1
|
Fakruzzaman M, Warzych E, Pawlak P, Madeja ZE, Cieslak A, Szkudelska K, Lechtanska J, Lechniak D. Effect of IVM media supplementation with a blend of n6/n3 fatty acids on the quality of bovine oocytes and blastocysts. Theriogenology 2025; 242:117427. [PMID: 40239492 DOI: 10.1016/j.theriogenology.2025.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Optimizing in vitro maturation (IVM) media can enhance blastocyst yield and quality. This study explores the effects of supplementing IVM medium with a blend of two essential polyunsaturated fatty acids (LA and ALA) at a ratio observed in the serum of experimental heifers on the quality of bovine oocytes, cumulus cells (CC), and blastocysts. The in vitro embryo production protocol was based on commercial media (Bioscience, UK). Oocyte-cumulus complexes (COCs) from slaughterhouse-derived ovaries were matured in a 100 μM LA + ALA blend at a 3:1 ratio (75 μM LA + 25 μM ALA). Following maturation, selected COCs underwent reactive oxygen species (ROS) and glutathione (GSH) measurements in oocytes and apoptosis detection in CC (TUNEL). The remaining oocytes were fertilized and cultured to the blastocyst stage, where cell counts and apoptosis levels were assessed. Our findings indicate that the LA + ALA blend positively influenced specific quality parameters in oocytes (reduced ROS level) and blastocysts (increased total cell number (TCN) and a lower apoptotic index (AI)). However, the treatment did not significantly affect other parameters, such as AI in CCs, cleavage, and blastocyst rates or ICM: TCN and ICM: TE ratios. This study demonstrates that a moderate (100 μM) fatty acid (FA) dose benefits oocytes and blastocysts. Given the opposing effects of individual FAs and the limited data on FA blends, our results suggest that ALA may counteract the adverse effects of LA. Mitigation of oxidative stress and AI and an increased TCN underscore the importance of optimized FA supplementation in IVM media.
Collapse
Affiliation(s)
- Md Fakruzzaman
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland; Department of Genetics and Animal Breeding, Patuakhali Science and Technology University, Outer Campus, Barishal, 8210, Bangladesh.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Joanna Lechtanska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| |
Collapse
|
2
|
Ronasi S, Mahdavi AH, Varnosfaderani SR, Kowsar R, Jafarpour F, Nasr-Esfahani MH. Punicic acid alleviates methylglyoxal-induced oocyte dysfunction during in vitro maturation in mouse species. PLoS One 2025; 20:e0314602. [PMID: 40131868 PMCID: PMC11936299 DOI: 10.1371/journal.pone.0314602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 03/27/2025] Open
Abstract
Dicarbonyl stress, characterized by the abnormal accumulation of reactive dicarbonyl metabolites and advanced glycation end-products (AGEs), is implicated in various pathological conditions, including obesity, diabetes, and reproductive disorders. Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite, has been shown to compromise oocyte quality and developmental competence. In this study, we investigated the protective role of punicic acid (PA), a potent antioxidant found in pomegranate seed oil, against MGO-induced oocyte dysfunction. Our findings revealed that 75 µM MGO exposure during in vitro oocyte maturation significantly reduced the maturation rate and impaired subsequent embryonic development, characterized by decreased pronucleus formation and blastocyst rates. Interestingly, PA supplementation partially ameliorated these adverse effects of MGO, highlighting its potential as a protective agent against dicarbonyl-induced oocyte dysfunction. Co-treatment with PA restored the imbalanced redox state induced by MGO, leading to reduction in ROS levels and an increase in GSH levels in matured oocytes. Additionally, co-supplementation with PA preserved mitochondrial distribution in oocytes challenged with MGO, further contributing to improved oocyte quality. At the molecular level, PA co-treatment modulated the expression of genes involved in dicarbonyl stress and oxidative responses, including Glo1, Rage, Nrf2, and Nf-κB, potentially regulating the detoxification of MGO and mitigating its harmful effects. Lastly, PA supplementation improved cell lineage allocation in blastocysts developed from MGO-challenged oocytes, emphasizing its role in enhancing the quality of preimplantation embryos. In conclusion, our study provides novel insights into the protective effects of punicic acid as an antioxidant against MGO-induced oocyte dysfunction, suggesting its potential as a dietary intervention to enhance reproductive health, particularly in individuals facing dicarbonyl stress-associated conditions such as obesity and diabetes.
Collapse
Affiliation(s)
- Shahrzad Ronasi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
Wu D, Liu C, Ding L. Follicular metabolic dysfunction, oocyte aneuploidy and ovarian aging: a review. J Ovarian Res 2025; 18:53. [PMID: 40075456 PMCID: PMC11900476 DOI: 10.1186/s13048-025-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
With the development of modern society and prolonged education, more women choose to delay their childbearing age, which greatly increases the number of women aged older than 35 years with childbearing needs. However, with increasing age, the quantity and quality of oocytes continue to fall, especially with increasing aneuploidy, which leads to a low in vitro fertilization (IVF) success rate, high abortion rate and high teratogenesis rate in assisted reproduction in women with advanced maternal age. In addition to genetics and epigenetics, follicular metabolism homeostasis is closely related to ovarian aging and oocyte aneuploidy. Glucose, lipid, and amino acid metabolism not only provide energy for follicle genesis but also regulate oocyte development and maturation. This review focuses on the relationships among follicular metabolism, oocyte aneuploidy, and ovarian aging and discusses potential therapeutic metabolites for ovarian aging.
Collapse
Affiliation(s)
- Die Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
An ZY, Han SZ, Li ZY, Chang SY, Zhang XL, Lu GJ, Zhang T, Quan BH, Yin XJ, Quan LH, Kang JD. Eicosatrienoic acid enhances the quality of in vitro matured porcine oocytes by reducing PRKN-mediated ubiquitination of CISD2. Theriogenology 2024; 230:285-298. [PMID: 39357167 DOI: 10.1016/j.theriogenology.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health. We found that supplementation of eicosatrienoic acid (ETA) during in vitro maturation (IVM) of oocyte significantly downregulated ER stress-related genes. Mitochondria-associated membranes (MAMs) are communications areas between the ER and mitochondria. Inositol 1,4,5-trisphosphate receptor (IP3R) is a key calcium channels in MAMs and, participates in the regulation of many cellular functions. Notably, the MAM area was significantly decreased in ETA-treated oocytes. CDGSH iron sulfur domain 2 (CISD2) is presents in MAMs, but its role in oocytes is unknown. ETA treatment significantly increased CISD2 expression, and siRNA-mediated knockdown of CISD2 blocked the inhibitory effect of ETA on IP3R. Transcriptomic sequencing and immunoprecipitation experiments showed that ETA treatment significantly decreased expression of the E3 ubiquitin ligase PRKN. PRKN induced ubiquitination and degradation of CISD2, indicating that the PRKN-mediated ubiquitin-proteasome system regulates CISD2. In conclusion, our study reveals the mechanism by which ETA supplementation during IVM alleviates mitochondrial calcium overload under ER stress conditions by decreasing PRKN-mediated ubiquitination of CISD2 and facilitating inhibition of IP3R by CISD2/BCL-2. This improves oocyte quality and subsequent embryo developmental competence prior to implantation.
Collapse
Affiliation(s)
- Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhou-Yan Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
5
|
Morão IFC, Simões T, Casado RB, Vieira S, Ferreira-Airaud B, Caliani I, Di Noi A, Casini S, Fossi MC, Lemos MFL, Novais SC. Metal accumulation in female green sea turtles (Chelonia mydas) from Eastern Atlantic affects their egg quality with potential implications for embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172710. [PMID: 38670375 DOI: 10.1016/j.scitotenv.2024.172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Sea turtles, with their global distribution and complex life cycle, often accumulate pollutants such as metals and metalloids due to their extended lifespan and feeding habits. However, there are limited studies exploring the impact of metal pollution on the reproductive health of female sea turtles, specifically focusing on the quality of their eggs, which has significant implications for the future generations of these charismatic animals. São Tomé Island, a crucial nesting and feeding habitat for green sea turtles, underscores the urgent need for comprehensive research in this ecologically significant area. This study aimed to investigate whether metals and metalloids in the blood of nesting female green sea turtles induce genotoxic effects in their erythrocytes and affect their egg morphometric characteristics and the composition of related compartments. Additionally, this study aimed to evaluate whether the quality of energetic reserves for embryo development (fatty acids in yolk's polar and neutral lipids) is influenced by the contamination status of their predecessors. Results revealed correlations between Cu and Hg levels and increased "lobed" erythrocytes, while As and Cu negatively influenced shell thickness. In terms of energy reserves, both polar and neutral lipid fractions contained primarily saturated and monounsaturated fatty acids, with prevalent 18:1n-9, 18:0, 16:0, 14:0, and 12:0 fatty acids in yolk samples. The yolk polar fraction was more susceptible to contaminant levels in female sea turtles, showing consistent negative correlations between pollution load index and essential n3 fatty acids, including linolenic, eicosatrienoic, eicosapentaenoic, and docosapentaenoic acids, crucial for embryonic development. These metals accumulation, coupled with the reduced availability of these key fatty acids, may disrupt the eicosanoid and other important pathways, affecting reproductive development. This study reveals a negative correlation between metal contamination in female sea turtles' blood and egg lipid reserves, raising concerns about embryonic development and the species' future generations.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal; Faculdade de Ciências & CESAM, Universidade de Lisboa, Lisboa, Portugal.
| | - Tiago Simões
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Roger B Casado
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Betânia Ferreira-Airaud
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Agata Di Noi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Maria C Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
6
|
Akhtar P, Rajoriya JS, Singh AK, Ojha BK, Jha AK, Bisen A, Bajaj NK, Ahirwar MK, Raje A, Singh AP, Peepar SS, Mishra AK, Katiyar R, Chamuah J, Singh M. Effects of dietary supplementation with omega-3 fatty acid-rich linseed on the reproductive performance of ewes in subtropical climates. Front Vet Sci 2024; 11:1398961. [PMID: 38978631 PMCID: PMC11228320 DOI: 10.3389/fvets.2024.1398961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
The present study evaluated the effects of omega-3 (ω-3) fatty acid-rich linseed supplementation on the reproductive performance, endocrine profile, and biochemical profile of ewes reared in subtropical climates. Forty-eight acyclic and clinically healthy Marwari sheep, aged 1.5-2.5 years with no parity, were divided into four groups (n = n = 12 in each). Ewes in the control group (group I) were fed only a basal feed, whereas ewes in the treatment groups II, III, and IV were fed the basal diet along with 10%, 15%, and 20% linseed, respectively, daily on a dry matter basis. The experiment was conducted during the typical breeding season (October-November) of the sheep. The estrus induction rate was significantly higher (p < 0.05) in all treatment groups than in the control group. The estrus induction interval was significantly lower (p < 0.05) in group III. The conception rate in group I was significantly lower (p < 0.05). In addition, ewes in the control group had a significantly lower (p < 0.05) lambing rate than all treatment groups. Serum progesterone concentrations differed significantly (p < 0.05) between the control and the treatment groups on days 15, 30, 45, and 60 of supplementation. On treatment days 15 and 30, the serum estrogen concentrations were significantly higher (p < 0.05) in all treatment groups compared to that in group I. In all treatment groups, monounsaturated fatty acid (MUFA) decreased significantly (p < 0.05), whereas polyunsaturated fatty acid (PUFA) increased significantly (p < 0.05) from day 15 onward. In conclusion, by providing 15% dietary linseed supplementation to ewes, their reproductive performance can be improved in subtropical climates. Future studies are recommended to further elucidate the role of linseed supplementation in sheep reproduction in subtropical climates.
Collapse
Affiliation(s)
- P. Akhtar
- Shri Sadguru Gau Seva Kendra, Jankikund, Sadguru Netra Chikitsalaya, Chitrakoot, MP, India
| | - J. S. Rajoriya
- Department of Veterinary Gynaecology and Obstetrics, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - A. K. Singh
- Department of Veterinary Physiology and Biochemistry, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - B. K. Ojha
- Department of Animal Nutrition, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - A. K. Jha
- Department of Animal Genetics and Breeding, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - A. Bisen
- Department of Veterinary Gynaecology and Obstetrics, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - Nitin K. Bajaj
- Department of Veterinary Gynaecology and Obstetrics, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - M. K. Ahirwar
- Department of Veterinary Physiology and Biochemistry, NDVSU-College of Veterinary Science and Animal Husbandry, Mhow, MP, India
| | - A. Raje
- Department of Veterinary Pharmacology and Toxicology, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - A. P. Singh
- Department of Veterinary Gynaecology and Obstetrics, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - S. S. Peepar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - A. K. Mishra
- Department of Livestock Production Management, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, MP, India
| | - Rahul Katiyar
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | | | - Mahak Singh
- ICAR Nagaland Centre, Medziphema, Nagaland, India
| |
Collapse
|
7
|
Xu Y, Zhou Z, Zhang G, Yang Z, Shi Y, Jiang Z, Liu Y, Chen H, Huang H, Zhang Y, Pan J. Metabolome implies increased fatty acid utilization and histone methylation in the follicles from hyperandrogenic PCOS women. J Nutr Biochem 2024; 125:109548. [PMID: 38104867 DOI: 10.1016/j.jnutbio.2023.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Well-balanced metabolism is essential for the high-quality of oocytes, and metabolic fluctuations of follicular microenvironment potentially encourage functional changes in follicle cells, ultimately impacting the developmental potential of oocytes. Here, the global metabolomic profiles of follicular fluid from PCOS women with ovarian hyperandrogenism and nonhyperandrogenism were depicted by untargeted metabolome and transcriptome. In parallel, functional methods were employed to evaluate the possible impact of dysregulated metabolites on oocyte and embryo development. Our findings demonstrated that PCOS women exhibited distinct metabolic features in follicles, such as the increase in fatty acid utilization and the downregulation in amino acid metabolism. And intrafollicular androgen levels were positively correlated with contents of multiple fatty acids, suggesting androgen as one of the contributing factors to the metabolic abnormalities in PCOS follicles. Moreover, we further demonstrated that elevated levels of α-linolenic acid and H3K27me3 could hinder oocyte maturation, fertilization, and early embryo development. Hopefully, our data serve as a broad resource on the metabolic abnormalities of PCOS follicles, and advances in the relevant knowledge will allow the identification of biomarkers that predict the progression of PCOS and its poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yue Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zhiyang Zhou
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zuwei Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zhaoying Jiang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Liu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixi Chen
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Bicici E, Satilmis F, Bodu M, Demirel MA, Karakas Alkan K, Alkan H. Effect of putrescine supplementation to in vitro maturation medium on embryo development and quality in cattle. Anim Biotechnol 2023; 34:3887-3896. [PMID: 37466367 DOI: 10.1080/10495398.2023.2236660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
This study aimed to investigate the effect of putrescine supplementation to maturation medium during in vitro embryo production in cattle on maturation and embryo development/quality. Oocytes obtained from the ovaries of Holstein cattle were used in the study. Obtained cumulus-oocyte complexes were evaluated according to morphological structure, cytoplasmic features, and cumulus cell number, and only Category-I ones were used in the study. Before the in vitro maturation step, oocytes were randomly divided into two groups. In the first group (Putrescine group, n = 159), 0.5 mM putrescine was added to the maturation medium before in vitro maturation. No addition was applied to the maturation medium of the second group (Control group, n = 149). Cumulus expansion degrees of oocytes following maturation (Grade I: poor, Grade II: partial, and Grade III: complete) were determined. In addition, the meiosis of oocytes after maturation was evaluated by differential staining. Then the oocytes were left for fertilization with sperm and finally, possible zygotes were transferred to the culture medium. After determining the developmental stages and quality of the embryos after in vitro culture, only the embryos at the blastocyst stage were stained with the differential staining method to determine the cell numbers. When the cumulus expansion degrees of the groups were evaluated, the Grade III cumulus expansion rate in the putrescine group was higher than the control group (74.21% and 60.4%; respectively) and the Grade I expansion rate (11.95% and 26.17%; respectively) was found lower (p < .05). When the resumption of meiosis was evaluated according to the cumulus expansion degrees, it was determined that the rate of resumption of meiosis increased as the cumulus expansion increased. In addition, the cleavage rates of oocytes and reaching the blastocyst in the putrescine group were found to be higher than in the control group (p < .05). Moreover, inner cell mass, trophectoderm cells, and total cell counts were found to be higher in blastocysts obtained after the putrescine supplementation to the maturation medium compared to the control group (p < .05). As a result, it was determined that the putrescine supplementation to the maturation medium during in vitro embryo production in cattle increased the degree of cumulus expansion and the rate of resumption of meiosis. In addition, putrescine supplementation was thought to increase the rate of reaching the blastocyst of oocytes due to better cell development in embryos.
Collapse
Affiliation(s)
- Esra Bicici
- Department of Obstetrics and Gynecology, Selcuk University, Konya, Turkey
| | - Fatma Satilmis
- Department of Obstetrics and Gynecology, Selcuk University, Konya, Turkey
| | - Mustafa Bodu
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | | | | | - Hasan Alkan
- Department of Obstetrics and Gynecology, Selcuk University, Konya, Turkey
| |
Collapse
|
9
|
Ataei-Nazari S, Rahimi A, Bakhtiarizadeh MR, Jahandideh-Golroodbari P, Assadi-Alamouti A, Hajarizadeh A, Haji-Rahimi H, Mansouri-Bahrani B, Afshar-Bahrabad A, Ozturk I, Sharma M, Tvrdá E, Mohammadi-Sangcheshmeh A. Alpha-linolenic acid alleviates the detrimental effects of lipopolysaccharide during in vitro ovine oocyte development. Theriogenology 2023; 212:64-72. [PMID: 37699276 DOI: 10.1016/j.theriogenology.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
During the transition period and early lactation of ruminants with higher production, the reproductive organs are exposed to various stressors, like inflammation stimulators such as lipopolysaccharides (LPS), as a consequence of high concentrate consumption. In this study, we aimed to determine the probable potential of α-linolenic acid (ALA) in alleviating LPS-induced effects in ovine oocytes in vitro as well as the underlying controlling mechanisms. Different concentrations of LPS (0, 0.01, 0.1, 1, and 10 μg/mL) were added to the oocyte maturation medium to evaluate its effect on oocyte developmental competence. Likewise, different concentrations of ALA (0, 10, 50, 100, and 200 μM/mL) were added to the maturation medium to define its effects on oocyte developmental competence. Accordingly, a combination of ALA and LPS in a dose-dependent manner was added to the maturation medium to elucidate their effect on oocyte developmental competence and uncover any possible potential of ALA to alleviate the detrimental effect induced by the presence of LPS. The expressions of candidate genes were measured in mature oocytes treated either with ALA, LPS, or ALA plus LPS. Adding LPS to the maturation medium decreased the cleavage rate of the treated oocytes, and those oocytes reached the blastocyst stage at a lower rate. Adding ALA to the maturation medium in the presence of LPS alleviated the detrimental effects of LPS in a dose-dependent manner, which ultimately led to higher cleavage and blastocyst formation. A higher expression of Trim26, GRHPR, NDUFA, PGC-1α, SOD, CS, SDH, p53, and CAT was observed in LPS-treated oocytes compared with the ALA and control groups. Additionally, CS and CAT transcripts were down-regulated in oocytes in LPS plus ALA-treated group compared to that of the LPS-treated group. These findings revealed that ALA has the potential to alleviate the detrimental effects induced by LPS on in ovine oocytes during maturation in vitro. Thus, LPS-detrimental effect and ALA-preventing mechanisms seem to be regulated through the expression of genes involved in mitochondrial biogenesis and function, oxidative stress, and antioxidant systems.
Collapse
Affiliation(s)
- Sara Ataei-Nazari
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Amin Rahimi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran; Chaltasian Agri.-Animal Production Complex, Varamin, Tehran, Iran
| | | | | | - Ali Assadi-Alamouti
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Atieh Hajarizadeh
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hanieh Haji-Rahimi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran; Chaltasian Agri.-Animal Production Complex, Varamin, Tehran, Iran
| | - Banafsheh Mansouri-Bahrani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran; Chaltasian Agri.-Animal Production Complex, Varamin, Tehran, Iran
| | | | - Irfan Ozturk
- Department of Animal Science, Biometry Genetics Unit, Harran University, Şanlıurfa, Turkey
| | - Manjita Sharma
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Eva Tvrdá
- Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Abdollah Mohammadi-Sangcheshmeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran; Chaltasian Agri.-Animal Production Complex, Varamin, Tehran, Iran.
| |
Collapse
|
10
|
Kong D, Cho H, Hwang S, Choi E, Lee AY, Choi EK, Kim YB, Kim HJ, Hong S. Bioinformatics and integrated pharmacology network to identify the therapeutic targets and potential molecular mechanism of alpha-lipoic acid on primary ovarian insufficiency. J Cell Biochem 2023; 124:1557-1572. [PMID: 37660319 DOI: 10.1002/jcb.30464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Women experiencing primary ovarian insufficiency (POI) are more likely to experience infertility, and its incidence is increasing worldwide annually. Recently, the role of alpha-lipoic acid (ALA) in the treatment of POI has been reported. However, details of the potential pharmacological targets and related molecular pathways of ALA remain unclear and need to be elucidated. Thus, this study aims to elucidate the potential therapeutic target and related molecular mechanism of ALA on POI. First, the potential targets of POI and ALA-related targets were downloaded from online public databases. Subsequently, the overlapped target genes between POI and ALA were acquired, and gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) analysis, protein-protein interaction (PPI) networks were performed and constructed. Finally, molecular docking was performed to verify protein-to-protein effect. A total of 152 potential therapeutic targets were identified. The biological processes of the intersecting targets were mainly involved in the cellular response to peptides, response to xenobiotic stimuli, and response to peptide hormones. The highly enriched pathways were the cAMP, PI3K/AKT, estrogen, progesterone mediated oocyte maturation, and apoptosis signaling pathways. The top 10 hub targets for ALA in the treatment of POI were STAT3, STAT1, CASP3, MTOR, PTGS2, CASP8, HSP90AA1, PIK3CA, MAPK1, and ESR1. The binding between ALA and all top hub targets were verified using the molecular docking analysis. In summary, using the systematic integrated pharmacology network and bioinformatics analysis, this study illustrated that ALA participates in the treatment of POI via multiple targets and multiple pathways mechanisms.
Collapse
Affiliation(s)
- Deqi Kong
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Heeryun Cho
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Soowon Hwang
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Eunsaem Choi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Ah-Young Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Sooncheol Hong
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul, Korea
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| |
Collapse
|
11
|
Maugrion E, Shedova EN, Uzbekov R, Teixeira-Gomes AP, Labas V, Tomas D, Banliat C, Singina GN, Uzbekova S. Extracellular Vesicles Contribute to the Difference in Lipid Composition between Ovarian Follicles of Different Size Revealed by Mass Spectrometry Imaging. Metabolites 2023; 13:1001. [PMID: 37755281 PMCID: PMC10538054 DOI: 10.3390/metabo13091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.
Collapse
Affiliation(s)
- Emilie Maugrion
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | | | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Medical Faculty, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Ana-Paula Teixeira-Gomes
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Valerie Labas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Charles Banliat
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
- Ecole Supérieure d’Agricultures (ESA), 49007 Angers, France
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia
| | - Svetlana Uzbekova
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
| |
Collapse
|
12
|
Esmaili H, Eslami M, Khalilvandi-Behrozyar H, Farrokhi-Ardabili F. Effect of varying amounts of linseed oil or saturated fatty acids around insemination on reproductive and blood parameters of ewes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:922-938. [PMID: 37969340 PMCID: PMC10640941 DOI: 10.5187/jast.2022.e106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/17/2023]
Abstract
The current study was designed to evaluate the effect of sequential low and high dietary linseed oil (LO; as omega-3 enriched fatty acid; FA) before and post insemination, respectively, on different plasma variables of ewes. Fat-tailed Qezel ewes were assigned randomly to be fed a diet enriched with 3% LO (n = 30) or the saturated FA (SFA; n = 30) three weeks before insemination (Day 0). The lipogenic diet supplemented with 6% LO or SFA was fed after insemination until Day +21. The control ewes were fed an isocaloric and isonitrogenous diet with no additional FA during the study. Estrus was synchronized by inserting a vaginal sponge (Spongavet®) for 12 days + 500 IU equine chorionic gonadotropin (eCG; Gonaser®), and ewes were inseminated via laparoscopic approach 56-59 h after eCG injection. The size of ovarian structures was assessed by transvaginal ultrasonography at -21, -14, -2, 0, and +10 days. Blood samples were collected weekly to measure the plasma's different biochemical variables and FA profile. Treatment did not affect the amounts of glucose, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, interleukin-10, interleukin-2, and non-esterified FA (p > 0.05). Conversely, concentrations of triglyceride, cholesterol, tumor necrosis factor-alpha, and insulin-like growth factor-1 were higher in SFA-fed ewes relative to control animals (p < 0.05). LO feeding resulted in greater amounts of n-3 FA isomers in plasma, while higher amounts of stearic acid were detected in SFA fed group 0 and +21 (p < 0.05). The number of ovarian follicles and corpora lutea also were not affected by treatment. Other reproductive variables were not affected by treatment except for the reproductive rate. It seems that LO or SFA feeding of fat-tailed ewes peri-insemination period was not superior to the isocaloric non-additional fat diet provided for the control group during the non-breeding season.
Collapse
Affiliation(s)
- Hamed Esmaili
- Department of Theriogenology, Faculty of
Veterinary Medicine, Urmia University, Urmia 5756115111,
Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of
Veterinary Medicine, Urmia University, Urmia 5756115111,
Iran
| | | | | |
Collapse
|
13
|
Liu C, Zuo W, Yan G, Wang S, Sun S, Li S, Tang X, Li Y, Cai C, Wang H, Liu W, Fang J, Zhang Y, Zhou J, Zhen X, Feng T, Hu Y, Wang Z, Li C, Bian Q, Sun H, Ding L. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy. NATURE AGING 2023; 3:670-687. [PMID: 37188792 DOI: 10.1038/s43587-023-00419-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
With aging, abnormalities during oocyte meiosis become more prevalent. However, the mechanisms of aging-related oocyte aneuploidy are not fully understood. Here we performed Hi-C and SMART-seq of oocytes from young and old mice and reveal decreases in chromosome condensation and disrupted meiosis-associated gene expression in metaphase I oocytes from aged mice. Further transcriptomic analysis showed that meiotic maturation in young oocytes was correlated with robust increases in mevalonate (MVA) pathway gene expression in oocyte-surrounding granulosa cells (GCs), which was largely downregulated in aged GCs. Inhibition of MVA metabolism in GCs by statins resulted in marked meiotic defects and aneuploidy in young cumulus-oocyte complexes. Correspondingly, supplementation with the MVA isoprenoid geranylgeraniol ameliorated oocyte meiotic defects and aneuploidy in aged mice. Mechanically, we showed that geranylgeraniol activated LHR/EGF signaling in aged GCs and enhanced the meiosis-associated gene expression in oocytes. Collectively, we demonstrate that the MVA pathway in GCs is a critical regulator of meiotic maturation and euploidy in oocytes, and age-associated MVA pathway abnormalities contribute to oocyte meiotic defects and aneuploidy.
Collapse
Affiliation(s)
- Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wu Zuo
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Simin Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Shiyuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyi Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yifan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Changjun Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Tianxiang Feng
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, China.
- Clinical Center for Stem Cell Research, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
14
|
Effect of carvacrol antioxidant capacity on oocyte maturation and embryo production in cattle. ZYGOTE 2023; 31:173-179. [PMID: 36804925 DOI: 10.1017/s0967199422000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Carvacrol (C10H14O), an efficient phenolic antioxidant substance for several cell types, may become a useful antioxidant for female germ cells and embryo culture. This study investigates the effects of carvacrol supplementation on bovine oocytes in in vitro maturation (IVM) and embryo production. In total, 1222 cumulus-oocyte complexes were cultured in TCM-199+ alone (control treatment) or supplemented with carvacrol at the concentrations of 3 µM (Carv-3), 12.5 µM (Carv-12.5), or 25 µM (Carv-25). After IVM, the oocytes were subjected to in vitro fertilization and embryo production, and the spent medium post-IVM was used for evaluating the levels of reactive oxygen species and the antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate and 2,2'-azinobis-3-ethyl-benzothiozoline-6-sulphonic acid quantification). A greater (P < 0.05) antioxidant potential was observed in the spent medium of all carvacrol-treated groups compared with the control medium. Moreover, the addition of carvacrol to the maturation medium did not affect (P > 0.05) blastocyst production on days 7 and 10 of culture; however, the total number of cells per blastocyst was reduced (P < 0.05) in two carvacrol-treated groups (Carv-3 and Carv-25). In conclusion, carvacrol demonstrated a high antioxidant capacity in the spent medium after oocyte maturation; however, although embryo production was not affected, in general, carvacrol addition to IVM medium reduced the total number of cells per blastocyst. Therefore, due to the high antioxidant capacity of carvacrol, new experiments are warranted to investigate the beneficial effects of lower concentrations of carvacrol on embryo production in cattle and other species.
Collapse
|
15
|
Ferré LB, Alvarez-Gallardo H, Romo S, Fresno C, Stroud T, Stroud B, Lindsey B, Kjelland ME. Transvaginal ultrasound-guided oocyte retrieval in cattle: State-of-the-art and its impact on the in vitro fertilization embryo production outcome. Reprod Domest Anim 2023; 58:363-378. [PMID: 36510745 DOI: 10.1111/rda.14303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Transvaginal ultrasound-guided oocyte retrieval (commonly called OPU) and in vitro embryo production (IVP) in cattle has shown significant progress in recent years, in part, as a result of a better understanding of the full potential of these tools by end users. The combination of OPU and IVP (OPU-IVP) has been successfully and widely commercially used worldwide. The main advantages are a greater number of embryos and pregnancies per unit of time, faster genetic progress due to donor quick turn around and more elite sires mating combinations, larger spectrum of female age (calves, prepuberal, heifer, cow) and condition (open, pregnant) from which to retrieve oocytes, a reduced number of sperm (even sexed) required to fertilize the oocytes, among other benefits. OPU-IVP requires significant less donor preparation in comparison to conventional embryo transfer (<50% of usual FSH injections needed) to the extent of no stimulating hormones (FSH) are necessary. Donor synchronization, stimulation, OPU technique, oocyte competence, embryo performance, and its impact on cryopreservation and pregnancy are discussed.
Collapse
Affiliation(s)
- Luis B Ferré
- National Institute of Agricultural Technology (INTA), Chacra Experimental Integrada Barrow (MDA-INTA), Tres Arroyos, Argentina
| | - Horacio Alvarez-Gallardo
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, Mexico
| | - Salvador Romo
- Laboratorio de Reproducción, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de Mexico, Mexico
| | - Cristóbal Fresno
- Health Sciences Research Center (CICSA), Anáhuac University of México, Huixquilucan, Mexico
| | | | - Brad Stroud
- Stroud Veterinary Embryo Services, Inc, Weatherford, Texas, USA
| | | | - Michael E Kjelland
- Conservation, Genetics and Biotech, LLC, Valley City, North Dakota, USA.,Mayville State University, Mayville, North Dakota, USA
| |
Collapse
|
16
|
Budani MC, Tiboni GM. Nutrition, female fertility and in vitro fertilization outcomes. Reprod Toxicol 2023; 118:108370. [PMID: 37001829 DOI: 10.1016/j.reprotox.2023.108370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The investigation of modifiable factors that may exert influences on female reproductive health and in vitro fertilization (IVF) outcomes is increasing. Growing attention is being paid to nutrition. The aim of the present review is to recapitulate the current understanding on the effects of nutrition on female fertility and IVF outcomes. In particular, the three main classes of macromolecules have been analysed i.e. carbohydrates, proteins and fatty acids. An increasing number of studies have focused on the potential benefit of whole grain, vegetables and omega-3 polynsatured fatty acids (ω-3 PUFAs) on reproductive outcomes. Controversial results exist regarding the consumption of omega-6 (ω-6) PUFAs and dairy. Overall, nutrition appears to represent a modifiable factor that may play a significant role in the context of female reproduction and IVF outcomes, but the limited number of studies and the discrepancies between the available data call for further research in the area.
Collapse
|
17
|
Zeng X, Li S, Liu L, Cai S, Ye Q, Xue B, Wang X, Zhang S, Chen F, Cai C, Wang F, Zeng X. Role of functional fatty acids in modulation of reproductive potential in livestock. J Anim Sci Biotechnol 2023; 14:24. [PMID: 36788613 PMCID: PMC9926833 DOI: 10.1186/s40104-022-00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/16/2023] Open
Abstract
Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and embryo development, as well as endometrial receptivity and placental vascular development, through enhancing energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prostaglandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establishment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Siyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Lu Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shuang Cai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Qianhong Ye
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Bangxin Xue
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xinyu Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shihai Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fang Chen
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chuanjiang Cai
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fenglai Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193, Beijing, P. R. China. .,Beijing Key Laboratory of Bio feed Additives, 100193, Beijing, P. R. China.
| |
Collapse
|
18
|
Carranza-Martin AC, Garcia-Guerra A, Relling AE. Effects of polyunsaturated fatty acid supplementation on plasma and follicular fluid resolvin D1 concentration and mRNA abundance in granulosa cells in ewes. J Anim Sci 2023; 101:skad310. [PMID: 37721095 PMCID: PMC10583979 DOI: 10.1093/jas/skad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
The aim of this experiment was to evaluate the effect of increasing dietary omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation on plasma and follicular fluid resolvin D1 (RvD1) concentration and the mRNA expression of genes related to RvD1 production, inflammatory response, oxidative stress, hormone receptors and production, and free fatty acid receptors in the granulosa cells of ewes. Dorset × Hampshire ewes (n = 24) aged 2 to 4 yr and with an initial body weight (BW) of 84.08 ± 13.18 kg were blocked by body condition score (BCS) and BW, and randomly assigned to 12 pens. Each pen within each block was randomly assigned to one of three treatments: 1) diet without fatty acid supplementation (control), 2) diet with 0.5% n-3 PUFA supplementation (PUFA0.5), and 3) diet with 1% n-3 PUFA supplementation (PUFA1). BW, BCS, and blood samples were obtained on day 1 and every 21 d for 3 mo. Ewes were then synchronized, superstimulated, and ovariectomized. Antral follicles were aspirated to evaluate RvD1 concentration in follicular fluid, and granulosa cells were used to determine mRNA abundance. Data were analyzed as a randomized complete block design using a mixed model (MIXED or GLIMMIX with log as a link function when data presented a nonnormal distribution). A polynomial effect of treatments was used to analyze RvD1 concentration and mRNA expression when there was no interaction. In addition, the correlation between plasma and follicular fluid RvD1 concentration was evaluated. We found no differences in BW (P = 0.28) and BCS (P = 0.29) between treatments. The concentration of RvD1 in plasma and follicular fluid linearly increased (P = 0.03) and tended to increase (P = 0.06) concomitantly to increasing PUFA supplementation. Plasma and follicular fluid RvD1 concentrations were positively correlated (r = 0.61; P < 0.01). The abundance of GPX1 and GPR32 mRNA tended to increase linearly with increasing PUFA supplementation (P = 0.06). In addition, PUFA supplementation linearly decreased and tended to decrease IL-1β and COX-2 mRNA abundance (P = 0.01 and P = 0.06, respectively). In conclusion, the correlation between plasma and follicular fluid RvD1 concentration indicates a relationship between both compartments. Also, the decrease of IL-1β and the increase of GPX1 mRNA abundance after PUFA supplementation could have beneficial effects on follicle development.
Collapse
Affiliation(s)
- Ana C Carranza-Martin
- Department of Animal Sciences, The Ohio State University, Columbus, OH 44691, USA
- IGEVET – Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CP 1900 La Plata, Buenos Aires, Argentina
| | - Alvaro Garcia-Guerra
- Department of Animal Sciences, The Ohio State University, Columbus, OH 44691, USA
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Columbus, OH 44691, USA
- Ohio State University Interdisciplinary Nutrition Program (OSUN), The Ohio State University, Columbus, OH 44691, USA
| |
Collapse
|
19
|
Dellaqua TT, Vígaro RA, Janini LCZ, Dal Canto M, Renzini MM, Lodde V, Luciano AM, Buratini J. Neuregulin 1 (NRG1) modulates oocyte nuclear maturation during IVM and improves post-IVF embryo development. Theriogenology 2022; 195:209-216. [DOI: 10.1016/j.theriogenology.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
20
|
Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid Metabolic Process Involved in Oocyte Maturation During Folliculogenesis. Front Cell Dev Biol 2022; 10:806890. [PMID: 35433675 PMCID: PMC9009531 DOI: 10.3389/fcell.2022.806890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oocyte maturation is a complex and dynamic process regulated by the coordination of ovarian cells and numerous extraovarian signals. From mammal studies, it is learnt that lipid metabolism provides sufficient energy for morphological and cellular events during folliculogenesis, and numerous lipid metabolites, including cholesterol, lipoproteins, and 14-demethyl-14-dehydrolanosterol, act as steroid hormone precursors and meiotic resumption regulators. Endogenous and exogenous signals, such as gonadotropins, insulin, and cortisol, are the upstream regulators in follicular lipid metabolic homeostasis, forming a complex and dynamic network in which the key factor or pathway that plays the central role is still a mystery. Though lipid metabolites are indispensable, long-term exposure to a high-fat environment will induce irreversible damage to follicular cells and oocyte meiosis. This review specifically describes the transcriptional expression patterns of several lipid metabolism–related genes in human oocytes and granulosa cells during folliculogenesis, illustrating the spatiotemporal lipid metabolic changes in follicles and the role of lipid metabolism in female reproductive capacity. This study aims to elaborate the impact of lipid metabolism on folliculogenesis, thus providing guidance for improving the fertility of obese women and the clinical outcome of assisted reproduction.
Collapse
Affiliation(s)
- Tao Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueling Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jie Yan,
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Azam A, Ejaz R, Qadeer S, Irum S, Ul-Husna A, Ullah S, Shahzad Q, Akhtar T, Akhter S. Synergistic impact of α-linolenic acid and α-tocopherol on in vitro maturation and culture of buffalo oocytes. BRAZ J BIOL 2021; 84:e253514. [PMID: 34932678 DOI: 10.1590/1519-6984.253514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
The objective of the current study was to investigate the synergistic impact of α-Tocopherol and α-Linolenic acid (100 µM) on IVM and IVC of Nili Ravi buffalo oocytes. Oocytes were obtained from the ovaries of slaughtered buffaloes within two hours after slaughter and brought to laboratory. Buffalo cumulus oocyte complexes were placed randomly in the five experimental groups included; GROUP 1: Maturation media (MM) + 100 µM ALA (control), GROUP 2: MM + 100 µM ALA + 50μM α-Tocopherol, GROUP 3: MM + 100 µM ALA + 100μM α-Tocopherol, GROUP 4: MM + 100 µM ALA + 200 μM α-Tocopherol and GROUP 5: MM + 100 µM ALA + 300 μM α-Tocopherol under an atmosphere of 5% CO2 in air at 38.5 °C for 22-24 h. Cumulus expansion and nuclear maturation status was determined (Experiment 1). In experiment 2, oocytes were matured as in experiment 1. The matured oocytes were then fertilized in Tyrode's Albumin Lactate Pyruvate (TALP) medium for about 20 h and cultured in synthetic oviductal fluid (SOF) medium to determine effect of α-Linolenic acid (100 µM) and α-Tocopherol in IVM medium on IVC of presumptive zygotes. To study the effect of α-Linolenic acid (100 µM) in IVM media and increasing concentration of α-tocopherol in the culture media on early embryo development (Experiment 3), the presumptive zygotes were randomly distributed into the five experimental groups with increasing concentration of α-tocopherol in culture media. Higher percentage of MII stage oocytes in experiment 1(65.2±2.0), embryos at morula stage in experiment 2 (30.4±1.5) and experiment 3 (22.2±2.0) were obtained. However, overall results for cumulus cell expansion, maturation of oocyte to MII stage and subsequent embryo development among treatments remain statistically similar (P > 0.05). Supplementation of α-tocopherol in maturation media having α-Linolenic acid and/or in embryo culture media did not further enhance in vitro maturation of oocyte or embryo production.
Collapse
Affiliation(s)
- A Azam
- Shaheed Benazir Bhutto Women University, Department of Zoology, Peshawar, Pakistan
| | - R Ejaz
- Shaheed Benazir Bhutto Women University, Department of Zoology, Peshawar, Pakistan
| | - S Qadeer
- University of Education, Division of Science & Technology, Department of Zoology, Lahore, Pakistan
| | - S Irum
- University of Gujrat, Department of Zoology, Gujrat, Pakistan
| | - A Ul-Husna
- University of Haripur, Department of Zoology, Haripur, Pakistan
| | - S Ullah
- University of Education, Division of Science & Technology, Department of Zoology, Lahore, Pakistan
| | - Q Shahzad
- Bovine IVF Laboratory, Ovatech (Shandong) Biotechnology, Dongying, China
| | - T Akhtar
- Buffalo Research Institute Pattoki, Kasur, Lahore, Pakistan
| | - S Akhter
- Pir Mehr Ali Shah Arid Agriculture University, Department of Zoology, Rawalpindi, Pakistan
| |
Collapse
|
22
|
Jahangirifar M, Taebi M, Nasr-Esfahani MH, Heidari-Beni M, Asgari GH. Dietary Fatty Acid Intakes and the Outcomes of Assisted Reproductive Technique in Infertile Women. J Reprod Infertil 2021; 22:173-183. [PMID: 34900638 PMCID: PMC8607876 DOI: 10.18502/jri.v22i3.6718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of this study was evaluating the relationship between fatty acid (FA) intakes and the Assisted Reproductive Technique (ART) outcomes in infertile women. Methods In this descriptive longitudinal study, a validated food frequency questionnaire (FFQ) was used to measure dietary intakes among 217 women with primary infertility seeking ART treatments at Isfahan Fertility and Infertility Center, Isfahan, Iran. The average number of total and metaphase II (MII) oocytes, the fertilization rate, the ratio of good and bad quality embryo and biochemical and clinical pregnancy were assessed. Analyses were performed using mean, standard deviation, Chi-square test, ANOVA, ANCOVA, logistic regression. Results A total of 140 women were finally included in the study. There was a positive relationship between the average number of total and MII oocytes and the amount of total fatty acids (TFAs), saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), linoleic acids, linolenic acids, and oleic acids intakes, while eicosapentaenoic acids (EPAs) and docosahexaenoic acids (DHAs) intakes had an inverse relationship. Consuming more amounts of TFAs, SFAs, PUFAs, MUFAs, linoleic acids, and oleic acids was associated with the lower fertilization rate, whereas the consumption of linolenic acids and EPAs increased the fertilization rate. The ratio of good quality embryo was directly affected by the amount of PUFAs intakes. Additionally, there was a negative correlation between the amount of SFAs intakes and the number of pregnant women. Conclusion TFAs, SFA, PUFA, and MUFA intakes could have both beneficial and adverse impacts on ART outcomes.
Collapse
Affiliation(s)
- Maryam Jahangirifar
- School of Nursing and Midwifery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Mahboube Taebi
- Department of Midwifery and Reproductive Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Motahar Heidari-Beni
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholam Hossein Asgari
- Department of Community Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Residiwati G, Azari-Dolatabad N, Tuska HSA, Sidi S, Van Damme P, Benedetti C, Montoro AF, Luceno NL, Budiono, Pavani KC, Opsomer G, Van Soom A, Bogado Pascottini O. Effect of lycopene supplementation to bovine oocytes exposed to heat shock during in vitro maturation. Theriogenology 2021; 173:48-55. [PMID: 34332201 DOI: 10.1016/j.theriogenology.2021.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
We investigated the effect of the antioxidant lycopene supplemented into the in vitro maturation medium (TCM-199 with 20 ng/mL epidermal growth factor and 50 mg/mL gentamycin) in a heat shock (HS) model to mimic in vivo heat stress conditions. Bovine cumulus-oocyte complexes were supplemented with 0.2 μM lycopene (or not supplemented; control) under HS (40.5 °C) and non-HS (NHS; 38.5 °C) during maturation. After 22 h of maturation, we evaluated the nuclear status of the oocytes, the level of reactive oxygen species (ROS) production, and the respective blastocyst development and quality (via differential staining). Data were fitted in logistic and linear regression models, and the replicates were set as a random effect. The nuclear maturation was higher in NHS (84.0 ± 3.2%; least square mean ± standard error) than HS control (60.4 ± 4.3%; P < 0.001). Remarkably, the nuclear maturation in HS lycopene (71.7 ± 4.1%) was similar to NHS control (P = 0.7). Under HS conditions lycopene reduced ROS production (27.4 ± 4.8; relative fluorescence units (RFU)) in comparison to HS control (33.8 ± 1.8 RFU; P = 0.009). However, the ROS production in NHS lycopene (18.9 ± 2.0 RFU) was similar to NHS control (18.7 ± 1.8 RFU; P = 0.9). The cleavage rate in HS lycopene (76.1 ± 3.3%) was not lower than NHS lycopene (83.3 ± 2.5%; P > 0.1). On the day 8 of embryo development, the blastocyst rate was higher for NHS lycopene (55.2 ± 4.7%) versus NHS control (44.5 ± 4.7%; P = 0.04), but under HS the day 8 blastocyst rate was similar between control (29.9 ± 4.2%) and lycopene (32.3 ± 4.2%; P = 0.9). Lycopene supplementation increased the cell number of the embryos (total cell, trophectoderm, and inner cell mass numbers) under NHS conditions (P > 0.03). The apoptotic cell ratio was lower in lycopene (NHS and HS) versus control (NHS and HS) (P > 0.04). Lycopene has the ability to scavenge oocyte ROS and improved the cleavage rate of embryos under HS conditions. However, this could not be translated to a higher blastocyst development, which remained lower under HS. Results of our study indicate that antioxidant supplementation like lycopene during the maturation of bovine cumulus-oocyte complexes may be routinely used to improve blastocyst rate and quality under standard maturation conditions.
Collapse
Affiliation(s)
- G Residiwati
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium.
| | - N Azari-Dolatabad
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - H S A Tuska
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - S Sidi
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium; Department of Theriogenology and Animal Production, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - P Van Damme
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - C Benedetti
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - A F Montoro
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - N L Luceno
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - Budiono
- Gajayana University, Malang, East Java, Indonesia
| | - K C Pavani
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - O Bogado Pascottini
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
24
|
Ababakri R, Dayani O, Khezri A, Naserian A. Effects of extruded flaxseed and dietary rumen undegradable
protein on reproductive traits and the blood metabolites
in Baluchi ewes. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/139153/2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Samereh S, Hajarian H, Karamishabankareh H, Soltani L, Foroutanifar S. Effects of different concentrations of Chir98014 as an activator of Wnt/beta-catenin signaling pathway on oocyte in-vitro maturation and subsequent embryonic development in Sanjabi ewes. Reprod Domest Anim 2021; 56:965-971. [PMID: 33866629 DOI: 10.1111/rda.13938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
The present study was conducted to investigate the effects of the activator factor of the WNT pathway, chir98014, leading to the in vitro sheep oocyte maturation medium, on the cumulus cell development, different nuclear maturation stages and the following process of embryonic development. Experiments included (a) addition of different concentrations (0, 0.1, 0.5, 1 µm) of chir98014 to the maturation medium and evaluation of the cumulus cell expansion, (b) addition of different concentrations of chir98014 to the maturation medium and investigation of different nuclear maturation stages, (c) addition of different concentrations of chir98014 to the maturation medium and examination of the subsequent embryonic maturation process and (d) addition of different concentrations of chir98014 to the embryonic development culture medium (the first 48 hr) and investigation of the subsequent embryonic development process. The extracted data were analysed using the SPSS software, considering the significance level of p < .05 and making the mean comparisons. The results showed that the addition of the 0.1 µM concentration of chir98014 to the maturation medium had no significant effects on the oocyte maturation and embryo development post-fertilization but it enhanced the Cumulus-oocyte complexes (COCs) expansion. In the fourth experiment, the low concentration of chir98014 in the embryo culture media improved the embryo development process, whereas the high one had a detrimental effect on it, as compared to the control group. Thus, the presence of the lower concentrations of this compound in the embryonic culture medium had favourable effects on the development of embryos.
Collapse
Affiliation(s)
- Sarah Samereh
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hadi Hajarian
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | | | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Saheb Foroutanifar
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| |
Collapse
|
26
|
Zabihi A, Shabankareh HK, Hajarian H, Foroutanifar S. In vitro maturation medium supplementation with resveratrol improves cumulus cell expansion and developmental competence of Sanjabi sheep oocytes. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Alves JPM, Fernandes CCL, Calderón CEM, Rossetto R, Bertolini M, Rondina D. Short-term supplementation of diets rich in lipids or glycogen precursors can affect intra-follicular environment, oocyte mitochondrial gene expression, and embryo development following parthenogenesis in goat. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2020.106279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Faustmann G, Tiran B, Trajanoski S, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Roob JM, Winklhofer-Roob BM. Activation of nuclear factor-kappa B subunits c-Rel, p65 and p50 by plasma lipids and fatty acids across the menstrual cycle. Free Radic Biol Med 2020; 160:488-500. [PMID: 32846215 DOI: 10.1016/j.freeradbiomed.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
This study focused on a comprehensive analysis of the canonical activation pathway of the redox-sensitive transcription factor nuclear factor-kappa B (NF-κB) in peripheral blood mononuclear cells, addressing c-Rel, p65 and p50 activation in 28 women at early (T1) and late follicular (T2) and mid (T3) and late luteal (T4) phase of the menstrual cycle, and possible relations with fasting plasma lipids and fatty acids. For the first time, strong inverse relations of c-Rel with apolipoprotein B were observed across the cycle, while those with LDL cholesterol, triglycerides as well as saturated (SFA), particularly C14-C22 SFA, monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) clustered at T2. In contrast, p65 was positively related to LDL cholesterol and total n-6 PUFA, while p50 did not show any relations. C-Rel was not directly associated with estradiol and progesterone, but data suggested an indirect C22:5n-3-mediated effect of progesterone. Strong positive relations between estradiol and individual SFA, MUFA and n-3 PUFA at T1 were confined to C18 fatty acids; C18:3n-3 was differentially associated with estradiol (positively) and progesterone (inversely). Given specific roles of c-Rel activation in immune tolerance, inhibition of c-Rel activation by higher plasma apolipoprotein B and individual fatty acid concentrations could have clinical implications for female fertility.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria; Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
29
|
Freret S, Oseikria M, Bourhis DL, Desmarchais A, Briant E, Desnoes O, Dupont M, Le Berre L, Ghazouani O, Bertevello PS, Teixeira-Gomes AP, Labas V, Uzbekova S, Salvetti P, Maillard V, Elis S. Effects of a n-3 polyunsaturated fatty acid-enriched diet on embryo production in dairy cows. Reproduction 2020; 158:71-83. [PMID: 31013477 DOI: 10.1530/rep-18-0644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
Beneficial effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on dairy cow reproduction have been previously reported. The objectives of the present study were to assess whether n-3 PUFA supplementation would affect in vitro embryo production (IVP) after ovarian stimulation. Holstein cows received a diet with 1% dry matter supplementation of either n-3 PUFA (n = 18, microencapsulated fish oil) or a control, n-6 PUFA (n = 19, microencapsulated soy oil). Both plasma and follicular fluid FA composition showed integration of total PUFA through the diet. All cows underwent an IVP protocol consisting of ovarian stimulation, ultrasound-guided transvaginal oocyte retrieval (ovum pick-up, OPU, five per cow) followed by in vitro maturation, fertilisation and 7 days of embryo development. A tendency toward an increase in the blastocyst rate (diet effect, P = 0.0865) was observed in n-3 cows, with 49.6 ± 5.5% vs 42.3 ± 5.5% in control n-6 cows. A significant increase (diet effect, P = 0.0217) in the good-quality blastocyst rate (freezable blastocysts) was reported in n-3 cows (42.2 ± 7.7%) compared to control n-6 cows (32.7 ± 7.7%). A significant difference in lipid composition was shown in the oocytes recovered by OPU from n-3 and n-6 treated cows, by intact single-oocyte MALDI-TOF mass spectrometry. The 42 differentially abundant identified lipids were mainly involved in cell membrane structure. In conclusion, n-3 PUFA supplementation enhanced oocyte quality and modified their lipid composition. Further studies are necessary to investigate the potential link of these lipid modifications with enhanced oocyte quality.
Collapse
Affiliation(s)
- S Freret
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - M Oseikria
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - D Le Bourhis
- Allice, Station de Phénotypage, Nouzilly, France
| | - A Desmarchais
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - E Briant
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - O Desnoes
- Allice, Station de Phénotypage, Nouzilly, France
| | - M Dupont
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - L Le Berre
- Allice, Station de Phénotypage, Nouzilly, France
| | - O Ghazouani
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - P S Bertevello
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - A P Teixeira-Gomes
- PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Plate-forme CIRE (Chirurgie et Imagerie pour la Recherche et l'Enseignement), INRA, Université de Tours, CHRU de Tours, Nouzilly, France.,UMR ISP, INRA 1282, Université de Tours, Nouzilly, France
| | - V Labas
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France.,PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Plate-forme CIRE (Chirurgie et Imagerie pour la Recherche et l'Enseignement), INRA, Université de Tours, CHRU de Tours, Nouzilly, France
| | - S Uzbekova
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - P Salvetti
- Allice, Station de Phénotypage, Nouzilly, France
| | - V Maillard
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| | - S Elis
- PRC, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
| |
Collapse
|
30
|
IMD/ADM2 1-47, a factor that improves embryo quality. Theriogenology 2020; 146:1-13. [PMID: 32035360 DOI: 10.1016/j.theriogenology.2020.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 11/22/2022]
Abstract
Starting in vitro fertilization process with competent oocytes that may endure first cellular divisions is a critical step for obtaining an embryo. To obtain in vitro competent oocytes, culture conditions should emulate the in vivo microenvironment as close as possible. With the aim of improving the in vitro culture medium, the present study evaluated the IMD/ADM21-47 peptide as a factor that promotes oocyte competence and improves embryo quality in bovine systems. The culture supplemented with 153 μg/mL of IMD/ADM21-47 was correlated with the production of healthy oocytes in metaphase II (MII) stage in compacted cumulus-oocyte complexes (COC) with a decrease of BAX/BCL-2 to mRNA ratio and a reduction of late apoptosis by TUNEL in MII oocytes. In addition to this, treatment with IMD/ADM21-47 caused cAMPi level to be constant over time, and the cAMPi level kept increasing until 6 h. COC supplementation with 153 μg/mL of IMD/ADM21-47 increased the blastocyst production rate two-fold in comparison with control conditions. Only embryos from COC treatment with this peptide were capable of developing blastocysts in stage-6 grade I; compared with the control culture, it was the treatment with the greater number of blastocysts stage-5; these are characteristics of good quality blastocysts.
Collapse
|
31
|
Dias LRO, Leme LO, Sprícigo JFW, Pivato I, Dode MAN. Effect of delipidant agents during in vitro culture on the development, lipid content, gene expression and cryotolerance of bovine embryos. Reprod Domest Anim 2019; 55:11-20. [PMID: 31650647 DOI: 10.1111/rda.13579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/02/2019] [Indexed: 11/28/2022]
Abstract
In vitro produced embryos are still sensitive to the freezing process which can be explained, in part, by the high-lipid accumulation that characterizes these embryos. Therefore, we aimed to evaluate the effect of delipidating agents, L-carnitine and the trans-10 cis-12 conjugated linoleic acid (CLA) isomer, on blastocyst development, lipid content, gene expression and cryotolerance when added to embryo culture media. Embryos were cultured in four different media: T1: control (n = 616), synthetic oviduct fluid (SOF) media with 5% foetal bovine serum (FBS); T2: L-carnitine (n = 648), SOF medium with 5% FBS and 0.6 mg/ml of L-carnitine; T3: CLA (n = 627), SOF medium with 5% FBS and 100 μM trans-10 cis-12 CLA; and T4: L-carnitine + CLA: (n = 597), SOF medium with 5% FBS plus 0.6 mg/ml L-carnitine and 100 μM trans-10 cis-12 CLA. Supplementation of culture medium with either or both delipidating agents reduced (p < .05) blastocyst rate on D7 (T1 = 49 ± 3.5; T2 = 39 ± 3.0; T3 = 42 ± 3.9 and T4 = 39 ± 3.9), but did not affected gene expression (p > .05). Although embryos cultured in the presence of L-carnitine contained fewer (p < .05) lipid droplets than the control embryos, they showed a lower re-expansion rate 24 hr post-thaw than those (p < .05). In conclusion, although L-carnitine reduced the amount of lipids in cultured embryos, the use of L-carnitine and CLA during in vitro culture was not able to improve the embryo production and the response to cryopreservation.
Collapse
Affiliation(s)
| | | | | | - Ivo Pivato
- University of Brasília, Brasília, DF, Brazil
| | - Margot Alves Nunes Dode
- University of Brasília, Brasília, DF, Brazil.,EMBRAPA Genetic Resources and Biotechnology, Brasília, DF, Brazil
| |
Collapse
|
32
|
Fontana J, Martínková S, Petr J, Žalmanová T, Trnka J. Metabolic cooperation in the ovarian follicle. Physiol Res 2019; 69:33-48. [PMID: 31854191 DOI: 10.33549/physiolres.934233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Granulosa cells (GCs) are somatic cells essential for establishing and maintaining bi-directional communication with the oocytes. This connection has a profound importance for the delivery of energy substrates, structural components and ions to the maturing oocyte through gap junctions. Cumulus cells, group of closely associated GCs, surround the oocyte and can diminished the effect of harmful environmental insults. Both GCs and oocytes prefer different energy substrates in their cellular metabolism: GCs are more glycolytic, whereas oocytes rely more on oxidative phosphorylation pathway. The interconnection of these cells is emphasized by the fact that GCs supply oocytes with intermediates produced in glycolysis. The number of GCs surrounding the oocyte and their age affect the energy status of oocytes. This review summarises available studies collaboration of cellular types in the ovarian follicle from the point of view of energy metabolism, signaling and protection of toxic insults. A deeper knowledge of the underlying mechanisms is crucial for better methods to prevent and treat infertility and to improve the technology of in vitro fertilization.
Collapse
Affiliation(s)
- J Fontana
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
33
|
Nikoloff N, Campagna A, Luchetti C, Carranza-Martín AC, Pascua AM, Anchordoquy JM, Anchordoquy JP, Lombardo DM, Seoane A, Furnus CC. Effects of EPA on bovine oocytes matured in vitro with antioxidants: Impact on the lipid content of oocytes and early embryo development. Theriogenology 2019; 146:152-161. [PMID: 31787466 DOI: 10.1016/j.theriogenology.2019.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 01/05/2023]
Abstract
The eicosapentaenoic acid (EPA) is an n-3 polyunsaturated fatty acid (PUFA) present in the lipid composition of bovine oocytes. Little is known about the importance of EPA in bovine oocyte maturation and embryo development in vitro. Although previous work suggest that n-3 PUFAs may inhibit oocyte maturation, the available data are inconsistent. In this study, we evaluated the effect of EPA (1, 10, 100 nM) during in vitro maturation (IVM) of bovine oocytes, alone and in combination with vitamin E (VE) or cysteamine (CYS). EPA treatment in IVM decreased oocyte lipid content and affected lipid droplets pattern (P < 0.05). EPA 100 nM reduced oocytes maturation rate (P < 0.05), without affecting cumulus expansion. At the concentrations tested, EPA did not modify embryo development. However, the addition of antioxidants during IVM reduced the levels of reactive oxygen species in the culture system by increasing intracellular glutathione content (P < 0.05). Besides, the combination of EPA with VE or CYS reduced the percentages of MI oocytes after 24 h of IVM (P < 0.05). EPA reduced oocyte lipid content without any detrimental for embryo development.
Collapse
Affiliation(s)
- Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Anabella Campagna
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Carolina Luchetti
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Ana C Carranza-Martín
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Ana M Pascua
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Daniel M Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Analia Seoane
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout"(UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA La Plata, Buenos Aires, Argentina
| | - Cecilia C Furnus
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Dubeibe Marin DF, da Costa NN, di Paula Bessa Santana P, de Souza EB, Ohashi OM. Importance of lipid metabolism on oocyte maturation and early embryo development: Can we apply what we know to buffalo? Anim Reprod Sci 2019; 211:106220. [PMID: 31785645 DOI: 10.1016/j.anireprosci.2019.106220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The knowledge about the biological events that regulate lipid metabolism in oocytes and embryos in buffalo is scarce. Lipogenesis, lipolysis, transport and oxidation of fatty acids (FAs) occur in gametes and embryonic cells of all mammalian species, as an intrinsic component of energy metabolism. In oocytes and cumulus cells, degradation of lipids is responsible for the production of ATP that is essential for the metabolic processes that lead to oocyte maturation in in vivo and in vitro culture conditions. Similarly, throughout embryo development, blastomeres have the capacity to use exogenous and/or endogenous lipid reserves to serve as an energy source necessary for early embryonic development. In addition, supplementation of culture media with L-carnitine to promote lipid metabolism during in vitro oocyte maturation and early embryonic development leads to an improved embryo quality. The limited scientific evidence available in buffalo indicates there is relatively greater oocyte lipid content as compared with many other species that undergoes a dynamic distribution during folliculogenesis and follicle maturation and that has a positive effect on oocyte maturation and embryo development when there is L-carnitine supplementation of the media. Advances in the understanding of the biological peculiarities of lipid metabolism, and the consequences of its alteration on the quality of buffalo gametes and embryos, therefore, are necessary to design specific culture media and laboratory procedures as a strategy to increase in vitro-derived embryo production rates.
Collapse
Affiliation(s)
- Diego Fernando Dubeibe Marin
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil.
| | - Nathalia Nogueira da Costa
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| | | | - Eduardo Baia de Souza
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| | - Otavio Mitio Ohashi
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| |
Collapse
|
35
|
Zhang N, Wang L, Luo G, Tang X, Ma L, Zheng Y, Liu S, A Price C, Jiang Z. Arachidonic Acid Regulation of Intracellular Signaling Pathways and Target Gene Expression in Bovine Ovarian Granulosa Cells. Animals (Basel) 2019; 9:ani9060374. [PMID: 31248190 PMCID: PMC6617051 DOI: 10.3390/ani9060374] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Arachidonic acid (AA) is one of the polyunsaturated fatty acids that presents in a very high proportion in the mammalian follicular fluid. However, the mechanism of its effects on bovine ovarian granulosa cells is not clear. In the present study, we found that arachidonic acid plays an important role in regulating cell proliferation, lipid accumulation and steroidogenesis of granulosa cells. In this sense, arachidonic acid can directly affect the functionality of granulosa cells and therefore follicular development and ovulation, which could provide useful information for future studies relating to increasing fecundity of bovine. Abstract In the present study, AA was used to challenge bovine ovarian granulosa cells in vitro and the related parameters of cellular and molecular biology were measured. The results indicated that lower doses of AA increased survival of bovine granulosa cells whereas higher doses of AA suppressed survival. While lower doses of AA induced accumulation of lipid droplet in granulosa cells, the higher dose of AA inhibited lipid accumulation, and AA increased abundance of FABP3, CD36 and SLC27A1 mRNA. Higher doses of AA decreased the secretion of E2 and increased the secretion of P4 accompanied by down-regulation of the mRNA abundance of CYP19A1, FSHR, HSD3B1 and STAR in granulosa cells. The signaling pathways employed by AA in the stimulation of genes expression included both ERK1/2 and Akt. Together, AA specifically affects physiological features, gene expression levels and steroid hormone secretion, and thus altering the functionality of granulosa cells of cattle.
Collapse
Affiliation(s)
- Nina Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Liqiang Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Guoya Luo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Xiaorong Tang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Lizhu Ma
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Yuxin Zheng
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Shujie Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinhai University, Xining 810016, Qinghai, China.
| | - Christopher A Price
- Centre de recherche en reproduction fertility, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Zhongliang Jiang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| |
Collapse
|
36
|
Aardema H, van Tol HTA, Vos PLAM. An overview on how cumulus cells interact with the oocyte in a condition with elevated NEFA levels in dairy cows. Anim Reprod Sci 2019; 207:131-137. [PMID: 31227325 DOI: 10.1016/j.anireprosci.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/11/2022]
Abstract
Metabolic stress in humans and animals is associated with impaired fertility. A major characteristic of metabolic stress is elevated levels of free fatty acids (NEFAs) in blood due to mobilization of body fat reserves. Dairy cows undergo a period of metabolic stress during the peri-calving period, the so-called negative energy balance (NEB) in the early weeks postpartum. At the time of NEB, both saturated and unsaturated NEFAs are mobilized to serve as an alternative energy supply for cells, however in particular saturated NEFAs can have a detrimental effect on somatic cells. Circulating NEFAs are also reflected in the follicular fluid of ovarian follicles and hence reach the cumulus-oocyte-complex (COC), which implies a potential risk for the developing oocyte. To this end, the current review focusses on the impact of NEFAs on the quality of the oocyte.
Collapse
Affiliation(s)
- Hilde Aardema
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands.
| | - Helena T A van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
37
|
Doyle D, Lonergan P, Diskin M, Pierce K, Kelly A, Stanton C, Waters S, Parr M, Kenny D. Effect of dietary n-3 polyunsaturated fatty acid supplementation and post-insemination plane of nutrition on systemic concentrations of metabolic analytes, progesterone, hepatic gene expression and embryo development and survival in beef heifers. Theriogenology 2019; 127:102-113. [DOI: 10.1016/j.theriogenology.2018.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/09/2023]
|
38
|
Lee JE, Hwangbo Y, Cheong HT, Yang BK, Park CK. Alpha-Linolenic Acid: It Contribute Regulation of Fertilization Capacity and Subsequent Development by Promoting of Cumulus Expansion during Maturation. Dev Reprod 2019; 22:297-307. [PMID: 30680329 PMCID: PMC6344363 DOI: 10.12717/dr.2018.22.4.297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/20/2018] [Accepted: 11/10/2018] [Indexed: 01/31/2023]
Abstract
The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on cumulus expansion, nuclear maturation, fertilization capacity and subsequent development in porcine oocytes. The oocytes were incubated with 0, 25, 50, and 100 μM ALA. Cumulus expansion was measured at 22 h, and gene expresison and nuclear maturation were analyzed at 44 h after maturation. Then, mature oocytes with ALA were inseminated, and fertilization parameters and embryo development were evaluated. In results, both of cumulus expansion and nuclear maturation were increased in 50 μM ALA groups compared to control groups (p<0.05). However, expression of gap junction protein alpha 1 (GJA1, cumulus expansion-related gene), delta-6 desaturase (FADS1, fatty acid metabolism-related gene), and delta-5 desaturase (FADS2) mRNA in cumulus cells were reduced by 50 μM ALA treatment (p<0.05). Cleavage rate was enhanced in 25 and 50 μM ALA groups (p<0.05), especially, treatment of 50 μM ALA promoted early embryo develop to 4 and 8 cell stages (p<0.05). However, blastocyst formation and number of cells in blastocyst were not differ in 25 and 50 μM ALA groups. Our findings show that ALA treatment during maturation could improve nuclear maturation, fertilization, and early embryo development through enhancing of cumulus expansion, however, fatty acid metabolism- and cumulus expansion-related genes were down-regulated. Therefore, addition of ALA during IVM of oocytes could improve fertilization and developmental competence, and further studies regarding with the mechanism of ALA metabolism are needed.
Collapse
Affiliation(s)
- Ji-Eun Lee
- College of Animal Life Sciences, Kangwon National University, Chunchoen 24341, Korea
| | - Yong Hwangbo
- College of Animal Life Sciences, Kangwon National University, Chunchoen 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine, Kangwon National University, Chunchoen 24341, Korea
| | - Boo-Keun Yang
- College of Animal Life Sciences, Kangwon National University, Chunchoen 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chunchoen 24341, Korea
| |
Collapse
|
39
|
Bach À. Effects of nutrition and genetics on fertility in dairy cows. Reprod Fertil Dev 2019; 31:40-54. [DOI: 10.1071/rd18364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optimal reproductive function in dairy cattle is mandatory to maximise profits. Dairy production has progressively improved milk yields, but, until recently, the trend in reproductive performance has been the opposite. Nutrition, genetics, and epigenetics are important aspects affecting the reproductive performance of dairy cows. In terms of nutrition, the field has commonly fed high-energy diets to dairy cows during the 3 weeks before calving in an attempt to minimise postpartum metabolic upsets. However, in the recent years it has become clear that feeding high-energy diets during the dry period, especially as calving approaches, may be detrimental to cow health, or at least unnecessary because cows, at that time, have low energy requirements and sufficient intake capacity. After calving, dairy cows commonly experience a period of negative energy balance (NEB) characterised by low blood glucose and high non-esterified fatty acid (NEFA) concentrations. This has both direct and indirect effects on oocyte quality and survival. When oocytes are forced to depend highly on the use of energy resources derived from body reserves, mainly NEFA, their development is compromised due to a modification in mitochondrial β-oxidation. Furthermore, the indirect effect of NEB on reproduction is mediated by a hormonal (both metabolic and reproductive) environment. Some authors have attempted to overcome the NEB by providing the oocyte with external sources of energy via dietary fat. Conversely, fertility is affected by a large number of genes, each with small individual effects, and thus it is unlikely that the decline in reproductive function has been directly caused by genetic selection for milk yield per se. It is more likely that the decline is the consequence of a combination of homeorhetic mechanisms (giving priority to milk over other functions) and increased metabolic pressure (due to a shortage of nutrients) with increasing milk yields. Nevertheless, genetics is an important component of reproductive efficiency, and the incorporation of genomic information is allowing the detection of genetic defects, degree of inbreeding and specific single nucleotide polymorphisms directly associated with reproduction, providing pivotal information for genetic selection programs. Furthermore, focusing on improving bull fertility in gene selection programs may represent an interesting opportunity. Conversely, the reproductive function of a given cow depends on the interaction between her genetic background and her environment, which ultimately modulates gene expression. Among the mechanisms modulating gene expression, microRNAs (miRNAs) and epigenetics seem to be most relevant. Several miRNAs have been described to play active roles in both ovarian and testicular function, and epigenetic effects have been described as a consequence of the nutrient supply and hormonal signals to which the offspring was exposed at specific stages during development. For example, there are differences in the epigenome of cows born to heifers and those born to cows, and this epigenome seems to be sensitive to the availability of methyl donor compounds of the dam. Lastly, recent studies in other species have shown the relevance of paternal epigenetic marks, but this aspect has been, until now, largely overlooked in dairy cattle.
Collapse
|
40
|
Roura M, Catalá MG, Soto-Heras S, Hammami S, Izquierdo D, Fouladi-Nashta A, Paramio MT. Linoleic (LA) and linolenic (ALA) acid concentrations in follicular fluid of prepubertal goats and their effect on oocyte in vitro maturation and embryo development. Reprod Fertil Dev 2018; 30:286-296. [PMID: 28679464 DOI: 10.1071/rd17174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
In this study we assessed the concentration of linoleic acid (LA) and linolenic acid (ALA) in follicular fluid of prepubertal goats according to follicle size (<3mm or ≥3mm) by gas chromatography and tested the addition of different LA and ALA (LA:ALA) concentration ratios (50:50, 100:50 and 200:50µM) to the IVM medium on embryo development, mitochondrial activity, ATP concentration and relative gene expression (RPL19, ribosomal protein L19; SLC2A1, facilitated glucose transporter 1; ATF4, activating transcription factor 4; GPX1, glutathione peroxidase 1; HSPA5, heat-shock protein family A 70 kDa; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DNMT1, DNA methyltransferase 1; GCLC, glutamate-cysteine ligase catalytic subunit; SOD1, superoxide dismutase 1). Oocytes were in vitro matured, fertilised or parthenogenetically activated and zygotes were cultured following conventional protocols. LA concentration ranged from 247 to 319µM and ALA concentration from 8.39 to 41.19µM without any effect of follicle size. Blastocyst production from the different groups was: control FCS (22.33%) and BSA (19.63%), treatments 50:50 (22.58%), 100:50 (21.01%) and 200:50 (9.60%). Oocytes from the 200:50 group presented higher polyspermy and mitochondrial activity compared with controls and the rest of the treatment groups. No differences were observed in ATP concentration or relative expression of the genes measured between treatment groups. In conclusion, the low number of blastocysts obtained in the 200:50 group was caused by a high number of polyspermic zygotes, which could suggest that high LA concentration impairs oocyte membranes.
Collapse
Affiliation(s)
- Montserrat Roura
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - María G Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Sondes Hammami
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Ali Fouladi-Nashta
- Reproduction Genes and Development Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane Hatfield, Herts AL97TA, UK
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| |
Collapse
|
41
|
Zarezadeh R, Mehdizadeh A, Leroy JLMR, Nouri M, Fayezi S, Darabi M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J Cell Physiol 2018; 234:1016-1029. [PMID: 30073662 DOI: 10.1002/jcp.27101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Infertility is a growing problem worldwide. Currently, in vitro fertilization (IVF) is widely performed to treat infertility. However, a high percentage of IVF cycles fails, due to the poor developmental potential of the retrieved oocyte to generate viable embryos. Fatty acid content of the follicular microenvironment can affect oocyte maturation and the subsequent developmental competence. Saturated and monounsaturated fatty acids are mainly used by follicle components as primary energy sources whereas polyunsaturated fatty acids (PUFAs) play a wide range of roles. A large body of evidence supports the beneficial effects of n-3 PUFAs in prevention, treatment, and amelioration of some pathophysiological conditions including heart diseases, cancer, diabetes, and psychological disorders. Nevertheless, current findings regarding the effects of n-3 PUFAs on reproductive outcomes in general and on oocyte quality more specifically are inconsistent. This review attempts to provide a comprehensive overview of potential molecular mechanisms by which n-3 PUFAs affect oocyte maturation and developmental competence, particularly in the setting of IVF and thereby aims to elucidate the reasons behind current discrepancies around this topic.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Université de Nice Sophia Antipolis, Inserm U1091 - CNRS U7277, Nice 06034, France
| | - Masoud Darabi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Leão BCS, Rocha-Frigoni NAS, Nogueira É, Cabral EC, Ferreira CR, Eberlin MN, Accorsi MF, Neves TV, Mingoti GZ. Membrane lipid profile of in vitro-produced embryos is affected by vitrification but not by long-term dietary supplementation of polyunsaturated fatty acids for oocyte donor beef heifers. Reprod Fertil Dev 2018; 29:1217-1230. [PMID: 27220988 DOI: 10.1071/rd15414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
Dietary rumen-protected polyunsaturated fatty acids (PUFAs) rich in linoleic acid (LA) may affect embryo yield, and LA can modulate the molecular mechanisms of lipid uptake in bovine blastocysts produced in vitro. In embryos, membrane lipids, such as phosphatidylcholines (PCs) and sphingomyelins (SMs), affect cryopreservation success. The aim of the present study was to evaluate embryonic developmental rates after the IVF of oocytes retrieved from Nellore heifers fed for approximately 90 days with rumen-protected PUFAs rich in LA. In addition, we evaluated embryo cryotolerance and the membrane structure lipid composition using matrix-assisted laser desorption ionisation mass spectrometry of fresh and vitrified embryos. Embryo development to the blastocyst stage (mean 43.2%) and embryo survival after vitrification and warming (mean 79.3%) were unaffected by diet. The relative abundance of one lipid species (PC ether (PCe; 38:2, which means that this lipid has 38 carbon atoms and 2 double bonds in the fatty acyl residues) was increased after PUFAs supplementation. However, 10 ions were affected by cryopreservation; ions consistent with PC 32:0, PC 34:1, SM 24:1, PC 40:6 or PC 42:9, PC plasmalogen (PCp) 44:10 or PC 42:7, triacylglycerol (TAG) 54:9 and a not assigned ion (m/z 833.2) were lower in blastocysts that survived to the cryopreservation process compared with fresh blastocysts, whereas the abundance of the ions PC 36:3 or PC 34:0, PCe 38:2 or PC 36:6 and PC 36:5 or PCe 38:1 were increased after cryopreservation. Thus, the results demonstrate that the mass spectrometry profiles of PC, SM and TAG species differ significantly in bovine blastocysts upon cryopreservation. Because the lipid ion abundances of fresh and vitrified-warmed embryos were distinct, they can be used as potential markers of post-cryopreservation embryonic survival.
Collapse
Affiliation(s)
- Beatriz C S Leão
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, Rua Clóvis Pestana 793, 16050-680, Araçatuba, SP, Brazil
| | - Nathália A S Rocha-Frigoni
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, Rua Clóvis Pestana 793, 16050-680, Araçatuba, SP, Brazil
| | - Ériklis Nogueira
- Embrapa Pantanal, Rua 21 de Setembro 1880, 79320-900, Corumbá, MS, Brazil
| | - Elaine C Cabral
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083-970, Distrito de Barão Geraldo, Campinas, SP, Brazil
| | - Christina R Ferreira
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083-970, Distrito de Barão Geraldo, Campinas, SP, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083-970, Distrito de Barão Geraldo, Campinas, SP, Brazil
| | - Mônica F Accorsi
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, Rua Clóvis Pestana 793, 16050-680, Araçatuba, SP, Brazil
| | - Thiago V Neves
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, Rua Clóvis Pestana 793, 16050-680, Araçatuba, SP, Brazil
| | - Gisele Z Mingoti
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, Rua Clóvis Pestana 793, 16050-680, Araçatuba, SP, Brazil
| |
Collapse
|
43
|
Abdel-Halim B. Protective effect of Chitosan nanoparticles against the inhibitory effect of linoleic acid supplementation on maturation and developmental competence of bovine oocytes. Theriogenology 2018; 114:143-148. [DOI: 10.1016/j.theriogenology.2018.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
44
|
Uhde K, van Tol HTA, Stout TAE, Roelen BAJ. Metabolomic profiles of bovine cumulus cells and cumulus-oocyte-complex-conditioned medium during maturation in vitro. Sci Rep 2018; 8:9477. [PMID: 29930262 PMCID: PMC6013446 DOI: 10.1038/s41598-018-27829-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Cumulus cells are essential for nutrition of oocytes during maturation. In the absence of cumulus cells during maturation, oocyte developmental competence is severely compromised. In this study, we matured bovine cumulus-oocyte-complexes (COCs) for 8 h, the cumulus cells were removed and denuded oocytes were further matured for 15 h in either the medium conditioned by the initial 8 h culture, or in fresh unconditioned medium. Denuded oocytes that completed maturation in COC-conditioned medium demonstrated better developmental potential than denuded oocytes that completed maturation in standard maturation medium. An inventory was made of the metabolites secreted by COCs into the maturation medium during the first 8 h, from 8 to 23 h, and during an entire 23 h maturation protocol; the metabolomic changes in the cumulus cells during maturation were also investigated. In maturation medium, 173 biochemical components were detected compared to 369 different metabolites in cumulus cells. Significant changes in metabolomic components were evident in maturation medium and in cumulus cells during maturation, with most of the changes related to amino acid, carbohydrate, and lipid metabolism. The importance of two detected biochemicals, creatine and carnitine, for oocyte maturation was further investigated. The presence of carnitine, but not creatine during oocyte in vitro maturation improved the developmental competence of denuded oocytes.
Collapse
Affiliation(s)
- Karen Uhde
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T A van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Yan L, Zhao C, Zhang J, Qiu L, Chen Z. Transcriptomic analyses of gastrointestinal function in the "dwarf" and "medium" forms of Sthenoteuthis oualaniensis during sexual maturation. PLoS One 2018; 13:e0199053. [PMID: 29897993 PMCID: PMC5999225 DOI: 10.1371/journal.pone.0199053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Sthenoteuthis oualaniensis (SA) is an important squid species in the South China Sea. Based on SA samples collected in 2016, SA was divided into the “dwarf” form (DF) and “medium” form (MF). To understand the changes in gastrointestinal function in SA during sexual maturation, we undertook transcriptomic analyses of the stomach and intestine tissues of the mature and immature DF and MF of SA using the deep-sequencing platform Illumina HiSeq™. We exploited a high-throughput method to delineate differentially expressed genes (DEGs) in the DF and MF of SA. A total of 135464 unigenes (68627 unigenes of the DG and 66837 unigenes of the MF) were generated. We identified 7965 and 4051 relative DEGs in the intestine and stomach tissues of the mature DF of SA compared with those of the immature DF of SA; and 22138 and 18460 DEGs in the intestine and stomach of the mature MF of SA compared with those of the immature MF of SA. Gastrointestinal function related to the metabolism of lipids, amino acids, glucose, and energy were changed in SA during sexual maturation. This work is the first to identify a set of genes associated with gastrointestinal function during sexual maturation in SA.
Collapse
Affiliation(s)
- Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Jun Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, Guangzhou, P. R. China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, P. R. China
| | - Zuozhi Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
46
|
Maillard V, Desmarchais A, Durcin M, Uzbekova S, Elis S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod Biol Endocrinol 2018; 16:40. [PMID: 29699561 PMCID: PMC5918968 DOI: 10.1186/s12958-018-0357-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.
Collapse
Affiliation(s)
- Virginie Maillard
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
- 0000 0004 0385 4036grid.464126.3INRA Centre Val de Loire, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alice Desmarchais
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Maeva Durcin
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Sebastien Elis
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
47
|
Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod 2018; 96:1181-1196. [PMID: 28520897 DOI: 10.1093/biolre/iox046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022] Open
Abstract
Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 μM), PSO (425 μM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Jessie De Bie
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
48
|
Forde N, O'Gorman A, Whelan H, Duffy P, O'Hara L, Kelly AK, Havlicek V, Besenfelder U, Brennan L, Lonergan P. Lactation-induced changes in metabolic status and follicular-fluid metabolomic profile in postpartum dairy cows. Reprod Fertil Dev 2018; 28:1882-1892. [PMID: 26072962 DOI: 10.1071/rd14348] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The aim was to investigate the effect of lactation on the composition of pre-ovulatory follicular fluid (FF). Forty in-calf primiparous heifers and 20 maiden heifers were enrolled. Immediately after calving, half of the cows were dried off while the remainder were milked twice daily. Serum samples were collected twice weekly from two weeks pre- to 84 days postpartum (dpp). FF was analysed by gas chromatography-mass spectrometry. Serum concentrations of non-esterified fatty acids and β-hydroxybutyrate were higher, while glucose, insulin and Insulin-like growth factor 1 (IGF1) concentrations were lower in lactating cows compared with non-lactating cows and heifers (P<0.01). Principal component analysis of FF metabolites revealed a clear separation of the lactating group from both non-lactating cows and heifers. The amino acids tyrosine, phenylalanine and valine and fatty acids heneicosanoic acid and docosahexaenoic acid were all lower in FF from lactating compared with dry cows (P<0.05). FF from lactating cows was higher in aminoadipic acid, α-aminobutyric acid, glycine and serine while histidine, leucine, lysine, methionine and ornithine were all lower than in dry cows and heifers (P<0.05). The ratio of n6:n3 was higher in lactating cows compared with both non-lactating cows and heifers, whereas total n3 polyunsaturated fatty acids, pentadecanoic, linolenic, elaidic and arachidonic acids were all lower in the FF of lactating cows than both non-lactating cows and heifers (P<0.05). In conclusion, lactation induces distinct changes in the overall metabolic status of postpartum lactating dairy cows which are associated with divergent metabolite profiles in FF.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife O'Gorman
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helena Whelan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Duffy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lydia O'Hara
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vitezslav Havlicek
- Reproduction Centre - Wieselburg, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Austria
| | - Urban Besenfelder
- Reproduction Centre - Wieselburg, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Austria
| | - Lorraine Brennan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
49
|
Akar Y, Ahmad N, Khalıd M. The effect of cadmium on the bovine in vitro oocyte maturation and early embryo development. Int J Vet Sci Med 2018; 6:S73-S77. [PMID: 30761325 PMCID: PMC6161866 DOI: 10.1016/j.ijvsm.2018.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 01/27/2023] Open
Abstract
Common pollutants such as heavy metals and cadmium is among those with high environmental concerns. In vivo studies had shown that cadmium (Cd) causes oocyte degeneration and embryo mortality, and lowers pregnancy rates in mammals. However, there is limited information available about direct effects of Cd on oocyte maturation and/or embryo development. This study was aimed to investigate if Cd has any effect on the oocyte maturation and/or embryo development in vitro. Bovine COCs were collected from the slaughter house and cultured for 24 h in serum-free media only (Controls) or supplemented with 0.2, 2.0 and 20.0 μM CdCl2. At 24 h cumulus cell expansion was assessed in all COCs. COCs were either denuded and stained for determination of nuclear maturation or fertilized for assessment of subsequent embryo development. Cd at the lowest concentration (0.2 μM) did not affect any of the parameters studied. However, at higher concentrations (2.0 and 20.0 μM) it significantly (P < 0.05) reduced the percentage of fully-expanded COCs and significantly (P < 0.05) increased the percentage of partially and/or non-expanded COCs compared to controls and 0.2 μM. Cadmium at higher concentrations (2.0 and 20.0 μM) also significantly (P < 0.01) reduced the percentage of oocytes reaching metaphase II stage compared to controls and 0.2 μM. Post-fertilization cleavage rate in presumptive zygotes and blastocyst development significantly (P < 0.05) reduced 0.2, 2.0 and 20.0 μM CdCl2 compared to the controls (0.0 μM). In conclusion, these results suggest that Cd had direct detrimental effects on the bovine oocyte maturation and its developmental competence.
Collapse
Affiliation(s)
- Yaşar Akar
- Deparment of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Erciyes, Talas, Kayseri, Turkey
| | - Naveed Ahmad
- Deparment of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Muhammad Khalıd
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, London, UK
| |
Collapse
|
50
|
Park H, Park J, Kim J, Yang S, Jung J, Kim M, Kang M, Cho YH, Wee G, Yang H, Song B, Kim S, Koo D. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J Pineal Res 2018; 64:e12458. [PMID: 29149522 PMCID: PMC5814851 DOI: 10.1111/jpi.12458] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/30/2017] [Indexed: 01/10/2023]
Abstract
Under endoplasmic reticulum (ER)-stress conditions, the unfolded protein response (UPR) generates a defense mechanism in mammalian cells. The regulation of UPR signaling is important in oocyte maturation, embryo development, and female reproduction of pigs. Recent studies have shown that melatonin plays an important role as an antioxidant to improve pig oocyte maturation. However, there is no report on the role of melatonin in the regulation of UPR signaling and ER-stress during in vitro maturation (IVM) of porcine oocytes. Therefore, the objective of this study was to investigate the antioxidative effects of melatonin on porcine oocyte maturation through the regulation of ER-stress and UPR signaling. We investigated the changes in the mRNA/protein expression levels of three UPR signal genes (Bip/Grp78, ATF4, P90/50ATF6, sXbp1, and CHOP) on oocytes, cumulus cells, and cumulus-oocyte complexes (COCs) during IVM (metaphase I; 22 hours and metaphase II; 44 hours) by Western blot and reverse transcription-polymerase chain reaction analysis. Treatment with the ER-stress inducer, tunicamycin (Tm), significantly increased expression of UPR markers. Additionally, cumulus cell expansion and meiotic maturation of oocytes were reduced in COCs of Tm-treated groups (1, 5, and 10 μg/mL). We confirmed the reducing effects of melatonin (0.1 μmol/L) on ER-stress after pretreatment with Tm (5 μg/mL; 22 hours) in maturing COCs. Addition of melatonin (0.1 μmol/L) to Tm-pretreated COCs recovered meiotic maturation rates and expression of most UPR markers. In conclusion, we confirmed a role for melatonin in the modulation of UPR signal pathways and reducing ER-stress during IVM of porcine oocytes.
Collapse
Affiliation(s)
- Hyo‐Jin Park
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Jae‐Young Park
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
- Saewha HospitalDongnaeBusanKorea
| | - Jin‐Woo Kim
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Seul‐Gi Yang
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Jae‐Min Jung
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Min‐Ji Kim
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Man‐Jong Kang
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Young Ho Cho
- Department of Pharmaceutics & BiotechnologyCollege of Medical EngineeringKonyang UniversityDaejeonKorea
| | - Gabbine Wee
- Laboratory Animal CenterDaegu‐Gyeongbuk Medical Innovation Foundation (DGMIF)DaeguKorea
| | - Hee‐Young Yang
- Laboratory Animal CenterDaegu‐Gyeongbuk Medical Innovation Foundation (DGMIF)DaeguKorea
| | - Bong‐Seok Song
- National Primate Research Center & Futuristic Animal Resource and Research CenterKorea Research Institute of Bioscience and BiotechnologyOchangChungbukKorea
| | - Sun‐Uk Kim
- National Primate Research Center & Futuristic Animal Resource and Research CenterKorea Research Institute of Bioscience and BiotechnologyOchangChungbukKorea
| | - Deog‐Bon Koo
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| |
Collapse
|