabolites in the three groups of samples. RESULTS Compared with the placebo group, the number of oocytes retrieved, 2PN fertilization, high-quality embryos, total number of available embryos and estrogen on HCG day were increased in the treatment group, and the differences were statistically significant (P > 0.05), but the clinical pregnancy rate of fresh embryos and frozen embryos were not statistically significant (P > 0.05). The results of targeted metabolomics analysis showed that follicular fluid in the treatment group clustered with the normal young group and deviated from the placebo group. A total of 55 significant differential metabolites were found in the follicular fluid of older patients with poor ovarian response of kidney-qi deficiency type and patients in the normal young group, after Guilu Erxian ointment intervention, Metabolites such as L-Aspartic acid, Glycine, L-Serine, Palmitoleic Acid, Palmitelaidic acid, L-Alanine, Gamma-Linolenic acid, Alpha-Linolenic Acid, and N-acetyltryptophan were down-regulated, mainly involving amino acid metabolism and fatty acid metabolism. CONCLUSION Guilu Erxian ointment can effectively improve the clinical symptoms and IVF outcomes of older patients with poor ovarian response of kidney-qi deficiency type. There were differences in follicular fluid metabolites between older patients with poor ovarian response of kidney-qi deficiency type and normal women. L-Aspartic acid, L-Alanine, Aminoadipic acid, L-Asparagine, L-Arginine, L-Serine, Gamma- Linolenic acid, Pentadecanoic acid and Alpha-Linolenic Acid are closely related to older patients with poor ovarian response due to deficiency of kidney-qi and may be inferred as biomarkers. The mechanism of Guilu Erxian ointment intervention may be mainly through amino acid metabolism and fatty acid metabolism regulation.
Collapse
Affiliation(s)
- Yingjie Ma
- Shandong University of Traditional Chinese Medicine, First Clinical Medical College, Jinan, China
| | - Jingyan Song
- Shandong University of Traditional Chinese Medicine, First Clinical Medical College, Jinan, China
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhengao Sun, ; Jingyan Song,
| | - Xianling Cao
- Shandong University of Traditional Chinese Medicine, First Clinical Medical College, Jinan, China
| | - Zhengao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhengao Sun, ; Jingyan Song,
| |
Collapse
|
24
|
Sah N, Stenhouse C, Halloran KM, Moses RM, Seo H, Burghardt RC, Johnson GA, Wu G, Bazer FW. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol Reprod 2022; 107:1279-1295. [DOI: 10.1093/biolre/ioac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared to MAO-control (3/10 vs 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared to conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Claire Stenhouse
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
Moses RM, Halloran KM, Stenhouse C, Sah N, Kramer AC, McLendon BA, Seo H, Johnson GA, Wu G, Bazer FW. Ovine conceptus homogenates metabolize fructose for metabolic support during the peri-implantation period of pregnancy. Biol Reprod 2022; 107:1084-1096. [PMID: 35835585 DOI: 10.1093/biolre/ioac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that: 1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); 2) incorporation of fructose and glucose at 4 mM each into the PC by Day 17 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); 3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and 4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
26
|
Elsaadawy SA, Wu Z, Bu D. Feasibility of Supplying Ruminally Protected Lysine and Methionine to Periparturient Dairy Cows on the Efficiency of Subsequent Lactation. Front Vet Sci 2022; 9:892709. [PMID: 35774986 PMCID: PMC9237544 DOI: 10.3389/fvets.2022.892709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effects of supplying ruminally protected Lys (RPL) and ruminally protected Met (RPM) to transition cows' diets on the efficiency of subsequent lactation. A total of 120 prepartum Holstein cows were assigned into four treatments blocked by the anticipated calving date, previous lactation milk yield, number of lactations, and body condition score and fed either RPL, RPM, or the combination (RPML) or control diet (CON) throughout the transition period (3 weeks before till 3 weeks after calving). From 22 to 150 days in milk (DIM), all animals (100 cows) were fed a combination of RPM and RPL (0.17% RPM and 0.41% RPL of DM; n = 25 cows/treatment) as follows; CON-RPML, RPM-RPML, RPL-RPML, and RPML-RPML. Milk production and dry matter intake (DMI) were measured daily; milk and blood samples were taken at 21, 30, 60, 90, 120, and 150 DIM. Supplemented amino acids (AA) were mixed with the premix and added to the total mixed ration during the experiment. DMI (p < 0.001) and energy-corrected milk (ECM, p = 0.04) were higher for cows that were fed RPML-RPML than other cows. Compared with CON-RPML, yields of milk total protein, lactose, and nitrogen efficiency were increased (p < 0.01), whereas milk urea nitrogen (MUN; p = 0.002) was decreased for other treatments. However, supplemental AA did not affect milk lactose percentage, fat yield, feed efficiency, or serum total protein concentration (p > 0.10). Transition cows that consumed AA had a greater peak of milk yield (p < 0.01), as well as quickly reached the peak of milk (p < 0.004). There were differences in β-hydroxybutyrate concentration during the early lactation, with a lower level for AA groups (p < 0.05), and the difference faded with the progression of lactation (p > 0.10). Fertility efficiency as measured by pregnancy rate was improved by supplemental AA during the perinatal period (p < 0.05). In conclusion, transition cows consumed RPM and RPL, increased post-calving DMI, milk production, milk protein yield, nitrogen efficiency, and improved fertility performance.
Collapse
Affiliation(s)
- Samy A. Elsaadawy
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohai Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing, China
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China
| |
Collapse
|
27
|
Stenhouse C, Halloran KM, Hoskins EC, Newton MG, Moses RM, Seo H, Dunlap KA, Satterfield MC, Gaddy D, Johnson GA, Wu G, Suva LJ, Bazer FW. Effects of exogenous progesterone on the expression of mineral regulatory molecules by ovine endometrium and placentomes†. Biol Reprod 2022; 106:1126-1142. [PMID: 35191486 DOI: 10.1093/biolre/ioac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine whether the acceleration of conceptus development induced by the administration of exogenous progesterone (P4) during the preimplantation period of pregnancy alters calcium, phosphate, and vitamin D signaling at the maternal-conceptus interface. Suffolk ewes (n = 48) were mated to fertile rams and received daily intramuscular injections of either corn oil (CO) vehicle or 25 mg of progesterone in CO (P4) for the first 8 days of pregnancy and hysterectomized on either Day 9 (CO, n = 5; P4, n = 6), 12 (CO, n = 9; P4, n = 4) or 125 (CO, n = 14; P4, n = 10) of gestation. The expression of S100A12 (P < 0.05) and fibroblast growth factor receptor (FGFR2) (P < 0.01) messenger RNAs (mRNAs) was lower in endometria from P4-treated ewes on Day 12. The expression of ADAM10 (P < 0.05) mRNA was greater in endometria from P4-treated ewes on Day 125. The expression of ADAM10 (P < 0.01), FGFR2 (P < 0.05), solute carrier (SLC)20A1 (P < 0.05), TRPV5 (P < 0.05), and TRPV6 (P < 0.01) mRNAs was greater, but KL mRNA expression was lower (P < 0.05) in placentomes from P4-treated ewes at Day 125. There was lower endometrial and greater placentomal expression of mRNAs involved in mineral metabolism and transport in twin compared to singleton pregnancies. Further, the expression of mRNAs involved in mineral metabolism and transport was greater in P4-treated twin placentomes. KL, FGF23, vitamin D receptor (VDR), S100A9, S100A12, S100G, and CYP27B1 proteins were immunolocalized in endometria and placentomes. Exogenous P4 in early pregnancy altered the expression of regulators of calcium, phosphate, and vitamin D on Day 125 of pregnancy indicating a novel effect of P4 on mineral transport at the maternal-conceptus interface.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Makenzie G Newton
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
28
|
Stenhouse C, Halloran KM, Moses RM, Seo H, Gaddy D, Johnson GA, Wu G, Suva LJ, Bazer FW. Effects of progesterone and interferon tau on ovine endometrial phosphate, calcium, and vitamin D signaling†. Biol Reprod 2022; 106:888-899. [PMID: 35134855 DOI: 10.1093/biolre/ioac027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
Given recent reports of expression of postnatal mineral transport regulators at the maternal-conceptus interface during the peri-implantation period, this study tested the hypothesis that progesterone (P4) and interferon tau (IFNT) regulate phosphate, calcium, and vitamin D signaling in the ovine endometrium. Mature Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on day 7 of the estrous cycle. Ewes received daily intramuscular injections of 50 mg of P4 in corn oil vehicle and 75 mg of progesterone receptor antagonist (RU486) in corn oil from days 8 to 15, and twice-daily intrauterine injections of either control proteins (CX) or IFNT (25 μg/uterine horn/day) from days 11 to 15 resulting in four treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT. On day 16, ewes were hysterectomized. RU486 + P4 + CX treated ewes had lower concentrations of 25 (OH) D in plasma than P4 + CX treated ewes (P < 0.05). Endometria from ewes treated with IFNT had greater expression of FGF23 (P < 0.01), S100A9 (P < 0.05), and S100A12 (P = 0.05) mRNAs and lower expression of ADAM10 mRNA (P < 0.01) than of ewes treated with CX proteins. Expression of FGF23 mRNA was greater in endometria of ewes that received RU486 + P4 + IFNT than in ewes that received RU486 + P4 + CX (hormone × protein interaction, P < 0.05). The expression of S100G mRNA was greater in endometria of ewes that received P4 + IFNT compared to ewes that received RU486 + P4 + IFNT (P < 0.05; hormone × protein interaction, P < 0.01). These data implicate P4 and IFNT in the regulation of phosphate, calcium, and vitamin D signaling during the peri-implantation period of pregnancy and provide a platform for continued mechanistic investigations.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
29
|
He B, Bai J, Wu Z. Glucosamine enhances proliferation, barrier, and anti-oxidative functions in porcine trophectoderm cells. Food Funct 2022; 13:4551-4561. [PMID: 35352734 DOI: 10.1039/d1fo04086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trophectoderm (TE) is the first epithelium that appears during mammalian embryogenesis, and is a polarized transporting single cell layer that comprises the wall of the blastocyst. Previous studies have revealed the functional roles of glucose (Gluc), fructose (Fruc), and glutamine (Gln), which play a positive role in porcine trophectoderm (pTr) cell proliferation and migration, suggesting the importance of nutrients for normal development of the conceptus and implantation. This work was conducted to test the hypothesis that glucosamine (GlcN), which is synthesized from Gln and Fruc-6-phosphate through the hexosamine biosynthesis pathway (HBP), can stimulate proliferation and sustain the barrier and anti-oxidative functions of pTr cells. Cells were treated with 0, 0.25, or 0.5 mmol L-1 GlcN in the presence or absence of adiquat (DQ) for the indicated time points. The results showed that 0.25 or 0.5 mmol L-1 GlcN stimulated pTr cell viability and DNA replication compared to the control group. The addition of 0.25 mmol L-1 GlcN enhanced the phosphorylation of mTOR signaling proteins, which can be inhibited by the inhibitor of phosphatidylinositol 3-kinase (PI3K), LY294002. Transepithelial electrical resistance (TEER) was increased, and paracellular permeability was correspondingly reduced in GlcN treatment. GlcN attenuated DQ-induced cell death and reduced the level of reactive oxygen species (ROS). The decreased TEER values and increased paracellular permeability caused by DQ treatment were also inhibited by GlcN treatment. The addition of 0.5 mmol L-1 GlcN increased the protein expression of zonula occludens-3 (ZO-3), claudin-3, and claudin-4 in pTr cells, while inhibited the downregulation protein of claudin-1 and claudin-3 brought about by oxidative stress. Collectively, GlcN plays an important role in promoting proliferation and stimulating the mTOR cell signaling pathway, as well as ameliorating oxidative stress and augmenting barrier functions in pTr cells.
Collapse
Affiliation(s)
- Beibei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| |
Collapse
|
30
|
Snider AP, Crouse MS, Rosasco SL, Epperson KM, Northrop-Albrecht EJ, Rich JJ, Chase CC, Miles JR, Perry GA, Summers AF, Cushman RA. Greater numbers of antral follicles in the ovary are associated with increased concentrations of glucose in uterine luminal fluid of beef heifers. Anim Reprod Sci 2022; 239:106968. [DOI: 10.1016/j.anireprosci.2022.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/01/2022]
|
31
|
Cui C, Wu C, Wang J, Zheng X, Ma Z, Zhu P, Guan W, Zhang S, Chen F. Leucine supplementation during late gestation globally alters placental metabolism and nutrient transport via modulation of the PI3K/AKT/mTOR signaling pathway in sows. Food Funct 2022; 13:2083-2097. [PMID: 35107470 DOI: 10.1039/d1fo04082k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previously published study we reported that sow dietary leucine supplementation during late pregnancy significantly improved newborn piglet birth weight by stimulating protein synthesis in the longissimus dorsi muscle. However, there is still limited knowledge as to whether leucine can exert its effects on the placenta, one of the most important temporal organs during pregnancy, to promote maternal-fetal nutrient supply and thus contribute to fetal intrauterine development. Therefore, we tested this hypothesis in the present study. In total, 150 sows at day 90 of gestation were divided into three groups and fed with either a control diet (CON), CON + 0.4% Leu or CON + 0.8% Leu, respectively, until parturition. Placental metabolomics, full spectrum amino acids and nutrient transporters were systematically analyzed after sample collection. The results indicated that Leu supplementation led to an altered placental metabolism with an increased number of metabolites related to glycolysis and the oxidation of fatty acids, as well as elevated levels of amino acid accumulation in the placenta. In addition, nutrient transporters of amino acids, glucose and fatty acids in the placenta were globally up-regulated and several enzymes related to energy metabolism, including hexokinase, succinate dehydrogenase, lactated hydrogenase, glycogen phosphorylase and hydroxyacyl-CoA-dehydrogenase, were also significantly increased with no change observed in the antioxidative status of those groups with Leu supplementation. Furthermore, the phosphorylation of PI3K, Akt, and mTOR was enhanced in the placenta of sows undergoing Leu treatment. Collectively, we concluded that supplementing the diets of sows with Leu during late gestation globally altered placental metabolism and promoted maternal-fetus nutrient transport (amino acids, glucose, and fatty acids) via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
32
|
Halloran KM, Stenhouse C, Moses RM, Seo H, Johnson GA, Wu G, Bazer FW. Progesterone and interferon tau regulate expression of polyamine enzymes during the ovine peri-implantation period. Biol Reprod 2022; 106:865-878. [DOI: 10.1093/biolre/ioac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75 mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8–15, and twice daily intrauterine injections (25 μg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11–15, resulting in four treatment groups: 1) P4 + CX; 2) P4 + IFNT; 3) RU486 + P4 + CX; or 4) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
33
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
34
|
Drews B, Milojevic V, Robles M, Wimel L, Dubois C, Vegas AR, Giller K, Chavatte-Palmer P, Daniel H, Giesbertz P, Bruckmaier R, Ulbrich SE. Moderate differences in plasma leptin in mares have no effect on either the amino acid or the fatty acid composition of the uterine fluid. J Equine Vet Sci 2021; 109:103827. [PMID: 34843890 DOI: 10.1016/j.jevs.2021.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Female mammalian reproductive functions are closely linked to body condition and metabolic status. Energy homeostasis is regulated by endocrine hormones such as insulin, IGF-I, leptin and adiponectin via the hypothalamic-pituitary-adrenal axis. These metabolic hormones and their receptors are also expressed in reproductive tissues and the embryo. We investigated the relationship between circulating leptin and the fatty acid (FA) and amino acid (AA) composition of the equine uterine fluid (UF) and peripheral blood plasma (BP) by using a mass spectrometry-based approach. UF and BP were collected from ten broodmares on days 6 and 7 post ovulation, respectively. The mares were retrospectively assigned to two groups according to their BP leptin concentrations (high leptin (> 1.6 ng/ml) versus low leptin (<0.8 ng/ml)). Specific AA and FA compositions for BP and UF were found with different levels of respective metabolite abundances. The main FAs in BP were stearic, palmitic and linoleic acid. In UF, the three most abundant FAs were eicosapentaenoic, arachidonic and stearic acid. The AA profile of BP was dominated by glycine, glutamine, serine and alanine, which were likewise among the highly abundant AAs in UF. In UF, glutamic acid had by far the highest concentration. Therefore, BP leptin concentration within a physiological range do not seem to affect the specific FA nor the AA composition of the UF. The composition of the UF may therefore be mediated by local rather than by peripheral metabolic hormones.
Collapse
Affiliation(s)
- Barbara Drews
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| | - Vladimir Milojevic
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Morgane Robles
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - L Wimel
- IFCE, Station expérimentale de la Valade, 19370 Chamberet, France.
| | - C Dubois
- IFCE, Station expérimentale de la Valade, 19370 Chamberet, France.
| | - A Rudolf Vegas
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - K Giller
- ETH Zurich, Animal Nutrition, Institute of Agricultural Sciences, Zurich, Switzerland.
| | - P Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - H Daniel
- Nutritional Physiology, Technische Universität München, Freising, Germany
| | - P Giesbertz
- Nutritional Physiology, Technische Universität München, Freising, Germany.
| | - Rupert Bruckmaier
- Veterinary Physiology, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty Bern, University of Bern, Switzerland.
| | - S E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| |
Collapse
|
35
|
Moses RM, Kramer AC, Seo H, Wu G, Johnson GA, Bazer FW. A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:49-62. [PMID: 34807436 DOI: 10.1007/978-3-030-85686-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Robyn M Moses
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
36
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
37
|
Fatty Acid Profile of Blood Plasma at Mating and Early Gestation in Rabbit. Animals (Basel) 2021; 11:ani11113200. [PMID: 34827933 PMCID: PMC8614433 DOI: 10.3390/ani11113200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to analyse the fatty acid (FA) profile of blood plasma at mating and 72 hpm by gas chromatography. Moreover, the correlation between FA and ovulation rate, normal embryos and compacted morulae was estimated. Palmitic, linoleic, oleic and stearic were the highest FA concentrations at mating and 72 hpm. Most long chain saturated and PUFA were higher at 72 hpm than at mating, while MUFA were higher at mating. SFA, MUFA and PUFA were high and positively correlated. Correlation was 0.643 between MUFA at mating and ovulation rate, and 0.781 between MUFA and normal embryos, respectively. Compacted morulae were slightly correlated with SFA at mating (0.465). In conclusion, the FA profile of plasma varies depending on the reproductive cycle of the rabbit female, adapting to energetic requirements at mating and early gestation. Moreover, positive correlations are found between fatty acids and ovulation rate and embryo development and quality.
Collapse
|
38
|
Expression of SGLT1 in the Mouse Endometrial Epithelium and its Role in Early Embryonic Development and Implantation. Reprod Sci 2021; 28:3094-3108. [PMID: 34460091 DOI: 10.1007/s43032-021-00480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/31/2021] [Indexed: 10/20/2022]
Abstract
Many functional activities of endometrium epithelium are energy consuming which are very important for maintaining intrauterine environment needed by early embryonic development and establishment of implantation window. Glucose is a main energy supplier and one of the main components of intrauterine fluid. Obviously, glucose transports in endometrium epithelium involve in for these activities but their functions have not been elucidated. In this research, we observed a spatiotemporal pattern of sodium glucose transporter 1 (SGLT1) expression in the mouse endometrium. We also determined that progesterone can promote the expression of SGLT1 in the mouse endometrial epithelium in response to the action of oestrogen. Treatment with the SGLT1 inhibitor phlorizin or small interfering RNA specific for SGLT1 (SGLT1-siRNA) altered glucose uptake in primary cultured endometrial epithelial cells, which exhibited reduced ATP levels and AMPK activation. The injection of phlorizin or SGLT1-siRNA into one uterine horn of each mouse on day 2 of pregnancy led to an increased glucose concentration in the uterine fluid and decreased number of harvested normal blastocysts and decreased expression of integrin αVβ3 in endometrial epithelium and increased expression of mucin 1 and lactoferrin in endometrial epithelium and the uterine homogenates exhibited activated AMPK, a decreased ATP level on day 4, and a decreased number of implantation sites on day 5. In embryo transfer experiments, pre-treatment of the uterine horn with phlorizin or SGLT1-siRNA during the implantation window led to a decreased embryo implantation rate on day 5 of pregnancy, even when embryos from normal donor mice were used. In conclusion, SGLT1, which participates in glucose transport in the mouse endometrial epithelium, inhibition and/or reduced expression of SGLT1 affects early embryo development by altering the glucose concentration in the uterine fluid. Inhibition and/or reduced expression of SGLT1 also affects embryo implantation by influencing energy metabolism in epithelial cells, which consequently influences implantation-related functional activities.
Collapse
|
39
|
Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause. Proc Natl Acad Sci U S A 2021; 118:2100500118. [PMID: 34452997 PMCID: PMC8536382 DOI: 10.1073/pnas.2100500118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In mammals, embryo development can halt at the hatched blastocyst stage. Uniquely, proliferation of diapausing embryonic roe deer cells decelerates to a doubling time of 2 to 3 wk over a period of 4 mo. We highlight nutrient sensing as an important factor regulating embryonic developmental pace. The resumption of embryo development is characterized by an increase in uterine fluid mTORC1-activating amino acids, embryonic mTORC1 activity, and expression of metabolism and cell cycle genes. We propose selective mTORC1 inhibition via reduced estrogen signaling and high let-7 levels as mechanisms for slow cell cycle progression. We hypothesize that it is the lack of embryonic mTORC2 inhibition during embryonic diapause in the roe deer that enables the continuous decelerated rate of proliferation. Embryonic diapause in mammals leads to a reversible developmental arrest. While completely halted in many species, European roe deer (Capreolus capreolus) embryos display a continuous deceleration of proliferation. During a 4-mo period, the cell doubling time is 2 to 3 wk. During this period, the preimplantation blastocyst reaches a diameter of 4 mm, after which it resumes a fast developmental pace to subsequently implant. The mechanisms regulating this notable deceleration and reacceleration upon developmental resumption are unclear. We propose that amino acids of maternal origin drive the embryonic developmental pace. A pronounced change in the abundance of uterine fluid mTORC1-activating amino acids coincided with an increase in embryonic mTORC1 activity prior to the resumption of development. Concurrently, genes related to the glycolytic and phosphate pentose pathway, the TCA cycle, and one carbon metabolism were up-regulated. Furthermore, the uterine luminal epithelial transcriptome indicated increased estradiol-17β signaling, which likely regulates the endometrial secretions adapting to the embryonic needs. While mTORC1 was predicted to be inactive during diapause, the residual embryonic mTORC2 activity may indicate its involvement in maintaining the low yet continuous proliferation rate during diapause. Collectively, we emphasize the role of nutrient signaling in preimplantation embryo development. We propose selective mTORC1 inhibition via uterine catecholestrogens and let-7 as a mechanism regulating slow stem cell cycle progression.
Collapse
|
40
|
Sandoval K, Berg MD, Guadagnin AR, Cardoso FC, Dean M. Endometrial glycogen metabolism on days 1 and 11 of the reproductive cycle in dairy cows. Anim Reprod Sci 2021; 233:106827. [PMID: 34450335 DOI: 10.1016/j.anireprosci.2021.106827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Embryos need glucose or fructose to remain viable; however, it is not well understood how secretion of these carbohydrates is regulated. This study was conducted to evaluate endometrial glycogen and associated enzymes on Days 1 and 11 of the estrous cycle (Day 0 = behavioral estrus) in cattle. Diastase-liable periodic acid-Schiff (PAS) staining of luminal epithelia decreased 81 % between Days 1 and 11. Similarly, glycogen content of glandular epithelia was 66 % less on Day 11 than Day 1. There was dense PAS staining in the lumen of some glands, and this staining was removed when there was pretreatment with diastase. Based on western blot results, there was no difference in glycogen metabolizing enzymes between Days 1 and 11. Results from conducting immunohistochemistry procedures indicated hexokinase 1 was more abundant in the epithelial cells than stroma, but immunostaining was not different between Day 1 and 11. In contrast, phospho-glycogen synthase was undetectable on Day 1 but was present in glandular epithelia on Day 11. Glycogen synthase was localized to the epithelia, and was in larger abundance on Day 1. The abundance of glycogen phosphorylase was greater in the epithelium than stroma and on Day 11 than 1. Furthermore, glucose-6-phosphatase 3 was more abundant in the epithelium on both Days 1 and 11. In conclusion, in the uterus of cattle glycogen is stored in a reproductive cycle-dependent manner. Glucose released from endometrial glycogen stores could potentially be utilized by the endometrium or secreted into the uterine lumen.
Collapse
Affiliation(s)
- Kassandra Sandoval
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Malia D Berg
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Anne R Guadagnin
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Felipe C Cardoso
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Matthew Dean
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
41
|
Silva FACC, da Silva GF, Vieira BS, Neto AL, Rocha CC, Lo Turco EG, Nogueira GP, Pugliesi G, Binelli M. Peri-estrus ovarian, uterine, and hormonal variables determine the uterine luminal fluid metabolome in beef heifers. Biol Reprod 2021; 105:1140-1153. [PMID: 34350935 DOI: 10.1093/biolre/ioab149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
In cattle, uterine luminal fluid (ULF) is the main source of molecules that support embryo development and survival during the peri-implantation period. Our overarching hypothesis is that peri-estrus changes in uterine function, including ULF accumulation and absorption, are uneven among individuals, and it affects ULF composition and fertility. Our objectives were (1) to characterize temporal and spatial changes in ULF volume, endometrial and luteal blood perfusion, endometrial and luteal size, and circulating progesterone concentrations during the peri-estrus period in beef heifers and, (2) to associate such changes with the metabolite composition in the ULF, four days after estrus (d 0). Fourteen B. indicus heifers that presented a PGF2α responsive CL received 500 μg PGF2α analog i.m. and were examined daily by rectal B-mode and pulse-wave color-Doppler ultrasonography until the fifth day after estrus (d 5). The composition of the ULF was analyzed by targeted mass spectrometry on d 4. Multivariate analyses clustered heifers according to ovarian, uterine, and hormonal variables in clusters A (n = 5) and B (n = 8 heifers). Concentrations of Pro, Ala, Leu, Gly, Val, Lys, Ile, Phe, Asp, Orn, Tyr, Arg, Trp, Suc, Cit, ADMA, the sum of essential Amino Acids (AA), sum of non-essential AA, sum of aromatic AA, and total AA were greater in cluster A (FDR ≤ 0.05). ULF volume dynamics and uterine, ovarian, and hormonal variables during the peri-estrus period presented a concerted variation among heifers within clusters, which was associated with the ULF composition four days after estrus.
Collapse
Affiliation(s)
- Felipe A C C Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Gabriela F da Silva
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Bruna S Vieira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Adomar L Neto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Cecilia C Rocha
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Edson G Lo Turco
- Department of Surgery, Division of Urology, Federal University of Sao Paulo, SP, Brazil
| | - Guilherme P Nogueira
- School of Veterinary Medicine, Sao Paulo State University, Aracatuba, SP, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
van der Weijden VA, Bulut-Karslioglu A. Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Front Cell Dev Biol 2021; 9:708318. [PMID: 34386497 PMCID: PMC8353277 DOI: 10.3389/fcell.2021.708318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The energetically costly mammalian investment in gestation and lactation requires plentiful nutritional sources and thus links the environmental conditions to reproductive success. Flexibility in adjusting developmental timing enhances chances of survival in adverse conditions. Over 130 mammalian species can reversibly pause early embryonic development by switching to a near dormant state that can be sustained for months, a phenomenon called embryonic diapause. Lineage-specific cells are retained during diapause, and they proliferate and differentiate upon activation. Studying diapause thus reveals principles of pluripotency and dormancy and is not only relevant for development, but also for regeneration and cancer. In this review, we focus on the molecular regulation of diapause in early mammalian embryos and relate it to maintenance of potency in stem cells in vitro. Diapause is established and maintained by active rewiring of the embryonic metabolome, epigenome, and gene expression in communication with maternal tissues. Herein, we particularly discuss factors required at distinct stages of diapause to induce, maintain, and terminate dormancy.
Collapse
|
43
|
Perry GA, Perkins SD, Northrop EJ, Rich JJJ, Epperson KM, Andrews TN, Kline AC, Quail LK, Walker JA, Wright CL, Russell JR. Impact of trace mineral source on beef replacement heifer growth, reproductive development, and biomarkers of maternal recognition of pregnancy and embryo survival. J Anim Sci 2021; 99:6277856. [PMID: 34003933 PMCID: PMC8257026 DOI: 10.1093/jas/skab160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Trace minerals are known to play important roles in early embryo development. The study objective was to determine effects of trace mineral source on heifer reproductive performance. Beef heifers (n = 129) were randomly assigned to one of two treatments. From weaning through breeding, all heifers were individually fed a basal diet supplemented with cobalt (Co), copper (Cu), manganese (Mn), and zinc (Zn) either from organic sources (COMP; Cu, Mn, and Zn amino acid complexes and Co glucoheptonate; Availa-4, Zinpro Corporation, Eden Prairie, MN) or inorganic sources (INORG; Cu, Mn, and Zn hydroxychlorides; Intellibond C, M, and Z, Micronutrients, Indianapolis, IN) and Co as CoSO4. Blood samples and a reproductive tract score (RTS) were collected to determine pubertal status. All animals were synchronized and artificially inseminated. Pregnancy status was determined by lymphocyte gene expression, circulating concentrations of pregnancy-associated glycoproteins (PAGs), and by transrectal ultrasonography after artificial insemination. Embryonic loss was defined as when a previously pregnant animal was subsequently diagnosed not pregnant. Data were analyzed using the MIXED procedure in SAS. Puberty (P = 0.44), pelvic area (P = 0.74), RTS (P = 0.49), and estrus expression (P = 0.82) were not influenced by treatment. There was no effect of treatment (P = 0.37) or treatment by time (P = 0.19) on pregnancy, but there was a tendency (P = 0.13) for decreased embryonic loss among COMP heifers (27 ± 6%) compared to INORG heifers (38 ± 6%). There was a treatment by pregnancy status by time interaction (P < 0.01) on circulating PAG concentrations with PAG concentrations tending (P = 0.08) to be greater on day 25 among heifers in the COMP treatment compared to heifers in the INORG group. In summary, source of trace mineral did not affect puberty, RTS, pelvic area, or overall pregnancy success, but feeding complexed trace minerals tended to increase circulating PAG concentrations and embryo survival.
Collapse
Affiliation(s)
- George A Perry
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Stephanie D Perkins
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Emmalee J Northrop
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Jerica J J Rich
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Kaitlin M Epperson
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Taylor N Andrews
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Adalaide C Kline
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lacey K Quail
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Julie A Walker
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Cody L Wright
- Department of Animal Sciences, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
44
|
Zhu Q, Xie P, Li H, Blachier F, Yin Y, Kong X. Dynamic Changes of Metabolite Profiles in Maternal Biofluids During Gestation Period in Huanjiang Mini-Pigs. Front Vet Sci 2021; 8:636943. [PMID: 34295931 PMCID: PMC8290061 DOI: 10.3389/fvets.2021.636943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
The biochemical parameters related to nitrogenous metabolism in maternal biofluids may be linked and even reflect the fetal metabolism and growth. The present study have measured the concentrations of various parameters related to amino acid (AA) and lipid metabolism, as well as different metabolites including the free AAs in maternal plasma and amniotic and allantoic fluid corresponding to fetuses with different body weight (BW) during different gestation periods, in order to identify the possible relationships between biochemical parameters and fetal growth. A total of 24 primiparous Huanjiang mini-pigs were fed with a standard diet. Data showed that, from day 45 to day 110 of gestation, the maternal plasma levels of alanine aminotransferase (ALT), albumin (ALB), Ile, Orn, Car, α-ABA, and β-AiBA increased (P < 0.05); while the levels of ammonia (AMM), choline esterase (CHE), high density lipoprotein-cholesterol (HDL-C), Leu, Glu, Cys, Asp, and Hypro decreased (P < 0.05). From day 45 to 110 of gestation, the amniotic fluid levels of aspartate transaminase (AST), CHE, total protein (TP), and urea nitrogen (UN) increased (P < 0.05), as well as the level of CHE and TP and concentration of Pro in allantoic fluid; while the amniotic fluid concentrations of Arg, Glu, Orn, Pro, and Tau decreased (P < 0.05), as well as allantoic fluid concentrations of Arg and Glu. At day 45 of gestation, the amniotic fluid concentrations of Arg, Orn, and Tau corresponding to the highest BW (HBW) fetuses were higher (P < 0.05), whereas the allantoic fluid concentrations of His and Pro were lower (P < 0.05) when compared with the lowest BW (LBW) fetuses. At day 110 of gestation, the amniotic fluid concentration of Tau corresponding to the HBW fetuses was higher (P < 0.05) than the LBW fetuses. These findings show that the sows display increased protein utilization and decreased lipid metabolism and deposition from day 75 to 110 of gestation. In addition, our data are indicative of a likely stronger ability of HBW fetuses to metabolize protein; and finally of a possible key role of Arg, Gln, Glu, Pro, Tau, and His for the fetal growth and development.
Collapse
Affiliation(s)
- Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peifeng Xie
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huawei Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Guangxi, China
| |
Collapse
|
45
|
Chen J, Yang Y, Yang Y, Dai Z, Kim IH, Wu G, Wu Z. Dietary Supplementation with Glycine Enhances Intestinal Mucosal Integrity and Ameliorates Inflammation in C57BL/6J Mice with High-Fat Diet-Induced Obesity. J Nutr 2021; 151:1769-1778. [PMID: 33830211 DOI: 10.1093/jn/nxab058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/23/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity, a major public health problem worldwide, is associated with dysfunction of the intestinal barrier. Glycine (Gly) has been reported to enhance the expression of tight-junction proteins in porcine enterocytes. It is unknown whether Gly can improve intestinal barrier integrity in obese mice. OBJECTIVES This study tested the hypothesis that Gly enhances the intestinal epithelial barrier by regulating endoplasmic reticulum (ER) stress-related signaling and mitigating inflammation in high-fat diet (HFD)-induced obese mice. METHODS Five-week-old male C57BL/6J mice were fed a normal-fat diet (ND; fat = 10% energy) or an HFD (fat = 60% energy) and received drinking water supplemented with 2% Gly or 2.37% l-alanine (Ala; isonitrogenous control) daily for 12 wk. Body weight gain and tissue weights, glucose tolerance and the activation of immune cells, as well as the abundances of tight-junction proteins, ER stress proteins, and apoptosis-related proteins in the jejunum and colon were determined. In addition, the body weights of naïve ND and HFD groups (nND and nHFD, respectively) were also recorded for comparison. Differences were analyzed statistically by ANOVA followed by the Duncan multiple-comparison test using SAS software. RESULTS Compared with ND-Ala, HFD-feeding resulted in enhanced macrophage (CD11b+ and F4/80+) infiltration and immune cell activation by 1.9- to 5.4-fold (P < 0.05), as well as the upregulation of ER stress sensor proteins (including phospho-inositol-requiring enzyme 1α and binding immunoglobulin protein) by 2.5- to 4.5-fold, the induction of apoptotic proteins by 1.5- to 3.2-fold, and decreased abundances of tight-junction proteins by 35%-65% (P < 0.05) in the intestine. These HFD-induced abnormalities were significantly ameliorated by Gly supplementation in the HFD-Gly group (P < 0.05). Importantly, Gly supplementation also significantly enhanced glucose tolerance (P < 0.05) by 1.5-fold without affecting the fat accumulation of HFD-induced obese mice. CONCLUSIONS Gly supplementation enhanced the intestinal barrier and ameliorated inflammation and insulin resistance in HFD-fed mice. These effects of Gly were associated with reduced ER stress-related apoptosis in the intestine of obese mice.
Collapse
Affiliation(s)
- Jingqing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yuchen Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Republic of Korea
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Zhenlong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Moraes JGN, Behura SK, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids†. Biol Reprod 2021; 102:456-474. [PMID: 31616913 DOI: 10.1093/biolre/ioz191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Survival and growth of the bovine conceptus (embryo and associated extraembryonic membranes) are dependent on endometrial secretions or histotroph found in the uterine lumen. Previously, serial embryo transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components [glucose, prostaglandins (PGs), and lipids] in the uterine lumen of day 17 pregnant and open fertility-classified heifers. Concentrations of glucose in the uterine lumen were increased by pregnancy but did not differ among fertility-classified heifers. Differences in expression of genes encoding glucose transporters and involved with glycolysis and gluconeogenesis were observed between conceptuses collected from HF and SF heifers. In the uterine lumen, PGE2 and PGF2α were increased by pregnancy, and HF heifers had higher concentrations of PGE2, PGF2α, and 6-keto-PFG1α than SF heifers. Differences were found in expression of genes regulating PG signaling, arachidonic acid metabolism, and peroxisome proliferator-activated receptor signaling among conceptuses and endometrium from fertility-classified heifers. Lipidomics was conducted exclusively in samples from HF heifers, and phosphatidylcholine was the main lipid class that increased in the uterine lumen by pregnancy. Expression of several lipid metabolism genes differed between HF and SF conceptuses, and a number of fatty acids were differentially abundant in the uterine lumen of pregnant HF and SF heifers. These results support the ideas that uterine luminal histotroph impacts conceptus survival and programs its development and is a facet of dysregulated conceptus-endometrial interactions that result in loss of the conceptus in SF cattle during the implantation period of pregnancy establishment.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
47
|
Paudel S, Liu B, Cummings MJ, Quinn KE, Bazer FW, Caron KM, Wang X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol Reprod 2021; 105:876-891. [PMID: 34104954 DOI: 10.1093/biolre/ioab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Adrenomedullin (ADM) is an evolutionarily conserved multi-functional peptide hormone that regulates implantation, embryo spacing and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus, and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, expression of CALCRL, RAMP2 and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation and placentation in pigs.
Collapse
Affiliation(s)
- Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Bangmin Liu
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Kelsey E Quinn
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station TX, 77843, USA
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
48
|
Northrop-Albrecht EJ, Rich JJJ, Cushman RA, Yao R, Ge X, Perry GA. Influence of estradiol on bovine trophectoderm and uterine gene transcripts around maternal recognition of pregnancy†. Biol Reprod 2021; 105:381-392. [PMID: 33962467 DOI: 10.1093/biolre/ioab091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Embryo survival and pregnancy success is increased among animals that exhibit estrus prior to fixed time-artificial insemination, but there are no differences in conceptus survival to d16. The objective of this study was to determine effects of preovulatory estradiol on uterine transcriptomes, select trophectoderm (TE) transcripts, and uterine luminal fluid proteins. Beef cows/heifers were synchronized, artificially inseminated (d0), and grouped into either high (highE2) or low (lowE2) preovulatory estradiol. Uteri were flushed (d16); conceptuses and endometrial biopsies (n = 29) were collected. RNA sequencing was performed on endometrium. Real-time polymerase chain reaction (RT-PCR) was performed on TE (n = 21) RNA to measure relative abundance of IFNT, PTGS2, TM4SF1, C3, FGFR2, and GAPDH. Uterine fluid was analyzed using 2D Liquid Chromatography with tandem mass spectrometry-based Isobaric tags for relative and absolute quantitation (iTRAQ) method. RT-PCR data were analyzed using the MIXED procedure in SAS. There were no differences in messenger RNA (mRNA) abundances in TE, but there were 432 differentially expressed genes (253 downregulated, 179 upregulated) in highE2/conceptus versus lowE2/conceptus groups. There were also 48 differentially expressed proteins (19 upregulated, 29 downregulated); 6 of these were differentially expressed (FDR < 0.10) at the mRNA level. Similar pathways for mRNA and proteins included: calcium signaling, protein kinase A signaling, and corticotropin-releasing hormone signaling. These differences in uterine function may be preparing the conceptus for improved likelihood of survival after d16 among highE2 animals.
Collapse
Affiliation(s)
| | - Jerica J J Rich
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Robert A Cushman
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE, USA
| | - Runan Yao
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - George A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
49
|
mRNA Expressions of Candidate Genes in Gestational Day 16 Conceptus and Corresponding Endometrium in Repeat Breeder Dairy Cows with Suboptimal Uterine Environment Following Transfer of Different Quality Day 7 Embryos. Animals (Basel) 2021; 11:ani11041092. [PMID: 33920430 PMCID: PMC8070175 DOI: 10.3390/ani11041092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The mRNA expression of Interferon-τ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator-activated receptors (PPARA, D, and G), and Retinoid X receptors (RXRA, B, and G) genes and proteins (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) were lower and MUC1 at mRNA and protein levels, was greater in gestation day (GD) 16 embryo and corresponding endometrium of subclinical endometritis cows, and in cows following transfer of poor quality embryo (Grade 3). All genes and proteins but MUC1 expression was lower in GD16 tubular conceptus and corresponding endometrium vs. GD16 filamentous conceptus and matching endometrium in cows with SCE and in cows following the transfer of Grade 3 embryo. Disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor GD7 embryo negatively programs the conceptus development and plausibly affects the conceptus survival. Abstract Effect of the gestational day (GD) 7 embryo quality grade (QG) and subclinical endometritis (SCE) on mRNA and protein expressions of candidate genes [Interferon-τ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator activated receptors (PPARA, D, and G), Retinoid X receptors (RXRA, B, and G), and Mucin-1 (MUC1)] in GD16 conceptus and corresponding endometrium were evaluated. After screening of performance records (n = 2389) and selection of repeat breeders (n = 681), cows with SCE (≥6% polymorphonuclear neutrophils—PMN; n = 180) and no-SCE (<6%PMN; n = 180) received GD7 embryos of different QGs. Based on GD16 conceptus recovery, cows with SCE (n = 30) and No- SCE (n = 30) that received GD7 embryos QG1 (good, n = 20), 2 (fair, n = 20), and 3 (poor, n = 20) were included for gene analysis. mRNA and protein expressions (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) differed between SCE and embryo QG groups. All genes but MUC1 and all proteins but MUC1 expression was greater in filamentous conceptus and corresponding endometrium vs. tubular conceptus and matching endometrium in SCE and embryo QG groups. In conclusion, disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor embryo negatively programs the conceptus development and plausibly affects conceptus survival.
Collapse
|
50
|
Stenhouse C, Halloran KM, Newton MG, Gaddy D, Suva LJ, Bazer FW. Novel mineral regulatory pathways in ovine pregnancy: II. Calcium-binding proteins, calcium transporters, and vitamin D signaling. Biol Reprod 2021; 105:232-243. [PMID: 33822885 DOI: 10.1093/biolre/ioab063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mineralization of the fetal mammalian skeleton requires a hypercalcemic gradient across the placenta from mother to fetus. However, the mechanisms responsible for maintaining the placental transport of calcium remain poorly understood. This study aimed to identify calcium and vitamin D regulatory pathway components in ovine endometria and placentae across gestation. Suffolk ewes were bred with fertile rams upon detection of estrus (Day 0). On Days 9, 12, 17, 30, 70, 90, 110, and 125 of pregnancy (n=3-14/Day), ewes were euthanized and hysterectomized. Calcium abundance was influenced by gestational day in uterine flushings and allantoic fluid (P<0.05). The expression of S100G, S100A9, S100A12, ATP2B3, ATP2B4, TRPV5, TRPV6, CYP11A1, CYP2R1, CYP24, and VDR mRNAs known to be involved in calcium binding, calcium transport, and vitamin D metabolism were quantified by qPCR. Mediators of calcium and vitamin D signaling were expressed by Day 17 conceptus tissue, and endometria and placentae across gestation. Gestational day influenced the expression of S100G, S100A9, S100A12, TRPV6, VDR, and CYP24 mRNAs in endometria and placentae (P<0.05). Gestational day influenced endometrial expression of ATP2B3, and placental expression of TRPV5, ATP2B4, and CYP11A1 (P<0.05). VDR protein localized to the endoderm and trophectoderm (Day 17 conceptus) and was expressed in endometria and placentae throughout gestation. The observed spatiotemporal profile suggests a potential role of calcium and vitamin D in the establishment of pregnancy and regulation of fetal and placental growth, providing a platform for further mechanistic investigation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | | | - Makenzie G Newton
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|