1
|
Huang L, Shen Q, Yu K, Yang J, Li X. RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis. Biotechnol Appl Biochem 2025; 72:340-354. [PMID: 39300709 DOI: 10.1002/bab.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1β, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.
Collapse
Affiliation(s)
- Lina Huang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinqin Shen
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kun Yu
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jie Yang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuxiu Li
- Department of Science and Education, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Zhang J, Zhang H, Zhou W, Jiang M, Lin X. Effect of myo-inositol supplementation in mixed ovarian response IVF cohort: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2025; 16:1520362. [PMID: 40190407 PMCID: PMC11968372 DOI: 10.3389/fendo.2025.1520362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Objective There has been substantial research conducted recently on the effect of myo-inositol (MI) on human reproduction. However, it still remains ambiguous about the therapeutic efficacy of MI in infertile women undergoing in vitro fertilization embryo transfer (IVF-ET). This systematic review and meta-analysis was carried out to investigate the efficacy of MI on IVF outcomes. Methods Literatures were searched in the PubMed, Web of Science, Cochrane Library, ScienceDirect and Wanfang databases. The methodological quality was assessed using the Cochrane Risk of Bias tool. Data were pooled using a random- or fixed-effects model according to study heterogeneity. The results are expressed as odds ratio (OR) or mean difference (MD) with 95% confidence intervals (CIs). Heterogeneity was measured by the I2 statistic. The protocol was prospectively registered with PROSPERO (CRD42024582149). Results Eleven eligible studies with 981 participants reported the IVF outcomes of the MI group versus the control group. The synthesis results showed that the metaphase II (MII) oocyte rate was higher in the MI group than in the control group (OR 1.55, 95% CI 1.04-2.31, P=0.03). For polycystic ovary syndrome (PCOS) women, as well as non-obese PCOS women, a statistically significant improvement in MII oocyte rate were assumed after taking MI (OR 1.97, 95% CI 1.20-3.25, P<0.01; OR 1.92, 95% CI 1.09-3.37, P=0.02) while there is no statistically significant advancement showed in the poor ovary responder (POR) women(OR 0.97, 95% CI 0.35-2.68, P=0.95). The fertilization rate was higher in the MI group than in the control group (OR 1.62, 95% CI 1.21-2.16, P<0.01), for PCOS, non-obese PCOS and POR women (OR 1.59, 95% CI 1.16-2.18, P<0.01; OR 1.87, 95% CI 1.52-2.31, P<0.01; OR 2.42, 95% CI 1.48-3.95, P<0.01). Conclusions Our results suggest that MI supplementation improves the MII oocyte rate and the fertilization rate. More high-grade evidence from prospective randomized studies is warranted. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024582149.
Collapse
Affiliation(s)
| | - Huanhuan Zhang
- Reproductive Center, Hangzhou Women’s Hospital,
Hangzhou, China
| | | | | | | |
Collapse
|
3
|
Meng XL, Yuan PB, Wang XJ, Hang J, Shi XM, Zhao YY, Wei Y. The Proteome Landscape of Human Placentas for Monochorionic Twins with Selective Intrauterine Growth Restriction. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1246-1259. [PMID: 37121272 PMCID: PMC11082409 DOI: 10.1016/j.gpb.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 05/02/2023]
Abstract
In perinatal medicine, intrauterine growth restriction (IUGR) is one of the greatest challenges. The etiology of IUGR is multifactorial, but most cases are thought to arise from placental insufficiency. However, identifying the placental cause of IUGR can be difficult due to numerous confounding factors. Selective IUGR (sIUGR) would be a good model to investigate how impaired placentation affects fetal development, as the growth discordance between monochorionic twins cannot be explained by confounding genetic or maternal factors. Herein, we constructed and analyzed the placental proteomic profiles of IUGR twins and normal cotwins. Specifically, we identified a total of 5481 proteins, of which 233 were differentially expressed (57 up-regulated and 176 down-regulated) in IUGR twins. Bioinformatics analysis indicates that these differentially expressed proteins (DEPs) are mainly associated with cardiovascular system development and function, organismal survival, and organismal development. Notably, 34 DEPs are significantly enriched in angiogenesis, and diminished placental angiogenesis in IUGR twins has been further elaborately confirmed. Moreover, we found decreased expression of metadherin (MTDH) in the placentas of IUGR twins and demonstrated that MTDH contributes to placental angiogenesis and fetal growth in vitro. Collectively, our findings reveal the comprehensive proteomic signatures of placentas for sIUGR twins, and the DEPs identified may provide in-depth insights into the pathogenesis of placental dysfunction and subsequent impaired fetal growth.
Collapse
Affiliation(s)
- Xin-Lu Meng
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Peng-Bo Yuan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xue-Ju Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Xiao-Ming Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang-Yu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
4
|
Wang J, Liu Z, Cao D, Liu J, Li F, Han H, Han H, Lei Q, Liu W, Li D, Wang J, Zhou Y. Elucidation of the genetic determination of clutch traits in Chinese local chickens of the Laiwu Black breed. BMC Genomics 2023; 24:686. [PMID: 37968610 PMCID: PMC10652520 DOI: 10.1186/s12864-023-09798-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Egg laying rate (LR) is associated with a clutch, which is defined as consecutive days of oviposition. The clutch trait can be used as a selection indicator to improve egg production in poultry breeding. However, little is known about the genetic basis of clutch traits. In this study, our aim was to estimate genetic parameters and identify quantitative trait single nucleotide polymorphisms for clutch traits in 399 purebred Laiwu Black chickens (a native Chinese breed) using a genome-wide association study (GWAS). METHODS In this work, after estimating the genetic parameters of age at first egg, body weight at first egg, LR, longest clutch until 52 week of age, first week when the longest clutch starts, last week when the longest clutch ends, number of clutches, and longest number of days without egg-laying until 52 week of age, we identified single nucleotide polymorphisms (SNPs) and potential candidate genes associated with clutch traits in Laiwu Black chickens. The restricted maximum likelihood method was used to estimate genetic parameters of clutch pattern in 399 Laiwu Black hens, using the GCTA software. RESULTS The results showed that SNP-based heritability estimates of clutch traits ranged from 0.06 to 0.59. Genotyping data were obtained from whole genome re-sequencing data. After quality control, a total of 10,810,544 SNPs remained to be analyzed. The GWAS revealed that 421 significant SNPs responsible for clutch traits were scattered on chicken chromosomes 1-14, 17-19, 21-25, 28 and Z. Among the annotated genes, NELL2, SMYD9, SPTLC2, SMYD3 and PLCL1 were the most promising candidates for clutch traits in Laiwu Black chickens. CONCLUSION The findings of this research provide critical insight into the genetic basis of clutch traits. These results contribute to the identification of candidate genes and variants. Genes and SNPs potentially provide new avenues for further research and would help to establish a framework for new methods of genomic prediction, and increase the accuracy of estimated genetic merit for egg production and clutch traits.
Collapse
Affiliation(s)
- Jie Wang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Zhansheng Liu
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Dingguo Cao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Jie Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Fuwei Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Heguo Han
- Lijin County Center for Animal Disease Control, Lijin, 257400, China
| | - Haixia Han
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Qiuxia Lei
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Wei Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Dapeng Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Jianxia Wang
- Administrative Examination and Approval Service Bureau of Lijin County, Lijin, 257400, China
| | - Yan Zhou
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China.
| |
Collapse
|
5
|
Kamenov Z, Gateva A, Dinicola S, Unfer V. Comparing the Efficacy of Myo-Inositol Plus α-Lactalbumin vs. Myo-Inositol Alone on Reproductive and Metabolic Disturbances of Polycystic Ovary Syndrome. Metabolites 2023; 13:717. [PMID: 37367875 DOI: 10.3390/metabo13060717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the beneficial effect of myo-inositol on metabolic, hormonal, and reproductive parameters of polycystic ovary syndrome (PCOS) patients, 28% to 38% could be resistant to this treatment. The combination with the milk protein α-lactalbumin can be a useful therapeutic approach to overcome inositol resistance and achieve ovulation in these women. This open-label prospective study aimed to compare the effects of supplementing myo-inositol plus α-lactalbumin vs myo-inositol alone on reproductive and metabolic abnormalities in PCOS. A total of 50 anovulatory women with a PCOS diagnosis were randomly assigned to receive myo-inositol alone or a combination of myo-inositol and α-lactalbumin for three months. Anthropometric measures, hormonal levels, and menstrual cycle duration were collected at baseline and after treatment. The therapy with myo-inositol plus α-lactalbumin improved both ovulation rate and menstrual cycle duration more than myo-inositol alone. The body weight was significantly reduced in women receiving myo-inositol plus α-lactalbumin, while patients in the myo-inositol group experienced no change. In addition, the improvement of hyperandrogenism was more prominent in patients treated with myo-inositol plus α-lactalbumin. The benefits of associating myo-inositol and α-lactalbumin clearly make this combination a true edge in the management of PCOS.
Collapse
Affiliation(s)
- Zdravko Kamenov
- Department of Internal Medicine, University Hospital "Alexandrovska", Clinic of Endocrinology and Metabolism, Medical University, 1431 Sofia, Bulgaria
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Antoaneta Gateva
- Department of Internal Medicine, University Hospital "Alexandrovska", Clinic of Endocrinology and Metabolism, Medical University, 1431 Sofia, Bulgaria
| | - Simona Dinicola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- Systems Biology Group Lab, 00161 Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- Systems Biology Group Lab, 00161 Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
6
|
Khan M, Lin J, Wang B, Chen C, Huang Z, Tian Y, Yuan Y, Bu J. A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma. Front Immunol 2022; 13:968165. [PMID: 36389725 PMCID: PMC9646549 DOI: 10.3389/fimmu.2022.968165] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gastric cancer (GC) represents a major global clinical problem with very limited therapeutic options and poor prognosis. Necroptosis, a recently discovered inflammatory form of cell death, has been implicated in carcinogenesis and inducing necroptosis has also been considered as a therapeutic strategy. Objective We aim to evaluate the role of this pathway in gastric cancer development, prognosis and immune aspects of its tumor microenvironment. Methods and results In this study, we evaluated the gene expression of 55 necroptosis-related genes (NRGs) that were identified via carrying out a comprehensive review of the medical literature. Necroptosis pathway was deregulated in gastric cancer samples (n=375) as compared to adjacent normal tissues (n=32) obtained from the “The Cancer Genome Atlas (TCGA)”. Based on the expression of these NRGs, two molecular subtypes were obtained through consensus clustering that also showed significant prognostic difference. Differentially expressed genes between these two clusters were retrieved and subjected to prognostic evaluation via univariate cox regression analysis and LASSO cox regression analysis. A 13-gene risk signature, termed as necroptosis-related genes prognostic index (NRGPI), was constructed that comprehensively differentiated the gastric cancer patients into high- and low-risk subgroups. The prognostic significance of NRGPI was validated in the GEO cohort (GSE84437: n=408). The NRGPI-high subgroup was characterized by upregulation of 10 genes (CYTL1, PLCL1, CGB5, CNTN1, GRP, APOD, CST6, GPX3, FCN1, SERPINE1) and downregulation of 3 genes (EFNA3, E2F2, SOX14). Further dissection of these two risk groups by differential gene expression analysis indicated involvement of signaling pathways associated with cancer cell progression and immune suppression such as WNT and TGF-β signaling pathway. Para-inflammation and type-II interferon pathways were activated in NRGPI-high patients with an increased infiltration of Tregs and M2 macrophage indicating an exhausted immune phenotype of the tumor microenvironment. These molecular characteristics were mainly driven by the eight NRGPI oncogenes (CYTL1, PLCL1, CNTN1, GRP, APOD, GPX3, FCN1, SERPINE1) as validated in the gastric cancer cell lines and clinical samples. NRGPI-high patients showed sensitivity to a number of targeted agents, in particular, the tyrosine kinase inhibitors. Conclusions Necroptosis appears to play a critical role in the development of gastric cancer, prognosis and shaping of its tumor immune microenvironment. NRGPI can be used as a promising prognostic biomarker to identify gastric cancer patients with a cold tumor immune microenvironment and poor prognosis who may response to selected molecular targeted therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| | - Junguo Bu
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| |
Collapse
|
7
|
Wu S, Li X. A genomic instability-derived risk index predicts clinical outcome and immunotherapy response for clear cell renal cell carcinoma. Bioengineered 2021; 12:1642-1662. [PMID: 33955826 PMCID: PMC8806326 DOI: 10.1080/21655979.2021.1922330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
This study aims to originate agenomic instability-derived risk index (GIRI) for prognostic analysis of clear cell renal cell carcinoma (ccRCC) and explore the mutation characteristics, immune characteristics, and immunotherapy response defined by GIRI. Differentially expressed genome instability-associated genes were obtained from the genomic unstable (GU) group and the genomic stable (GS) group. Rigorous screening conditions were assigned to the screening of hub genes, which were then used to generate the GIRI through multivariate Cox regression analysis. The selected samples were assigned to the high-risk group or the low-risk group based on the median GIRI. Possible reasons for the prognostic differences in risk subgroups were explored from the aspects of mutation profiles, immune profiles, immunomodulators, and biological pathway activities. The possibility of immunotherapy response was predicted by Tumor Immune Dysfunction and Exclusion analysis results. The prediction of drugs that might reverse the expression profiles of the risk subgroups was discovered through theonnectivity Map (CMap). High-risk populations manifested poor overall survival than low-risk populations and were characterized by elevated cumulative mutation counts and tumor mutation burden. Also, high-risk populations had higher immune scores, immunomodulator (PD-1, CTLA4, LAG3, and TIGIT) expression, and genomic instability-related pathway activities, and were more likely to reap benefits from immunotherapy. Besides, we predicted several drugs (PI3K inhibitor, ATPase inhibitor, and phenylalanyl tRNA synthetase inhibitor) targeting risk subgroups. The well established GIRI was an effective cancer biomarker for predicting ccRCC prognosis and provided apotential reference value for identifying immunotherapy response.
Collapse
Affiliation(s)
- Sha Wu
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoning Li
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
High Doses of D-Chiro-Inositol Alone Induce a PCO-Like Syndrome and Other Alterations in Mouse Ovaries. Int J Mol Sci 2021; 22:ijms22115691. [PMID: 34073634 PMCID: PMC8198710 DOI: 10.3390/ijms22115691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Administration of 1000-1500 mg/day D-Chiro-Inositol (DCIns) or a combination of Myo-Inositol (MyoIns) and DCIns in their plasma molar ratio (40:1) for three or more months are among recommended treatments for metabolic syndrome and/or Polycystic Ovary Syndrome (PCOS). We previously confirmed the efficacy of this formulation (8.2 mg/day MyoIns and 0.2 mg/day DCIns for 10 days) in a mouse PCOS model, but also observed negative effects on ovarian histology and function of formulations containing 0.4-1.6 mg/day DCIns. We therefore analyzed effects of higher doses of DCIns, 5, 10 and 20 mg/day, administered to young adult female mice for 21 days, on ovarian histology, serum testosterone levels and expression of the ovarian enzyme aromatase. Five mg/day DCIns (human correspondence: 1200 mg/day) altered ovarian histology, increased serum testosterone levels and reduced the amount of aromatase of negative controls, suggesting the induction of an androgenic PCOS model. In contrast, 10-20 mg/day DCIns (human correspondence: 2400-4800 mg/day) produced ovarian lesions resembling those typical of aged mice, and reduced serum testosterone levels without affecting aromatase amounts, suggesting a failure in steroidogenic gonadal activity. Notwithstanding physiological/biochemical differences between mice and humans, the observed pictures of toxicity for ovarian histology and function recommend caution when administering DCIns to PCOS patients at high doses and/or for periods spanning several ovulatory cycles.
Collapse
|
9
|
Progesterone receptor isoform B regulates the Oxtr- Plcl2- Trpc3 pathway to suppress uterine contractility. Proc Natl Acad Sci U S A 2021; 118:2011643118. [PMID: 33707208 DOI: 10.1073/pnas.2011643118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uterine contractile dysfunction leads to pregnancy complications such as preterm birth and labor dystocia. In humans, it is hypothesized that progesterone receptor isoform PGR-B promotes a relaxed state of the myometrium, and PGR-A facilitates uterine contraction. This hypothesis was tested in vivo using transgenic mouse models that overexpress PGR-A or PGR-B in smooth muscle cells. Elevated PGR-B abundance results in a marked increase in gestational length compared to control mice (21.1 versus 19.1 d respectively, P < 0.05). In both ex vivo and in vivo experiments, PGR-B overexpression leads to prolonged labor, a significant decrease in uterine contractility, and a high incidence of labor dystocia. Conversely, PGR-A overexpression leads to an increase in uterine contractility without a change in gestational length. Uterine RNA sequencing at midpregnancy identified 1,174 isoform-specific downstream targets and 424 genes that are commonly regulated by both PGR isoforms. Gene signature analyses further reveal PGR-B for muscle relaxation and PGR-A being proinflammatory. Elevated PGR-B abundance reduces Oxtr and Trpc3 and increases Plcl2 expression, which manifests a genetic profile of compromised oxytocin signaling. Functionally, both endogenous PLCL2 and its paralog PLCL1 can attenuate uterine muscle cell contraction in a CRISPRa-based assay system. These findings provide in vivo support that PGR isoform levels determine distinct transcriptomic landscapes and pathways in myometrial function and labor, which may help further the understanding of abnormal uterine function in the clinical setting.
Collapse
|
10
|
Facchinetti F, Unfer V, Dewailly D, Kamenov ZA, Diamanti-Kandarakis E, Laganà AS, Nestler JE, Soulage CO. Inositols in Polycystic Ovary Syndrome: An Overview on the Advances. Trends Endocrinol Metab 2020; 31:435-447. [PMID: 32396844 DOI: 10.1016/j.tem.2020.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
This review details the physiologic roles of two insulin sensitizers, myo-inositol (MI) and d-chiro-inositol (DCI). In the human ovary, MI is a second messenger of follicle-stimulating hormone (FSH) and DCI is an aromatase inhibitor. These activities allow a treatment for polycystic ovary syndrome (PCOS) to be defined based on the combined administration of MI and DCI, where the best MI:DCI ratio is 40:1. Moreover, MI enhances the effect of metformin and clomiphene on the fertility of PCOS women seeking pregnancy. As impaired intestinal transport may lead to unsuccessful inositol treatment, we also discuss new data on the use of alpha-lactalbumin to boost inositol absorption. Overall, the physiological activities of MI and DCI dictate the dosages and timing of inositol supplementation in the treatment of PCOS.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy.
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France; INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, 'Filippo Del Ponte' Hospital, University of Insubria, Varese, Italy
| | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Christophe O Soulage
- University of Lyon, INSERM U1060, CarMeN, INSA de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | |
Collapse
|
11
|
Bevilacqua A, Dragotto J, Giuliani A, Bizzarri M. Myo-inositol and D-chiro-inositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J Cell Physiol 2019; 234:9387-9398. [PMID: 30317628 DOI: 10.1002/jcp.27623] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Mice exposed to continuous light undergo functional and histological changes that mimic those of human Polycystic Ovary Syndrome (PCOS). We herein induced the syndrome by exposing 30-day-old females to 10 weeks of permanent light. Ovarian morphology and histology, as well as reproductive parameters (time of observed pregnancy/delivery) were investigated. Ovaries of PCOS-modeled mice showed lack of tertiary follicles and corpora lutea, altered ovarian architecture, and increased thickness of the theca layer. When mice were returned to a normal light-dark regimen for 10 days, a slight, spontaneous improvement occurred, whereas a quick and almost complete recovery from PCOS signs and symptoms was obtained by treating animals with a daily supplementation of 420 mg/kg myo-inositol and D-chiro-inositol (MyoIns/DCIns) in a 40:1 molar ratio. Namely, ovaries from mice treated by this protocol recovered normal histological features and a proper ratio of theca/granulosa cell layer thickness (TGR), suggesting that the androgenic phenotype was efficiently reversed. Indeed, we identified TGR as a useful index of PCOS, as its increase in PCOS-modeled mice correlated linearly with reduced reproductive capability ( r = 0.75, p < 0.0001). Mice treated with a 40:1 formula regained low TGR values and faster recovery of their fertility, with a physiological delivery time after mating. On the other hand, a higher D-chiro-inositol treatment formula, such as MyoIns versus DCIns 5:1, was ineffective or even had a negative effect on clinical-pathological outcomes.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome and Research Center in Neurobiology Daniel Bovet" (CRiN), Rome, Italy
| | - Jessica Dragotto
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, Rome, Italy
| |
Collapse
|
12
|
Liu C, Ran X, Yu C, Xu Q, Niu X, Zhao P, Wang J. Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes. Genomics 2018; 111:310-319. [PMID: 29481841 DOI: 10.1016/j.ygeno.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/30/2022]
Abstract
To gain a better knowledge of structural variations (SVs) in Xiang pig, we used next-generation sequencing to analyze the Xiang pigs with larger (XL) or smaller litter sizes (XS). Our analysis yielded 28,040 putative SVs in the Xiang pig. These SVs distributed throughout all of chromosomes. Some functional regions including exons and untranslated regions were less varied than introns and intergenic regions. We detected 4637 and 4119 specific SVs, which contained 1697 and 1582 genes in XL and XS group, respectively. These genes were mainly enriched in the well-known pathways involved in development and reproduction processes. Population validation was carried out on 50 SVs candidates using PCR method in 144 Xiang pig crowds. All of 50 SVs were confirmed by PCR method and 14 SVs were associated with the litter size of Xiang pigs. These results may be helpful for the elucidation of growth and reproduction regulation in Xiang pig.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Changyan Yu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qian Xu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengju Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China; Tongren University, Tongren 554300, China.
| |
Collapse
|
13
|
Matsuda M, Hirata M. Phospholipase C-related but catalytically inactive proteins regulate ovarian follicle development. J Biol Chem 2017; 292:8369-8380. [PMID: 28360101 DOI: 10.1074/jbc.m116.759928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/29/2017] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-related but catalytically inactive proteins PRIP-1 and -2 are inositol-1,4,5-trisphosphate binding proteins that are encoded by independent genes. Ablation of the Prip genes in mice impairs female fertility, which is manifested by fewer pregnancies, a decreased number of pups, and the decreased and increased secretion of gonadal steroids and gonadotropins, respectively. We investigated the involvement of the PRIPs in fertility, focusing on the ovaries of Prip-1 and -2 double-knock-out (DKO) mice. Multiple cystic follicles were observed in DKO ovaries, and a superovulation assay showed a markedly decreased number of ovulated oocytes. Cumulus-oocyte complexes showed normal expansion, and artificial gonadotropin stimulation regulated the ovulation-related genes in a normal fashion, suggesting that the ovulation itself was probably normal. A histological analysis showed atresia in fewer follicles of the DKO ovaries, particularly in the secondary follicle stages. The expression of luteinizing hormone receptor (LHR) was aberrantly higher in developing follicles, and the phosphorylation of extracellular signal-regulated protein kinase, a downstream target of LH-LHR signaling, was higher in DKO granulosa cells. This suggests that the up-regulation of LH-LHR signaling is the cause of impaired follicle development. The serum estradiol level was lower, but estradiol production was unchanged in the DKO ovaries. These results suggest that PRIPs are positively involved in the development of follicles via their regulation of LH-LHR signaling and estradiol secretion. Female DKO mice had higher serum levels of insulin, testosterone, and uncarboxylated osteocalcin, which, together with reduced fertility, are reminiscent of polycystic ovary syndrome in humans.
Collapse
Affiliation(s)
- Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; Fukuoka Dental College, Fukuoka 814-0193, Japan
| |
Collapse
|
14
|
Murakami A, Matsuda M, Harada Y, Hirata M. Phospholipase C-related, but catalytically inactive protein (PRIP) up-regulates osteoclast differentiation via calcium-calcineurin-NFATc1 signaling. J Biol Chem 2017; 292:7994-8006. [PMID: 28341745 PMCID: PMC5427276 DOI: 10.1074/jbc.m117.784777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C-related, but catalytically inactive protein (PRIP) was previously identified as a novel inositol 1,4,5-trisphosphate-binding protein with a domain organization similar to that of phospholipase C-δ but lacking phospholipase activity. We recently showed that PRIP gene knock-out (KO) in mice increases bone formation and concomitantly decreases bone resorption, resulting in increased bone mineral density and trabecular bone volume. However, the role of PRIP in osteoclastogenesis has not yet been fully elucidated. Here, we investigated the effects of PRIP on bone remodeling by investigating dynamic tooth movement in mice fitted with orthodontic devices. Morphological analysis indicated that the extent of tooth movement was smaller in the PRIP-KO mice than in wild-type mice. Histological analysis revealed fewer osteoclasts on the bone-resorption side in maxillary bones of PRIP-KO mice, and osteoclast formation assays and flow cytometry indicated lower osteoclast differentiation in bone marrow cells isolated from these mice. The expression of genes implicated in bone resorption was lower in differentiated PRIP-KO cells, and genes involved in osteoclast differentiation, such as the transcription factor NFATc1, exhibited lower expression in immature PRIP-KO cells initiated by M-CSF. Moreover, calcineurin expression and activity were also lower in the PRIP-KO cells. The PRIP-KO cells also displayed fewer M-CSF-induced changes in intracellular Ca2+ and exhibited reduced nuclear localization of NFATc1. Up-regulation of intracellular Ca2+ restored osteoclastogenesis of the PRIP-KO cells. These results indicate that PRIP deficiency impairs osteoclast differentiation, particularly at the early stages, and that PRIP stimulates osteoclast differentiation through calcium-calcineurin-NFATc1 signaling via regulating intracellular Ca2.
Collapse
Affiliation(s)
- Ayako Murakami
- From the Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and
| | - Miho Matsuda
- From the Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and
| | - Yui Harada
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Masato Hirata
- From the Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and
- the Fukuoka Dental College, Fukuoka 814-0175, Japan
| |
Collapse
|
15
|
Bevilacqua A, Bizzarri M. Physiological role and clinical utility of inositols in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 2016; 37:129-139. [DOI: 10.1016/j.bpobgyn.2016.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
|
16
|
Kotani M, Matsuda M, Murakami A, Takahashi I, Katagiri T, Hirata M. Involvement of PRIP (Phospholipase C-Related But Catalytically Inactive Protein) in BMP-Induced Smad Signaling in Osteoblast Differentiation. J Cell Biochem 2016; 116:2814-23. [PMID: 25981537 DOI: 10.1002/jcb.25228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023]
Abstract
Phospholipase C-related but catalytically inactive protein (PRIP) was first isolated as an inositol 1,4,5-trisphosphate binding protein. We generated PRIP gene-deficient mice which exhibited the increased bone mineral density and trabecular bone volume, indicating that PRIP is implicated in the regulation of bone properties. In this study, we investigated the possible mechanisms by which PRIP plays a role in bone morphogenetic protein (BMP) signaling, by analyzing the culture of primary cells isolated from calvaria of two genotypes, the wild type and a mutant. In the mutant culture, enhanced osteoblast differentiation was observed by measuring alkaline phosphatase staining and activity. The promoter activity of Id1 gene, responding immediately to BMP, was also more increased. Smad1/5 phosphorylation in response to BMP showed an enhanced peak and was more persistent in mutant cells, but the dephosphorylation process was not different between the two genotypes. The luciferase assay using calvaria cells transfected with the Smad1 mutated as a constitutive active form showed increased transcriptional activity at similar levels between the genotypes. The expression of BMP receptors was not different between the genotypes. BMP-induced phosphorylation of Smad1/5 was robustly decreased in wild type cells, but not in mutant cells, by pretreatment with DB867, an inhibitor of methyltransferase of inhibitory Smad6. Furthermore, BMP-induced translocation of Smad6 from nucleus to cytosol was not much observed in PRIP-deficient cells. These results indicate that PRIP is implicated in BMP-induced osteoblast differentiation by the negative regulation of Smad phosphorylation, through the methylation of inhibitory Smad6.
Collapse
Affiliation(s)
- Miho Kotani
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.,Division of Orthodontics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ayako Murakami
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Division of Orthodontics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
LRG1 mRNA expression in breast cancer associates with PIK3CA genotype and with aromatase inhibitor therapy outcome. Mol Oncol 2016; 10:1363-73. [PMID: 27491861 DOI: 10.1016/j.molonc.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND PIK3CA is the most frequent somatic mutated oncogene in estrogen receptor (ER) positive breast cancer. We previously observed an association between PIK3CA genotype and aromatase inhibitors (AI) treatment outcome. This study now evaluates whether expression of mRNAs and miRs are linked to PIK3CA genotype and are independently related to AI therapy response in order to define potential expressed biomarkers for treatment outcome. MATERIALS AND METHODS The miR and mRNA expression levels were evaluated for their relationship with the PIK3CA genotype in two breast tumor datasets, i.e. 286 luminal cancers from the TCGA consortium and our set of 84 ER positive primary tumors of metastatic breast cancer patients who received first line AI. BRB Array tools class comparison was performed to define miRs and mRNAs whose expression associate with PIK3CA exon 9 and 20 status. Spearman correlations established miR-mRNA pairs and mRNAs with related expression. Next, a third dataset of 25 breast cancer patients receiving neo-adjuvant letrozole was evaluated, to compare expression levels of identified miRs and mRNAs in biopsies before and after treatment. Finally, to identify potential biomarkers miR and mRNA levels were related with overall survival (OS) and progression free survival (PFS) after first-line AI therapy. RESULTS Expression of 3 miRs (miR-449a, miR-205-5p, miR-301a-3p) and 9 mRNAs (CCNO, FAM81B, LRG1, NEK10, PLCL1, PGR, SERPINA3, SORBS2, VTCN1) was related to the PIK3CA status in both datasets. All except miR-301a-3p had an increased expression in tumors with PIK3CA mutations. Validation in a publicly available dataset showed that LRG1, PGR, and SERPINA3 levels were decreased after neo-adjuvant AI-treatment. Six miR-mRNA pairs correlated significantly and stepdown analysis of all 12 factors revealed 3 mRNAs (PLCL1, LRG1, FAM81B) related to PFS. Further analyses showed LRG1 and PLCL1 expression to be unrelated with luminal subtype and to associate with OS and with PFS, the latter independent from traditional predictive factors. CONCLUSION We showed in two datasets of ER positive and luminal breast tumors that the expression of 3 miRs and 9 mRNAs associate with the PIK3CA status. Expression of LRG1 is independent of luminal (A or B) subtype, decreased after neo-adjuvant AI-treatment, and is proposed as potential biomarker for AI therapy outcome.
Collapse
|
18
|
Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 2016; 12:1181-96. [PMID: 27351907 DOI: 10.1080/17425255.2016.1206887] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inositol and its derivatives comprise a huge field of biology. Myo-inositol is not only a prominent component of membrane-incorporated phosphatidylinositol, but participates in its free form, with its isomers or its phosphate derivatives, to a multitude of cellular processes, including ion channel permeability, metabolic homeostasis, mRNA export and translation, cytoskeleton remodeling, stress response. AREAS COVERED Bioavailability, safety, uptake and metabolism of inositol is discussed emphasizing the complexity of interconnected pathways leading to phosphoinositides, inositol phosphates and more complex molecules, like glycosyl-phosphatidylinositols. EXPERT OPINION Besides being a structural element, myo-inositol exerts unexpected functions, mostly unknown. However, several reports indicate that inositol plays a key role during phenotypic transitions and developmental phases. Furthermore, dysfunctions in the regulation of inositol metabolism have been implicated in several chronic diseases. Clinical trials using inositol in pharmacological doses provide amazing results in the management of gynecological diseases, respiratory stress syndrome, Alzheimer's disease, metabolic syndrome, and cancer, for which conventional treatments are disappointing. However, despite the widespread studies carried out to identify inositol-based effects, no comprehensive understanding of inositol-based mechanisms has been achieved. An integrated metabolomics-genomic study to identify the cellular fate of therapeutically administered myo-inositol and its genomic/enzymatic targets is urgently warranted.
Collapse
Affiliation(s)
- Mariano Bizzarri
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy.,b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy
| | - Andrea Fuso
- b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy.,c European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation , Rome , Italy
| | - Simona Dinicola
- d Department of Clinical and Molecular Medicine , Sapienza Universityof Rome , Rome , Italy.,e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy
| | - Alessandra Cucina
- e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy.,f Azienda Policlinico Umberto I , Rome , Italy
| | - Arturo Bevilacqua
- g Department of Psychology, Section of Neuroscience , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
19
|
Muter J, Brighton PJ, Lucas ES, Lacey L, Shmygol A, Quenby S, Blanks AM, Brosens JJ. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells. Endocrinology 2016; 157:2883-93. [PMID: 27167772 PMCID: PMC4972893 DOI: 10.1210/en.2015-1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca(2+) release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Paul J Brighton
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Lauren Lacey
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Anatoly Shmygol
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Andrew M Blanks
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| |
Collapse
|
20
|
Does myo-inositol effect on PCOS follicles involve cytoskeleton regulation? Med Hypotheses 2016; 91:1-5. [PMID: 27142131 DOI: 10.1016/j.mehy.2016.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/25/2016] [Indexed: 11/24/2022]
Abstract
Inositol metabolism is severely impaired in follicles obtained from cystic ovaries, leading to deregulated insulin transduction and steroid synthesis. On the contrary, inositol administration to women suffering from polycystic ovary syndrome (PCOS) has been proven to efficiently counteract most of the clinical hallmarks displayed by PCOS patients, including insulin resistance, hyperandrogenism and oligo-amenorrhea. We have recently observed that myo-inositol induces significant changes in cytoskeletal architecture of breast cancer cells, by modulating different biochemical pathways, eventually modulating the epithelial-mesenchymal transition. We hypothesize that inositol and its monophosphate derivatives, besides their effects on insulin transduction, may efficiently revert histological and functional features of cystic ovary by inducing cytoskeleton rearrangements. We propose an experimental model that could address not only whether inositol modulates cytoskeleton dynamics in both normal and cystic ovary cells, but also whether this effect may interfere with ovarian steroidogenesis. A more compelling understanding of the mechanisms of action of inositol (and its derivatives) would greatly improve its therapeutic utilization, by conferring to current treatments a well-grounded scientific rationale.
Collapse
|
21
|
Kuşcu N, Bizzarri M, Bevilacqua A. Myo-Inositol Safety in Pregnancy: From Preimplantation Development to Newborn Animals. Int J Endocrinol 2016; 2016:2413857. [PMID: 27698667 PMCID: PMC5028874 DOI: 10.1155/2016/2413857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023] Open
Abstract
Myo-inositol (myo-Ins) has a physiological role in mammalian gametogenesis and embryonic development and a positive clinical impact on human medically assisted reproduction. We have previously shown that mouse embryo exposure to myo-Ins through preimplantation development in vitro increases proliferation activity and blastocyst production, representing an improvement in culture conditions. We have herein investigated biochemical mechanisms elicited by myo-Ins in preimplantation embryos and evaluated myo-Ins effects on postimplantation/postnatal development. To this end naturally fertilized embryos were cultured in vitro to blastocyst in the presence or absence of myo-Ins and analyzed for activation of the PKB/Akt pathway, known to modulate proliferation/survival cellular processes. In parallel, blastocyst-stage embryos were transferred into pseudopregnant females and allowed to develop to term and until weaning. Results obtained provide evidence that myo-Ins induces cellular pathways involving Akt and show that (a) exposure of preimplantation embryos to myo-Ins increases the number of blastocysts available for uterine transfer and of delivered animals and (b) the developmental patterns of mice obtained from embryos cultured in the presence or absence of myo-Ins, up to three weeks of age, overlap. These data further identify myo-Ins as a possibly important supplement for human preimplantation embryo culture in assisted reproduction technology.
Collapse
Affiliation(s)
- Nilay Kuşcu
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Arturo Bevilacqua
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Research Center in Neurobiology Daniel Bovet (CRiN), 00185 Rome, Italy
- *Arturo Bevilacqua:
| |
Collapse
|
22
|
Unfer V, Nestler JE, Kamenov ZA, Prapas N, Facchinetti F. Effects of Inositol(s) in Women with PCOS: A Systematic Review of Randomized Controlled Trials. Int J Endocrinol 2016; 2016:1849162. [PMID: 27843451 PMCID: PMC5097808 DOI: 10.1155/2016/1849162] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, with complex etiology and pathophysiology, which remains poorly understood. It affects about 5-10% of women of reproductive age who typically suffer from obesity, hyperandrogenism, ovarian dysfunction, and menstrual irregularity. Indeed, PCOS is the most common cause of anovulatory infertility in industrialized nations, and it is associated with insulin resistance, type 2 diabetes mellitus, and increased cardiovascular risk. Although insulin resistance is not included as a criterion for diagnosis, it is a critical pathological condition of PCOS. The purpose of this systematic review is the analysis of recent randomized clinical trials of inositol(s) in PCOS, in particular myo- and D-chiro-inositol, in order to better elucidate their physiological involvement in PCOS and potential therapeutic use, alone and in conjunction with assisted reproductive technologies, in the clinical treatment of women with PCOS.
Collapse
Affiliation(s)
- Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, Chiasso, Switzerland
- *Vittorio Unfer:
| | - John E. Nestler
- Department of Medicine and Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zdravko A. Kamenov
- Clinic of Endocrinology, Alexandrovska University Hospital, Medical University, Sofia, Bulgaria
| | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, Thessaloniki, Greece
| | - Fabio Facchinetti
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Bevilacqua A, Carlomagno G, Gerli S, Montanino Oliva M, Devroey P, Lanzone A, Soulange C, Facchinetti F, Carlo Di Renzo G, Bizzarri M, Hod M, Cavalli P, D'Anna R, Benvenga S, Chiu TT, Kamenov ZA. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology--assisted reproduction technology. Gynecol Endocrinol 2015; 31:441-6. [PMID: 26036719 DOI: 10.3109/09513590.2015.1006616] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A substantial body of research on mammalian gametogenesis and human reproduction has recently investigated the effect of myo-inositol (MyoIns) on oocyte and sperm cell quality, due to its possible application to medically assisted reproduction. With a growing number of both clinical and basic research papers, the meaning of several observations now needs to be interpreted under a solid and rigorous physiological framework. The 2013 Florence International Consensus Conference on Myo- and D-chiro-inositol in obstetrics and gynecology has answered a number of research questions concerning the use of the two stereoisomers in assisted reproductive technologies. Available clinical trials and studies on the physiological and pharmacological effects of these molecules have been surveyed. Specifically, the physiological involvement of MyoIns in oocyte maturation and sperm cell functions has been discussed, providing an answer to the following questions: (1) Are inositols physiologically involved in oocyte maturation? (2) Are inositols involved in the physiology of spermatozoa function? (3) Is treatment with inositols helpful within assisted reproduction technology cycles? (4) Are there any differences in clinical efficacy between MyoIns and D-chiro-inositol? The conclusions of this Conference, drawn depending on expert panel opinions and shared with all the participants, are summarized in this review paper.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Psychology, Sapienza University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang D, Takeuchi H, Gao J, Zhang Z, Hirata M. Hetero-oligomerization of C2 domains of phospholipase C-related but catalytically inactive protein and synaptotagmin-1. Adv Biol Regul 2014; 57:120-9. [PMID: 25242442 DOI: 10.1016/j.jbior.2014.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
The C2 domain is a protein module often found in molecules that regulate exocytosis. C2 domains mediate interactions between the parental molecule and Ca(2+), phospholipids, and proteins. Although various molecules have been shown to interact with several C2 domains, no interactions between the C2 domains from different molecules have yet been reported. In the present study, we identified direct interactions between the C2 domain of PRIP (phospholipase C-related but catalytically inactive protein) and the C2 domains of other molecules. Among the C2 domains examined, those of synaptotagmin-1 (Syt1-C2A and Syt1-C2B) and phospholipase C δ-1 bound to the C2 domain of PRIP. We investigated the interactions between the C2 domain of PRIP (PRIP-C2) with Syt1-C2A and Syt1-C2B, and the mode of binding of each was Ca(2+)-dependent and -independent, respectively. We further demonstrated that the Ca(2+) dependence of the interaction between PRIP-C2 and Syt1-C2A was attributed to Ca(2+) binding with Syt1-C2A, but not PRIP-C2, using a series of mutants prepared from both C2 domains. We previously reported that the interaction between PRIP-C2 and the membrane fusion machinery suggested a critical role for PRIP in exocytosis; therefore, the results of the present study further support the importance of PRIP-C2 in the inhibitory function of PRIP in regulating exocytosis.
Collapse
Affiliation(s)
- DaGuang Wang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu 803-8580, Japan.
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - Zhao Zhang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Fukuoka 812-8582, Japan; Stomatological Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Fukuoka 812-8582, Japan.
| |
Collapse
|
25
|
Dinicola S, Chiu TTY, Unfer V, Carlomagno G, Bizzarri M. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol 2014; 54:1079-92. [PMID: 25042908 DOI: 10.1002/jcph.362] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023]
Abstract
PCOS is one of the most common endocrine disorders affecting women and it is characterized by a combination of hyper-androgenism, chronic anovulation, and insulin resistance. While a significant progress has recently been made in the diagnosis for PCOS, the optimal infertility treatment remains to be determined. Two inositol isomers, myo-inositol (MI) and D-chiro-inositol (DCI) have been proven to be effective in PCOS treatment, by improving insulin resistance, serum androgen levels and many features of the metabolic syndrome. However, DCI alone, mostly when it is administered at high dosage, negatively affects oocyte quality, whereas the association MI/DCI, in a combination reproducing the plasma physiological ratio (40:1), represents a promising alternative in achieving better clinical results, by counteracting PCOS at both systemic and ovary level.
Collapse
Affiliation(s)
- Simona Dinicola
- Dept of Experimental Medicine, Systems Biology Group, University La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
26
|
Unfer V, Porcaro G. Updates on the myo-inositol plus D-chiro-inositol combined therapy in polycystic ovary syndrome. Expert Rev Clin Pharmacol 2014; 7:623-31. [DOI: 10.1586/17512433.2014.925795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, Tanida I, Hirata M, Kanematsu T. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open 2014; 3:463-74. [PMID: 24812354 PMCID: PMC4058080 DOI: 10.1242/bio.20147591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that phospholipase C-related catalytically inactive protein (PRIP)-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6) cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP), a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Tomoya Kitayama
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kae Harada
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jun Zhang
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kana Harada
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Isei Tanida
- Laboratory of Biomembranes, Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
28
|
Sugiyama G, Takeuchi H, Kanematsu T, Gao J, Matsuda M, Hirata M. Phospholipase C-related but catalytically inactive protein, PRIP as a scaffolding protein for phospho-regulation. Adv Biol Regul 2013; 53:331-340. [PMID: 23911386 DOI: 10.1016/j.jbior.2013.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
PRIP, phospholipase C (PLC)-related but catalytically inactive protein is a protein with a domain organization similar to PLC-δ1. We have reported that PRIP interacts with the catalytic subunits of protein phosphatase 1 and 2A (PP1c and PP2Ac), depending on the phosphorylation of PRIP. We also found that Akt was precipitated along with PRIP by anti-PRIP antibody from neuronal cells. In this article, we summarize our current reach regarding the interaction of PRIP with Akt and protein phosphatases, in relation to the cellular phospho-regulations. PP1 and PP2A are major members of the protein serine/threonine phosphatase families. We have identified PP1 and PP2A as interacting partners of PRIP. We first investigated the interaction of PRIP with two phosphatases, using purified recombinant proteins. PRIP immobilized on beads pulled-down the catalytic subunits of both PP1 and PP2A, indicating that the interactions were in a direct manner, and the binding of PP1 and PP2A to PRIP were mutually exclusive. Site-directed mutagenesis experiments revealed that the binding sites for PP1 and PP2A on PRIP were not identical, but in close proximity. Phosphorylation of PRIP by protein kinase A (PKA) resulted in the reduced binding of PP1, but not PP2A. Rather, the dissociation of PP1 from PRIP by phosphorylation accompanied the increased binding of PP2A in in vitro experiments. This binding regulation of PP1 and PP2A to PRIP by PKA-dependent phosphorylation was also observed in living cells treated with forskolin or isoproterenol. These results suggested that PRIP directly interacts with the catalytic subunits of two distinct phosphatases in a mutually exclusive manner and the interactions are regulated by phosphorylation, thus functioning as a scaffold to regulate the activities and subcellular localizations of both PP1 and PP2A in phospho-dependent cellular signaling.
Collapse
Affiliation(s)
- Goro Sugiyama
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
30
|
Zhang Z, Takeuchi H, Gao J, Wang D, James DJ, Martin TFJ, Hirata M. PRIP (phospholipase C-related but catalytically inactive protein) inhibits exocytosis by direct interactions with syntaxin 1 and SNAP-25 through its C2 domain. J Biol Chem 2013; 288:7769-7780. [PMID: 23341457 DOI: 10.1074/jbc.m112.419317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K(+)-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.
Collapse
Affiliation(s)
- Zhao Zhang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; Stomatological Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Hiroshi Takeuchi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; Division of Applied Pharmacology, Kyushu Dental College, Kitakyushu 803-8580, Japan.
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - DaGuang Wang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Declan J James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
Sugiyama G, Takeuchi H, Nagano K, Gao J, Ohyama Y, Mori Y, Hirata M. Regulated Interaction of Protein Phosphatase 1 and Protein Phosphatase 2A with Phospholipase C-Related but Catalytically Inactive Protein. Biochemistry 2012; 51:3394-403. [DOI: 10.1021/bi2018128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Goro Sugiyama
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Koki Nagano
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jing Gao
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yukiko Ohyama
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihide Mori
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Hirata
- Laboratory
of Molecular and Cellular Biochemistry and ‡Division of Maxillofacial Surgery,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
Gao J, Takeuchi H, Zhang Z, Fukuda M, Hirata M. Phospholipase C-related but catalytically inactive protein (PRIP) modulates synaptosomal-associated protein 25 (SNAP-25) phosphorylation and exocytosis. J Biol Chem 2012; 287:10565-10578. [PMID: 22311984 DOI: 10.1074/jbc.m111.294645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exocytosis is one of the most fundamental cellular events. The basic mechanism of the final step, membrane fusion, is mediated by the formation of the SNARE complex, which is modulated by the phosphorylation of proteins controlled by the concerted actions of protein kinases and phosphatases. We have previously shown that a protein phosphatase-1 (PP1) anchoring protein, phospholipase C-related but catalytically inactive protein (PRIP), has an inhibitory role in regulated exocytosis. The current study investigated the involvement of PRIP in the phospho-dependent modulation of exocytosis. Dephosphorylation of synaptosome-associated protein of 25 kDa (SNAP-25) was mainly catalyzed by PP1, and the process was modulated by wild-type PRIP but not by the mutant (F97A) lacking PP1 binding ability in in vitro studies. We then examined the role of PRIP in phospho-dependent regulation of exocytosis in cell-based studies using pheochromocytoma cell line PC12 cells, which secrete noradrenalin. Exogenous expression of PRIP accelerated the dephosphorylation process of phosphorylated SNAP-25 after forskolin or phorbol ester treatment of the cells. The phospho-states of SNAP-25 were correlated with noradrenalin secretion, which was enhanced by forskolin or phorbol ester treatment and modulated by PRIP expression in PC12 cells. Both SNAP-25 and PP1 were co-precipitated in anti-PRIP immunocomplex isolated from PC12 cells expressing PRIP. Collectively, together with our previous observation regarding the roles of PRIP in PP1 regulation, these results suggest that PRIP is involved in the regulation of the phospho-states of SNAP-25 by modulating the activity of PP1, thus regulating exocytosis.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and
| | - Hiroshi Takeuchi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and
| | - Zhao Zhang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and.
| |
Collapse
|
33
|
Tsutsumi K, Matsuda M, Kotani M, Mizokami A, Murakami A, Takahashi I, Terada Y, Kanematsu T, Fukami K, Takenawa T, Jimi E, Hirata M. Involvement of PRIP, phospholipase C-related, but catalytically inactive protein, in bone formation. J Biol Chem 2011; 286:31032-31042. [PMID: 21757756 PMCID: PMC3162462 DOI: 10.1074/jbc.m111.235903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/08/2011] [Indexed: 11/06/2022] Open
Abstract
PRIP (phospholipase C-related, but catalytically inactive protein) is a novel protein isolated in this laboratory. PRIP-deficient mice showed increased serum gonadotropins, but decreased gonadal steroid hormones. This imbalance was similar to that for the cause of bone disease, such as osteoporosis. In the present study, therefore, we analyzed mutant mice with special reference to the bone property. We first performed three-dimensional analysis of the femur of female mice. The bone mineral density and trabecular bone volume were higher in mutant mice. We further performed histomorphometrical assay of bone formation parameters: bone formation rate, mineral apposition rate, osteoid thickness, and osteoblast number were up-regulated in the mutant, indicating that increased bone mass is caused by the enhancement of bone formation ability. We then cultured primary cells isolated from calvaria prepared from both genotypes. In mutant mice, osteoblast differentiation, as assessed by alkaline phosphatase activity and the expression of osteoblast differentiation marker genes, was enhanced. Moreover, we analyzed the phosphorylation of Smad1/5/8 in response to bone morphogenetic protein, with longer phosphorylation in the mutant. These results indicate that PRIP is implicated in the negative regulation of bone formation.
Collapse
Affiliation(s)
- Koshiro Tsutsumi
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka 812-8582, Japan; Division of Fixed Prosthodontics, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Kotani
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka 812-8582, Japan; Division of Orthodontics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiko Mizokami
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka 812-8582, Japan
| | - Ayako Murakami
- Division of Orthodontics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Division of Orthodontics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Terada
- Division of Fixed Prosthodontics, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Kanematsu
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka 812-8582, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Tadaomi Takenawa
- Division of Lipid Biochemistry, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Eijiro Jimi
- Department of Molecular Signaling and Biochemistry, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
34
|
Gao J, Takeuchi H, Umebayashi H, Zhang Z, Matsuda M, Hirata M. Assay of dense-core vesicle exocytosis using permeabilized PC12 cells. ACTA ACUST UNITED AC 2009; 50:237-46. [PMID: 19895839 DOI: 10.1016/j.advenzreg.2009.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|