1
|
Blokhin V, Zavarykina T, Kotsuba V, Kapralova M, Gutner U, Shupik M, Kozyrko E, Luzina E, Lomskova P, Bajgazieva D, Khokhlova S, Alessenko A. The Role of Sphingolipid Metabolism in Pregnancy-Associated Breast Cancer After Chemotherapy. Biomedicines 2024; 12:2843. [PMID: 39767749 PMCID: PMC11673991 DOI: 10.3390/biomedicines12122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The aim of our study was to determine the role of sphingolipids, which control proliferation and apoptosis, in the placenta of pregnant women with pregnancy-associated breast cancer (PABC) after chemotherapy compared with healthy patients. METHODS We analyzed (by the PCR method) the gene expression of key sphingolipid metabolism enzymes (sphingomyelinases (SMPD1 and SMPD3), acid ceramidase (ASAH1), ceramide synthases (CERS 1-6), sphingosine kinase1 (SPHK1), sphingosine-1-phosphate lyase 1 (SGPL1), and sphingosine-1-phosphate receptors (S1PR1, S1PR2, and S1PR3)) and the content of subspecies of ceramides, sphingosine, and sphingosine-1-phosphate in seven patients with PABC after chemotherapy and eight healthy pregnant women as a control group. RESULTS We found a significant increase in the expression of genes of acid ceramidase (ASAH1), sphingosine-1-phosphate lyase 1 (SGPL1), sphingosine kinase (SPHK1), and ceramide synthases (CERS 1-3, 5, 6) in the samples of patients with PABC during their treatment with cytostatic chemotherapy. The increase in the expression of the enzymes' genes was not accompanied by changes in the content of the studied sphingolipids. Such significant changes in the expression of genes controlling the level of CER, sphingosine, and S1P may indicate their ability to initiate the metabolism of pro-apoptotic and anti-apoptotic sphingolipids in the placenta of pregnant women with cancer undergoing chemotherapy in order to maintain levels typical of the placenta of healthy women. CONCLUSIONS Our results may indicate the promising mechanism of placenta protection during chemotherapy for pregnant women with breast cancer and, consequently, of the newborn. This protective effect of the placenta and especially for the newborn has been discovered for the first time and requires more careful study.
Collapse
Affiliation(s)
- Victor Blokhin
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Tatiana Zavarykina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia; (T.Z.); (M.K.); (U.G.); (M.S.); (P.L.)
- B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Moscow 117997, Russia; (E.K.); (E.L.); (D.B.); (S.K.)
| | - Vasily Kotsuba
- Federal Research Center “Fundamentals of Biotechnology” Russian Academy of Sciences, Moscow 119334, Russia;
- Department of Theoretical and Applied Chemistry, Federal State University of Education, Moscow 105005, Russia
| | - Maria Kapralova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia; (T.Z.); (M.K.); (U.G.); (M.S.); (P.L.)
| | - Uliana Gutner
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia; (T.Z.); (M.K.); (U.G.); (M.S.); (P.L.)
| | - Maria Shupik
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia; (T.Z.); (M.K.); (U.G.); (M.S.); (P.L.)
| | - Elena Kozyrko
- B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Moscow 117997, Russia; (E.K.); (E.L.); (D.B.); (S.K.)
| | - Evgenia Luzina
- B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Moscow 117997, Russia; (E.K.); (E.L.); (D.B.); (S.K.)
| | - Polina Lomskova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia; (T.Z.); (M.K.); (U.G.); (M.S.); (P.L.)
| | - Darya Bajgazieva
- B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Moscow 117997, Russia; (E.K.); (E.L.); (D.B.); (S.K.)
| | - Svetlana Khokhlova
- B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Moscow 117997, Russia; (E.K.); (E.L.); (D.B.); (S.K.)
| | - Alice Alessenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia; (T.Z.); (M.K.); (U.G.); (M.S.); (P.L.)
| |
Collapse
|
2
|
Lyssy F, Guettler J, Brugger BA, Stern C, Forstner D, Nonn O, Fischer C, Herse F, Wernitznig S, Hirschmugl B, Wadsack C, Gauster M. Platelet-derived factors dysregulate placental sphingosine-1-phosphate receptor 2 in human trophoblasts. Reprod Biomed Online 2023; 47:103215. [PMID: 37301709 DOI: 10.1016/j.rbmo.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/12/2023]
Abstract
RESEARCH QUESTION Sphingosine-1-phosphate (S1P) is an essential and bioactive sphingolipid with various functions, which acts through five different G-protein-coupled receptors (S1PR1-5). What is the localization of S1PR1-S1PR3 in the human placenta and what is the effect of different flow rates, various oxygen concentrations and platelet-derived factors on the expression profile of S1PR in trophoblasts? DESIGN Expression dynamics of placental S1PR1-S1PR3 were determined in human first trimester (n = 10), pre-term (n = 9) and term (n = 10) cases. Furthermore, the study investigated the expression of these receptors in different primary cell types isolated from human placenta, verified the findings with publicly available single-cell RNA-Seq data from first trimester and immunostaining of human first trimester and term placentas. The study also tested whether the placental S1PR subtypes are dysregulated in differentiated BeWo cells under different flow rates, different oxygen concentrations or in the presence of platelet-derived factors. RESULTS Quantitative polymerase chain reaction revealed that S1PR2 is the predominant placental S1PR in the first trimester and reduces towards term (P < 0.0001). S1PR1 and S1PR3 increased from first trimester towards term (P < 0.0001). S1PR1 was localized in endothelial cells, whereas S1PR2 and S1PR3 were predominantly found in villous trophoblasts. Furthermore, S1PR2 was found to be significantly down-regulated in BeWo cells when co-incubated with platelet-derived factors (P = 0.0055). CONCLUSION This study suggests that the placental S1PR repertoire is differentially expressed across gestation. S1PR2 expression in villous trophoblasts is negatively influenced by platelet-derived factors, which could contribute to down-regulation of placental S1PR2 over time of gestation as platelet presence and activation in the intervillous space increases from the middle of the first trimester onwards.
Collapse
Affiliation(s)
- Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| | - Beatrice A Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Christina Stern
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cornelius Fischer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Florian Herse
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| |
Collapse
|
3
|
Meng X, Chen C, Qian J, Cui L, Wang S. Energy metabolism and maternal-fetal tolerance working in decidualization. Front Immunol 2023; 14:1203719. [PMID: 37404833 PMCID: PMC10315848 DOI: 10.3389/fimmu.2023.1203719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
One pivotal aspect of early pregnancy is decidualization. The decidualization process includes two components: the differentiation of endometrial stromal cells to decidual stromal cells (DSCs), as well as the recruitment and education of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells undergo morphological and phenotypic changes and interact with trophoblasts and DICs to provide an appropriate decidual bed and tolerogenic immune environment to maintain the survival of the semi-allogeneic fetus without causing immunological rejection. Despite classic endocrine mechanism by 17 β-estradiol and progesterone, metabolic regulations do take part in this process according to recent studies. And based on our previous research in maternal-fetal crosstalk, in this review, we elaborate mechanisms of decidualization, with a special focus on DSC profiles from aspects of metabolism and maternal-fetal tolerance to provide some new insights into endometrial decidualization in early pregnancy.
Collapse
Affiliation(s)
| | | | | | - Liyuan Cui
- *Correspondence: Songcun Wang, ; Liyuan Cui,
| | | |
Collapse
|
4
|
Zhang T, Shen HH, Qin XY, Li MQ. The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss. Immunol Rev 2022; 308:168-186. [PMID: 35582842 DOI: 10.1111/imr.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Maternal tolerance to semi- or fully allograft conceptus is a prerequisite for the maintenance of pregnancy. Once this homeostasis is disrupted, it may result in pregnancy loss. As a potential approach to prevent pregnancy loss, targeting decidual immune cells (DICs) at the maternal-fetal interface has been suggested. Although the phenotypic features and functions of DIC have been extensively profiled, the regulatory pathways for this unique immunological adaption have yet to be elucidated. In recent years, a pivotal mechanism has been highlighted in the area of immunometabolism, by which the changes in intracellular metabolic pathways in DIC and interaction with the adjacent metabolites in the microenvironment can alter their phenotypes and function. More inspiringly, the manipulation of metabolic profiling in DIC provides a novel avenue for the prevention and treatment of pregnancy loss. Herein, this review highlights the major metabolic programs (specifically, glycolysis, ATP-adenosine metabolism, lysophosphatidic acid metabolism, and amino acid metabolism) in multiple immune cells (including decidual NK cells, macrophages, and T cells) and their integrations with the metabolic microenvironment in normal pregnancy. Importantly, this perspective may help to provide a potential therapeutic strategy for reducing pregnancy loss via targeting this interplay.
Collapse
Affiliation(s)
- Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Medical School, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Fakhr Y, Koshti S, Habibyan YB, Webster K, Hemmings DG. Tumor Necrosis Factor-α Induces a Preeclamptic-like Phenotype in Placental Villi via Sphingosine Kinase 1 Activation. Int J Mol Sci 2022; 23:ijms23073750. [PMID: 35409108 PMCID: PMC8998215 DOI: 10.3390/ijms23073750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluorescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence, SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage, shedding, and specific cytokine release.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Saloni Koshti
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Yasaman Bahojb Habibyan
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kirsten Webster
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Denise G. Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-2098
| |
Collapse
|
6
|
Insight on Polyunsaturated Fatty Acids in Endometrial Receptivity. Biomolecules 2021; 12:biom12010036. [PMID: 35053184 PMCID: PMC8773570 DOI: 10.3390/biom12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Endometrial receptivity plays a crucial role in fertilization as well as pregnancy outcome in patients faced with fertility challenges. The optimization of endometrial receptivity may help with normal implantation of the embryo, and endometrial receptivity may be affected by numerous factors. Recently, the role of lipids in pregnancy has been increasingly recognized. Fatty acids and their metabolites may be involved in all stages of pregnancy and play a role in supporting cell proliferation and development, participating in cell signaling and regulating cell function. Polyunsaturated fatty acids, in particular, are essential fatty acids for the human body that can affect the receptivity of the endometrium through in a variety of methods, such as producing prostaglandins, estrogen and progesterone, among others. Additionally, polyunsaturated fatty acids are also involved in immunity and the regulation of endometrial decidualization. Fatty acids are essential for fetal placental growth and development. The interrelationship of polyunsaturated fatty acids with these substances and how they may affect endometrial receptivity will be reviewed in this article.
Collapse
|
7
|
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy. Cell Signal 2021; 85:110041. [PMID: 33991614 DOI: 10.1016/j.cellsig.2021.110041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Signaling by the bioactive sphingolipid, sphingosine 1-phosphate (S1P), and its precursors are emerging areas in pregnancy research. S1P and ceramide levels increase towards end of gestation, suggesting a physiological role in parturition. However, high levels of circulating S1P and ceramide are correlated with pregnancy disorders such as preeclampsia, gestational diabetes mellitus and intrauterine growth restriction. Expression of placental and decidual enzymes that metabolize S1P and S1P receptors are also dysregulated during pregnancy complications. In this review, we provide an in-depth examination of the signaling mechanism of S1P and ceramide in various reproductive tissues during gestation. These factors determine implantation and early pregnancy success by modulating corpus luteum function from progesterone production to luteolysis through to apoptosis. We also highlight the role of S1P through receptor signaling in inducing decidualization and angiogenesis in the decidua, as well as regulating extravillous trophoblast migration to anchor the placenta into the uterine wall. Recent advances on the role of the S1P:ceramide rheostat in controlling the fate of villous trophoblasts and the role of S1P as a negative regulator of trophoblast syncytialization to a multinucleated placental barrier are discussed. This review also explores the role of S1P in anti-inflammatory and pro-inflammatory signaling, its role as a vasoconstrictor, and the effects of S1P metabolizing enzymes and receptors in pregnancy.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - David N Brindley
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
8
|
Vishwakarma S, Agarwal R, Goel SK, Panday RK, Singh R, Sukumaran R, Khare S, Kumar A. Altered Expression of Sphingosine-1-Phosphate Metabolizing Enzymes in Oral Cancer Correlate With Clinicopathological Attributes. Cancer Invest 2017; 35:139-141. [PMID: 28135860 DOI: 10.1080/07357907.2016.1272695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have determined the gene expression of sphingosine-1-phosphate (S1P) metabolizing enzymes (SphK1, SphK2, SGPL1, SGPP1, SGPP2, PPAP2A, PPAP2B, and PPAP2C) by quantitative real-time polymerase chain reaction in tumor tissues and adjacent normal tissues of 50 oral squamous cell carcinoma (OSCC) patients. Expression of SphK1 and SGPP1 genes was up-regulated significantly in 70% and 75% OSCC tumors respectively. Importantly, expression of SphK2 and PPAP2B was down-regulated in the tumor tissues of 70% OSCC patients. Expression of SphK2 and PPAP2B negatively correlated with tumor-node-metastasis (TNM) staging and tumor volume respectively. Furthermore, LPP1 is an independent predictor of TNM staging and lymph node ratio.
Collapse
Affiliation(s)
- Supriya Vishwakarma
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , Saket Nagar, Bhopal , India
| | - Rahul Agarwal
- b Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC) , Idgah Hills, Bhopal , India
| | - Sudhir K Goel
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , Saket Nagar, Bhopal , India
| | | | - Renu Singh
- b Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC) , Idgah Hills, Bhopal , India
| | - Ravi Sukumaran
- b Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC) , Idgah Hills, Bhopal , India
| | - Sarita Khare
- d Shaheed Bhagat Singh Govt. Degree College, Ashtha, Barkatullah University , Bhopal , India
| | - Ashok Kumar
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , Saket Nagar, Bhopal , India
| |
Collapse
|
9
|
Yang W, Li Q, Pan Z. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. PLoS One 2014; 9:e106725. [PMID: 25188412 PMCID: PMC4154763 DOI: 10.1371/journal.pone.0106725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022] Open
Abstract
Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.
Collapse
Affiliation(s)
- Weiwei Yang
- Pharmacy and Biological Science School, Weifang Medical University, Weifang, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, China
| | - Zhifang Pan
- Pharmacy and Biological Science School, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Lima PDA, Zhang J, Dunk C, Lye SJ, Croy BA. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol 2014; 11:522-37. [PMID: 25066422 DOI: 10.1038/cmi.2014.63] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed.
Collapse
Affiliation(s)
- Patricia D A Lima
- Ottawa Hospital Research Institute, The Ottawa Hospital General Campus, Critical Care Wing, Ottawa, ON, Canada
| | - Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Stephen J Lye
- 1] Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Physiology and University of Toronto, Toronto, ON, Canada [3] Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
11
|
Brunnert D, Sztachelska M, Bornkessel F, Treder N, Wolczynski S, Goyal P, Zygmunt M. Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells. Mol Hum Reprod 2014; 20:1016-25. [DOI: 10.1093/molehr/gau051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Nagamatsu T, Iwasawa-Kawai Y, Ichikawa M, Kawana K, Yamashita T, Osuga Y, Fujii T, Schust DJ. Emerging roles for lysophospholipid mediators in pregnancy. Am J Reprod Immunol 2014; 72:182-91. [PMID: 24689547 DOI: 10.1111/aji.12239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
Abstract
Recent progress in lipid research has unveiled new biologic roles for lysophospholipids as mediators of intercellular signaling. Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are representative lysophospholipids. Accumulating evidence suggests that, acting as intercellular mediators, these and other lysophospholipids may play important roles in physiological and pathological situations. This review discusses the possible involvement of LPA and S1P in reproductive processes, with a focus on the regulatory mechanisms of pregnancy maintenance. As LPA promotes prostaglandin synthesis, mediators in the LPA pathway may also play a significant role in implantation and parturition. S1P signaling is thought to be essential in vascular formation within the uteroplacental unit and in fetomaternal immunologic interactions. Derangements in either one of these lysophospholipid signaling pathways could result in pregnancy complications that may include implantation failure, preeclampsia, and preterm labor.
Collapse
Affiliation(s)
- Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang J, Dunk CE, Lye SJ. Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. Hum Reprod 2013; 28:3026-37. [PMID: 24001716 DOI: 10.1093/humrep/det339] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is sphingosine-1-phosphate (S1P) signalling involved in the regulation of the angiogenic function of decidual (d)NK cells during human pregnancy? SUMMARY ANSWER Human dNK cells, characterized by S1P receptor 5 (S1PR5) expression, are reactive to microenvironmental S1P to modify their VEGF expression and to regulate trophoblast migration and endothelial angiogenesis. WHAT IS KNOWN ALREADY S1P signalling can modulate peripheral (p)NK cells migration and function. As a unique NK population, human dNK can produce multiple cytokines and angiogenic growth factors to mediate extravillous trophoblast (EVT) invasion and spiral artery remodelling during pregnancy. STUDY DESIGN, SIZE, DURATION The study was designed to examine S1PR expression and function by freshly isolated human dNK cells in response to different S1P scenarios, created by FTY720, an S1P analogue and S1PR modulator. Ex vivo and in vitro experiments were performed to evaluate the functions of dNK cells. The study was performed between September 2011 and June 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Human peripheral blood and decidual samples were collected and the S1PR expression by the decidual leukocytes population was examined. FTY720-induced dNK phenotypic and functional changes (including VEGF and IL-8 expression) were evaluated by multi-colour flow cytometric assays and transwell migration studies. Human placental explant culture and wound healing assays were performed to investigate whether S1P-activated dNK mediated trophoblast migration while angiogenesis was assessed by human umbilical vein endothelial cells (HUVEC) tube formation assays. Both first and second trimester dNK cells were studied to compare the difference in S1PR expression over time at the fetal-maternal interface. MAIN RESULTS AND THE ROLE OF CHANCE Freshly isolated NK cells (CD45(+)CD56(+)CD16(-)) from blood (pNK) and decidua (dNK) had low S1PR1 reactivity while S1PR5 was prominently expressed by dNK (40%) and, to a lesser extent, by pNK (18%; P < 0.05) cells. S1PR5 expression by dNK was significantly down-regulated by FTY720 treatment, which also impaired decidual leukocyte mobility and cellular contact with invasive EVT. FTY720 significantly reduced VEGF expression by dNK, both in the numbers of VEGF(+) cells and in fluorescence intensity (P < 0.05). IL-8 expression by dNK was not changed by FTY720 and remained low at 8% positivity. Trophoblast migration and HUVEC tube formation were stimulated by control leukocytes, enriched CD56(+) dNK or their conditioned medium, respectively, but this effect was markedly abrogated once they were pretreated with FTY720 (P < 0.05). There was a significant decrease in S1PR5 expression in second trimester dNK cells, compared with those from first trimester (P < 0.05). No significant differences in the levels of angiogenic factors (VEGF or IL-8) were detected between first and second trimester dNK cells. LIMITATIONS, REASONS FOR CAUTION Our ex vivo and in vitro experimental samples were from healthy women undergoing elective pregnancy termination. FTY720 is a chemical ligand for the S1PRs; little is known regarding the levels or actions of the naturally occurring ligand S1P in human gestational tissues. The in vivo function of S1PR5(+) dNK may be further investigated by using a genetically modified animal model. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to investigate the role of S1PR and S1P interaction on dNK cell physiology and their downstream effects on trophoblast migration. We suggest that S1PR5 may represent a potential target for cellular targeted treatments for gestational diseases such as pre-eclampsia and intrauterine growth restriction that are characterized by inadequate dNK/trophoblast-coordinated uterine spiral artery transformation. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Canadian Institutes of Health Research (CIHR), MOP82811 to Dr S.J.L.
Collapse
Affiliation(s)
- Jianhong Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada M5T 3H7
| | | | | |
Collapse
|
14
|
Kotani T, Iwase A, Tsuda H, Mano Y, Yamamoto E, Nakano T, Hasegawa Y, Li H, Sumigama S, Itakura A, Kikkawa F. Altered Expression of Enzymes Regulating the Activity of Endothelin-1 in the Lower Segment of the Human Amnion During Labor1. Biol Reprod 2013; 89:52. [DOI: 10.1095/biolreprod.113.108480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
Increased expression of sphingosine kinase in the amnion during labor. Placenta 2013; 34:353-9. [PMID: 23462226 DOI: 10.1016/j.placenta.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Sphingosine-1-phosphate (S1P), a bioactive lipid, has been reported to regulate inflammation processes. The onset of labor is thought to be related to inflammation. We therefore hypothesized that S1P might be involved in the onset of labor. METHODS The expression of sphingosine kinase (SPHK)-1, which produces S1P, and S1P lyase (SPL)-1, which irreversibly inactivates S1P, were examined in the fetal membranes. The expression levels were compared between amnions from cases of elective Caesarean deliveries (pre-labor) and those from vaginal deliveries (post-labor). In primary cultured human amnion cells, the expression levels of prostaglandin-endoperoxide synthase (PTGS)-2 were examined in the presence or absence of S1P treatment. RESULTS SPHK-1 and SPL-1 were both expressed in the amnion. The expression of SPHK-1 in the post-labor amnions increased compared with that in the pre-labor amnions. The expression of PTGS-2, a key regulator of labor, also increased in the post-labor amnion. However, the SPL-1 expression in the pre-labor amnion was not significantly different from that in the post-labor amnion. S1P1-3 and 5, which were coupled with Gi protein, were consistently found in the amnion cells. The treatment with S1P increased the expression of PTGS-2, and this was completely suppressed by a Gi inhibitor in the amnion cells. DISCUSSION We are herein provide the first evidence of increased SPHK-1 expression in post-labor amnions, and that S1P increases the PTGS-2 expression in amnion cells. CONCLUSIONS Our results suggest that S1P might play a role in the onset of labor via the induction of PTGS-2.
Collapse
|
16
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
17
|
Newbigging S, Zhang M, Saba JD. Immunohistochemical analysis of sphingosine phosphate lyase expression during murine development. Gene Expr Patterns 2012; 13:21-9. [PMID: 23041657 DOI: 10.1016/j.gep.2012.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
Abstract
Sphingosine-1-phosphate lyase (SPL) catalyzes the degradation of sphingosine-1-phosphate (S1P), a bioactive lipid that controls cell proliferation, migration and survival. Mice lacking SPL expression exhibit developmental abnormalities, runting and death during the perinatal period, suggesting that SPL plays a role in mammalian development and adaptation to extrauterine life. We investigated the pattern of SPL expression in the mouse embryo and placenta from day 8 to day 18. Our findings reveal that SPL is expressed in the developing brain and neural tube, Rathke's pouch, first brachial arch, third brachial arch, optic stalk, midgut loops, and lung buds. Diffuse signal was high at E12, whereas a recognizable adult SPL pattern was evident by E15 and more intensely at E18, with strong expression in skin, nasal epithelium, intestinal epithelium, cartilage, thymus and pituitary gland. These findings suggest SPL may be involved in development of the mammalian central nervous system (CNS), anterior pituitary, trigeminal nerve, palate and facial bones, thymus and other organs. Our findings are consistent with the SPL expression pattern of the adult mouse and with congenital abnormalities observed in SPL mutant mice.
Collapse
Affiliation(s)
- Susan Newbigging
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The Toronto Centre for Phenogenomics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
18
|
Tsiligiannis SE, Zaitseva M, Coombs PR, Shekleton P, Olshansky M, Hickey M, Vollenhoven B, Rogers PAW. Fibroid-associated heavy menstrual bleeding: correlation between clinical features, Doppler ultrasound assessment of vasculature, and tissue gene expression profiles. Reprod Sci 2012; 20:361-70. [PMID: 22995988 DOI: 10.1177/1933719112459233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite the prevalence of uterine fibroids (Fs), few studies have investigated the links between clinical features and the cellular or molecular mechanisms that drive F growth and development. Such knowledge will ultimately help to differentiate symptomatic from asymptomatic Fs and could result in the development of more effective and individualized treatments. The aim of this study was to investigate the relationship between ultrasound appearance, blood flow, and angiogenic gene expression in F, perifibroid (PM), and distant myometrial (DM) tissues. We hypothesized that angiogenic gene expression would be increased in tissues and participants that showed increased blood flow by Doppler ultrasound. The study was performed using Doppler ultrasound to measure blood flow prior to hysterectomy, with subsequent tissue samples from the F, PM, and DM being investigated for angiogenic gene expression. Overall, PM blood flow (measured as peak systolic velocity [PSV]) was higher than F blood flow, although significant heterogeneity was seen in vascularity and blood flow between different Fs and their surrounding myometrium. We did not find any correlation between PSV and any other clinical or molecular parameter in this study. We identified 19 angiogenesis pathway-related genes with significant differences in expression between F and DM, and 2 genes, matrix metalloproteinase 9 (MMP9) and Neuropilin 2 (NRP2), that were significantly different between F and PM. These results are consistent with subtle differences between PM and DM. Understanding the differences between symptomatic versus asymptomatic Fs may eventually lead to more effective treatments that directly target the source of heavy menstrual bleeding.
Collapse
Affiliation(s)
- Sophia E Tsiligiannis
- Department of Obstetrics and Gynaecology, Centre for Women's Health Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Scholl PF, Cole RN, Ruczinski I, Gucek M, Diez R, Rennie A, Nathasingh C, Schulze K, Christian P, Yager JD, Groopman JD, West KP. Maternal serum proteome changes between the first and third trimester of pregnancy in rural southern Nepal. Placenta 2012; 33:424-32. [PMID: 22385826 DOI: 10.1016/j.placenta.2012.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/19/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Characterization of normal changes in the serum proteome during pregnancy may enhance understanding of maternal physiology and lead to the development of new gestational biomarkers. In 23 Nepalese pregnant women who delivered at term, two-dimensional difference in-gel electrophoresis (DIGE) was used to assess changes in relative protein abundance between paired serum samples collected in the first and third trimesters. One-hundred and forty-five of over 700 protein spots in DIGE gels (pI 4.2-6.8) exhibited nominally significant (p < 0.05) differences in abundance across trimesters. Additional filtering using a Bonferroni correction reduced the number of significant (p < 0.00019) spots to 61. Mass spectrometric analysis detected 38 proteins associated with gestational age, cytoskeletal remodeling, blood pressure regulation, lipid and nutrient transport, and inflammation. One new protein, pregnancy-specific β-glycoprotein 4 was detected. A follow-up isotope tagging for relative and absolute quantitation (iTRAQ) experiment of six mothers from the DIGE study revealed 111 proteins, of which 11 exhibited significant (p < 0.05) differences between trimesters. Four of these proteins: gelsolin, complement C1r subcomponent, α-1-acid glycoprotein, and α-1B-glycoprotein also changed in the DIGE analysis. Although not previously associated with normal pregnancy, gelsolin decreased in abundance by the third trimester (p < 0.01) in DIGE, iTRAQ and Western analyses. Changes in abundance of proteins in serum that are associated with syncytiotrophoblasts (gelsolin, pregnancy-specific β-1 glycoprotein 1 and β-2-glycoprotein I) probably reflect dynamics of a placental proteome shed into maternal circulation during pregnancy. Measurement of changes in the maternal serum proteome, when linked with birth outcomes, may yield biomarkers for tracking reproductive health in resource poor settings in future studies.
Collapse
Affiliation(s)
- P F Scholl
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health Sciences, 615 N. Wolfe St., Baltimore, MD 21205-2200, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
21
|
Tanfin Z, Serrano-Sanchez M, Leiber D. ATP-binding cassette ABCC1 is involved in the release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late pregnant rat myometrium. Cell Signal 2011; 23:1997-2004. [PMID: 21803151 DOI: 10.1016/j.cellsig.2011.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 01/08/2023]
Abstract
Sphingosine 1-phosphate (S1P), a bioactive lipid generated by sphingosine kinases (SphK1/2), initiates different signalling pathways involved in physiological and pathological processes. We previously demonstrated that in rat myometrium at late (day 19) gestation, SphK1 increases the expression of COX2 via S1P generation and release. In rat uterine leiomyoma cells (ELT3), SphK1/S1P axis controls survival and proliferation. In the present study we demonstrate that PDBu activates SphK1 but not SphK2. SphK1 activation requires PKC and MAPK ERK1/2. S1P produced by PDBu is released in the medium. PDBu-induced S1P export is abolished by Ro-318220 and BIM (PKC inhibitors), by U0126 and PD98059 (MEK inhibitors), SKI-II (SphKI/2 inhibitor) and SphK1-siRNA, suggesting the involvement of PKC, ERK and SphK1 respectively. The release of S1P is insensitive to inhibitors of ATP Binding Cassette (ABC)A1 and ABCB1 transporters, but is abolished when ABCC1 transporters are inhibited by MK571 or down-regulated by ABCC1-siRNA. PDBu increases COX2 expression that is blocked by the inhibition of PKC, ERK1/2, SphK1, and when cells are treated with MK571 or transfected with ABCC1-siRNA. The induction of COX2 by the S1P release due to PDBu or by exogenous S1P involves S1P2 receptors coupled to Gi. In myometrium from rat at late gestation, the release of S1P is also strongly reduced when SphK and ABCC1 are inhibited. The data reveal that in rat leiomyoma cells and late pregnant rat myometrium, the release of S1P involves a similar signalling pathway and occurs through ABCC1.
Collapse
Affiliation(s)
- Zahra Tanfin
- Signalisation et Régulations Cellulaires, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 8619, Centre National de la Recherche Scientifique,Université Paris-Sud XI, 91405 Orsay, France.
| | | | | |
Collapse
|