1
|
Giaretta E, Damato A, Zennaro L, Bonfatti V, Mislei B, Vigolo V, Falomo ME, Bertuzzo F, Gabai G, Bucci D. Metabolome and oxidative stress markers in the seminal plasma of Holstein bulls and their relationship with the characteristics of fresh and frozen/thawed sperm. Theriogenology 2025; 235:262-274. [PMID: 39889331 DOI: 10.1016/j.theriogenology.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
Seminal plasma composition has important role in sperm functionality and its freezability. The objective of this study was to test the hypothesis that seminal plasma (SP) oxidative status and metabolome are associated with fresh semen characteristics and freezability of bull sperm. To accomplish this objective, oxidative status markers and metabolome of SP of ejaculates obtained from 20 Holstein bulls (3 for each bull) were analyzed using spectrophotometry and nuclear magnetic resonance (1H NMR). The ejaculates were classified into higher motility fresh semen (HMF) and lower motility fresh semen (LMF), according to total motility (TM) and progressive motility (PM) values of fresh semen. Then the ejaculates was cryopreserved and assigned to higher motility thawed group (HMT) or lower motility thawed group (LMT) according to TM and PM at 0 h post-thawing. Multivariate analyses were performed to identify the association between the functional characteristics of fresh and thawed semen and the SP parameters, in terms of the oxidative status and the metabolomic composition. According to our results, the advanced oxidative protein products (AOPP) and thiol concentrations in SP are significantly related to some physiological characteristics of the thawed sperm, such as higher viability, TM, PM and LIN and lower mitochondrial and cytoplasmic superoxide production in viable thawed cells. In contrast, a higher amount of C in the SP was negatively related to TM and PM of thawed semen and was associated with higher mitochondrial and cytoplasmic superoxide production. In addition, partial least squares-discriminant analysis (PLS-DA) performed on the 1H NMR spectra indicated a discrete separation between HMF and LMF groups, and good discrimination between HMT and LMT groups. Higher levels of formic acid, lactate, glycerol and phosphocholine, were found in the SP of the HMF group than in the LMF group. On the other hand, alanine, phenylalanine, and tyrosine were higher in the SP of the LMF group than in the HMF group. GABA, glutamate, histidine and glycerol were found in higher concentrations in the HMT group than in the LMT group, while fructose decreased in the HMT group. Our results showed that the oxidative and metabolomic status of SP is related to the physiological properties of semen and its freezability and open new fields in research of SP biomarkers of bull semen preservation and fertility.
Collapse
Affiliation(s)
- E Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy.
| | - A Damato
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - L Zennaro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - V Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy
| | - B Mislei
- INFA-AUB, University of Bologna, Via Gandolfi 16, Cadriano, BO, Italy
| | - V Vigolo
- Department for Small Animals and Horses, Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Vienna, Austria
| | - M E Falomo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - F Bertuzzo
- Intermizoo S.p.A, Via Dossetto 1, 30021, Caorle, VE, Italy
| | - G Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy
| | - D Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Dell'Emilia, BO, Italy
| |
Collapse
|
2
|
Kisliouk T, Ravi PM, Rosenberg T, Meiri N. Embryonic manipulations shape life-long, heritable stress responses through complex epigenetic mechanisms: a review. Front Neurosci 2024; 18:1435065. [PMID: 39099633 PMCID: PMC11294202 DOI: 10.3389/fnins.2024.1435065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing an organism's likelihood of survival hinges on fostering a balanced and adaptable development of robust stress response systems. This critical process is significantly influenced by the embryonic environment, which plays a pivotal role in shaping neural circuits that define the stress response set-point. While certain embryonic conditions offer advantageous outcomes, others can lead to maladaptive responses. The establishment of this response set-point during embryonic development can exert life-long and inheritable effects on an organism's physiology and behavior. This review highlights the significance of multilevel epigenetic regulation and the intricate cross-talk among these layers in response to heat stress during the embryonic period, with a particular focus on insights gained from the avian model.
Collapse
Affiliation(s)
- Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| | - Padma Malini Ravi
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| | - Tali Rosenberg
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| |
Collapse
|
3
|
Huang S, Suo NJ, Henderson TR, Macgregor RB, Henderson JT. Cellular transfection using rapid decrease in hydrostatic pressure. Sci Rep 2024; 14:4631. [PMID: 38409237 PMCID: PMC10897145 DOI: 10.1038/s41598-024-54463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Of all methods exercised in modern molecular biology, modification of cellular properties through the introduction or removal of nucleic acids is one of the most fundamental. As such, several methods have arisen to promote this process; these include the condensation of nucleic acids with calcium, polyethylenimine or modified lipids, electroporation, viral production, biolistics, and microinjection. An ideal transfection method would be (1) low cost, (2) exhibit high levels of biological safety, (3) offer improved efficacy over existing methods, (4) lack requirements for ongoing consumables, (5) work efficiently at any scale, (6) work efficiently on cells that are difficult to transfect by other methods, and (7) be capable of utilizing the widest array of existing genetic resources to facilitate its utility in research, biotechnical and clinical settings. To address such issues, we describe here Pressure-jump-poration (PJP), a method using rapid depressurization to transfect even difficult to modify primary cell types such as embryonic stem cells. The results demonstrate that PJP can be used to introduce an array of genetic modifiers in a safe, sterile manner. Finally, PJP-induced transfection in primary versus transformed cells reveals a surprising dichotomy between these classes which may provide further insight into the process of cellular transformation.
Collapse
Affiliation(s)
- Shudi Huang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Nan Ji Suo
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Tyler R Henderson
- Department of Medical Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
4
|
Kulkarni NA, Roy AK, Pandita S, Mohanty TK, Srivastava R, Tiwari S, Dewry RK. Time and dose-dependent effect of preconditioning with sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1) on post-thaw semen quality of Karan-Fries (KF) bulls. Trop Anim Health Prod 2022; 54:384. [DOI: 10.1007/s11250-022-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
|
5
|
Sedaghat P, Masoumi R, Sharafi M, Hezavehei M, Shahverdi M, Rostami B, Esmaeili V. Sublethal Xanthine Oxidase Stress Prefreezing of Bull Sperm Improves the Post-Thaw Functionality and Fertility Potential Parameters. Biopreserv Biobank 2022. [PMID: 35861737 DOI: 10.1089/bio.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress during cryopreservation causes mechanical, biochemical, and structural damage to the sperm, leading to lower viability and fertility potential. In recent years, a novel method based on the use of mild stress for preconditioning of sperm before cryopreservation has been applied to improve the quality of thawed sperm, although its molecular mechanism remains unknown. In this study, we investigated the protective effects of sublethal oxidative stress by xanthine oxidase (XO) on thawed bull sperm performance through modulations of mitochondrial uncoupling protein 2 (UCP2) expression. Semen samples were collected from six bulls, then mixed and divided into four aliquots: frozen control (XO-0) and frozen groups treated with different concentrations of XO, 0.01 μM (XO-0.01), 0.1 μM (XO-0.1), and 1 μM (XO-1). Thawed sperm were evaluated for motion parameters, viability, acrosome integrity, mitochondria activity, membrane integrity, and UCP2 expression. A significant increase of total motility and viability rate was observed in XO-0.1 compared with other frozen groups (p < 0.05). The highest percentage of progressive motility was in XO-0.01 and XO-0.1 compared with other groups (p < 0.05). Moreover, a significantly higher level of sperm mitochondrial membrane potential and membrane integrity was observed in XO-0.1 (p < 0.05). We also found the lowest percentage of sperm mitochondria activity in XO-1 (p < 0.05). In addition, the highest expression of UCP2 was observed in XO-1 (p < 0.05). Our findings suggest that stress preconditioning of bull sperm before cryopreservation can improve thawed sperm functions, which might be mediated through an increase of UCP2 expression.
Collapse
Affiliation(s)
- Paniz Sedaghat
- Department of Animal Science, University of Zanjan, Zanjan, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Masoumi
- Department of Animal Science, University of Zanjan, Zanjan, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Behnam Rostami
- Department of Animal Science, University of Zanjan, Zanjan, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to evaluate the effect of high hydrostatic pressure (HHP) on the in vitro developmental abilities of nano-transfected rabbit zygotes, their transfection efficiency, and the molecular quality of the blastocysts generated. This quality was assessed by estimating the quantitative profiles of Oct4, Casp7, and Bcl2 mRNA transcripts. The nano-transfection efficiencies of zygotes that had been pre-treated with either 20 MPa or 40 MPa of HHP (13.5% and 13.7%, respectively) were insignificantly lower than those found in zygotes not exposed to HHP prior to their nano-transfection (20.1%; P≥0.05). Moreover, applying HHP treatment with the parameters of 20 MPa and 40 MPa followed by the nano-transfection of zygotes brought about an insignificant decrease in the rates of embryos at the blastocyst stage (30.4% and 23.0%, respectively) as compared to the control group of nano-transfected zygotes (40.4%; P≥0.05). Furthermore, analyzing the transcriptional activity of Oct4, Bcl2, and Casp7 genes revealed that HHP enhances the relative abundance (RA) of all mRNA transcripts in blastocysts derived from non-transfected rabbit zygotes. In turn, the augmented RAs found in the pro-apoptotic Casp7 and anti-apoptotic Bcl-2 transcripts confirmed the onset and progression of programmed cell death in blastocysts developed from nano-transfected zygotes that had undergone HHP pre-treatment. The conceptualization based not only on a novel nano-transfection approach used to genetically modify in vivo-fertilized rabbit zygotes but also on their HHP pre-treatment is elaborated here for the first time, with an emphasis on further investigations aimed at producing transgenic rabbit and other mammalian species embryos by somatic cell cloning.
Collapse
|
7
|
Invernici D, Reschini M, Benaglia L, Somigliana E, Galati G, La Vecchia I, Vigano’ P, Vercellini P. The impact of endometriosis on efficacy of in vitro fertilization (IVF) intervention: qualitative and quantitative assessment of ovarian response and embryo development. Reprod Biomed Online 2022; 45:275-281. [DOI: 10.1016/j.rbmo.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
|
8
|
Gardela J, Ruiz-Conca M, García-Sanmartín J, Martínez A, Mogas T, López-Béjar M, Álvarez-Rodríguez M. Mild hypothermia and vitrification increase the mRNA expression of cold-inducible proteins in bovine oocytes and cumulus cells. Theriogenology 2022; 185:16-23. [DOI: 10.1016/j.theriogenology.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/01/2022]
|
9
|
Reppetti J, Medina Y, Farina M, Damiano AE, Martínez NA. Hyperosmolarity Impairs Human Extravillous Trophoblast Differentiation by Caveolae Internalization. Front Physiol 2021; 12:760163. [PMID: 34938200 PMCID: PMC8685424 DOI: 10.3389/fphys.2021.760163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
We recently reported that an intact caveolar structure is necessary for adequate cell migration and tubulogenesis of the human extravillous trophoblast (EVT) cells. Emerging evidence supports that hyperosmolarity induces the internalization of caveolae into the cytoplasm and accelerates their turnover. Furthermore, signaling pathways associated with the regulation of trophoblast differentiation are localized in caveolae. We hypothesized that hyperosmolarity impairs EVT differentiation and caveolae/caveolin−1 (Cav-1) participates in this process. EVT cells (Swan 71 cell line) were cultured in complete Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 and exposed to hyperosmolar condition (generated by the addition of 100 mM sucrose). Hyperosmolarity altered the EVT cell migration and the formation of tube-like structures. In addition, cell invasion was decreased along with a reduction in the latent and active forms of matrix metalloproteinase-2 (MMP−2) secreted by these cells. With respect to Cav-1 protein abundance, we found that hyperosmolarity enhanced its degradation by the lysosomal pathway. Accordingly, in the hyperosmolar condition, we also observed a significant increase in the number of vacuoles and the internalization of the caveolae into the cytoplasm. Taken together, our findings suggest that hyperosmolarity may induce caveolae internalization and increase their turnover, compromising the normal differentiation of EVT cells.
Collapse
Affiliation(s)
- Julieta Reppetti
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO) - CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yollyseth Medina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO) - CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Farina
- Laboratorio de Fisiopatología Placentaria, Centro de Estudios Farmacológicos y Botánicos (CEFYBO) - CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO) - CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Alicia Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO) - CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Yousefi M, Narchi M, Sharafi M, Borghei-Rad SM, Shahverdi A, Masoudi R. Rooster frozen-thawed semen quality following sublethal xanthine oxidase treatments. Anim Reprod Sci 2021; 235:106883. [PMID: 34768036 DOI: 10.1016/j.anireprosci.2021.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species are associated with cryodamage and may be a factor causing or exacerbating cellular cryodamage during freezing and thawing processes. Induction of sublethal oxidative stress as a new approach for preconditioning of sperm improves the cryo-resistance of sperm. The aim of this study was to investigate effects of sublethal concentrations of xanthine oxidase (XO), which induces oxidative stress before cryopreservation on values for semen quality variables of rooster sperm post-thawing. Semen samples were collected from 15 roosters and treated with different concentrations of XO [XO-0, XO-0.005, XO-0.05, XO-0.5, XO-5, and XO-50 U/ml]; then, the effects of treatments with XO as sublethal stressors, were examined. Results indicated the XO-0.5 and XO-5 treatments resulted in a greater percentage of sperm total motility, progressive motility, viability, and membrane functionality compared to other groups. There was no difference after treatments with XO-0, XO-0.005, and XO-0.05 on sperm total motility, membrane functionality, apoptosis, mitochondria activity, and viability. There was a greater percentage of mitochondria activity in sperm of the XO-0.05, XO-0.5, and XO-5 groups. Furthermore, there was the greatest concentration of malondialdehyde (MDA) in samples of the XO-50 group. Values for sperm abnormal morphology, acrosome integrity, and DNA fragmentation were not different among samples post-thawing. Sperm treated with XO-0.5 and XO-5 had a greater fertilization capacity than those of the control group. In conclusion, treatment of sperm with 0.5 and 5 U/ml XO as inducers of mild oxidative stress before cryopreservation, improved several function quality indices of sperm post-thawing.
Collapse
Affiliation(s)
- M Yousefi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - M Narchi
- Faculty of Veterinay, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - M Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - S M Borghei-Rad
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - A Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - R Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
11
|
Khosrozadeh F, Karimi A, Hezavehei M, Sharafi M, Shahverdi A. Preconditioning of bull semen with sub-lethal oxidative stress before cryopreservation: Possible mechanism of mitochondrial uncoupling protein 2. Cryobiology 2021; 104:63-69. [PMID: 34748771 DOI: 10.1016/j.cryobiol.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022]
Abstract
Preconditioning of sperm using sub-lethal oxidative stress before cryopreservation is an innovative approach that can improve sperm cryo-survival. Mitochondrial uncoupling proteins (UCPs) are critical in reducing ROS level during stress conditions. The aim of the current study was to investigate whether mild sub-lethal stress induced by low concentrations of nitric oxide and hydrogen peroxide has a protective effect on quality parameters of post-thaw bull semen through modulations of mitochondrial uncoupling protein 2 (UCP2) expression. Semen samples were collected from 6 mature Holstein bulls, then mixed and divided into 8 aliquots: fresh, frozen control and frozen groups treated with NO: 0.1 (NO-0.1), 1(NO-1), 10 μM (NO-10), and H2O2: 0.1(H2O2-0.1), 1(H2O2-1) and 10μM (H2O2-10). A significantly higher percentage of total motility, progressive motility and viability was observed in NO-1 and H2O2-10 compared to the other frozen groups (P < 0.05). Sperm exposed to 1 μM NO and 10μM H2O2 showed significantly increased percentages of mitochondria activity and membrane integrity (P < 0.05). Moreover, the lowest percentage of apoptotic percentage was observed in the NO-1 and H2O2-10 in comparison to the other frozen groups. In addition, the expression level of UCP2 was higher in the NO-1 and H2O2-10 compared to the other groups (P < 0.05). It can be concluded that stress preconditioning of bull sperm before cryopreservation can increase UCP2 expression of sperm, that can play a protective role against cryoinjury after thawing.
Collapse
Affiliation(s)
- Fatemeh Khosrozadeh
- Department of Animal Science, University of Tabriz, Tabriz, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Karimi
- Department of Animal Science, University of Tabriz, Tabriz, Iran.
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Hezavehei M, Mirzaei M, Sharafi M, Wu Y, Gupta V, Fitzhenry M, Kouchesfahani HM, Eftekhari-Yazdi P, Baharvand H, Dalman A, Haynes PA, Shahverdi A, Salekdeh GH. Proteomics study reveals the molecular mechanisms underlying cryotolerance induced by mild sublethal stress in human sperm. Cell Tissue Res 2021; 387:143-157. [PMID: 34729646 DOI: 10.1007/s00441-021-03537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
The preconditioning of human sperm with sublethal nitrosative stress before cryopreservation can potentially improve the thawed sperm quality. However, the underlying mechanisms behind this protective strategy are not entirely understood. We compared the cryosurvival of human sperm exposed to 0.01 μM nitric oxide (NO) throughout the cryopreservation and used multiplexed quantitative proteomics approach to identify changes in the proteome profile of preconditioned sperm cells. Semen samples were obtained from 30 normospermia donors and then each sample was divided into three equal parts: fresh (F), frozen-control (C), and frozen exposed to nitric oxide (NO). The sperm undergoing mild sublethal stress showed higher values for motility and viability compared to the frozen control sperm. Moreover, out of 2912 identified proteins, 248 proteins were detected as differentially abundant proteins (DAPs) between cryopreserved groups and fresh group (F) (p < 0.05). Gene ontology (GO) analysis of differentially abundant proteins indicated that the abundance of proteins associated with glycolysis, gluconeogenesis, and fertilization processes was reduced while oxidative phosphorylation pathway was increased in abundance in cryopreserved sperm compared to the fresh sperm. Moreover, redox protein such as thioredoxin 17 was increased in abundance in the NO group compared to the control freezing group. Therefore, the pre-conditioning of sperm prior to cryopreservation may play an important role in maintaining the redox balance in mitochondria of sperm after freezing. Overall, our results indicate that arylsulfatase A (ARSA), serine protease 37 (PRSS37), and sperm surface protein (SP17) may potentially serve as protein biomarkers associated with screening the fertilization potential of the thawed sperm.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mohsen Sharafi
- Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Matthew Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | | | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia. .,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Application of High Hydrostatic Pressure (HHP) to Improve Cryopreservation of Young Bull Semen. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The objective of the study was to determine the effect of high hydrostatic pressure (HHP) on quality of cryopreserved semen of young bulls. Semen for this study was collected from 8 bulls aged between 13 and 18 months at monthly intervals, from June to September. After collection, semen was diluted in a commercial Bioxcell® extender (one part at 1:1 and a second part to give a sperm concentration of 20 million/0.2 mL), filled into straws and treated with HHP at 30 MPa for 90 min. After HHP treatment, pre-diluted semen (1:1) was diluted to a sperm concentration 20 million/0.2 mL and filled into straws. In addition, part of the semen diluted to a concentration of 20 million/0.2 mL was not treated with HHP (control). All of it was held at +4°C and frozen in a freezer after 2.5-h equilibration. Semen was thawed in a water bath at 38°C and subjected to estimation of the percentage of motile sperm both subjectively and using a computer-assisted semen analyzer and cytometric assessment of sperm cell membrane integrity. Subjective motility and fast progressive motility were significantly higher with pre-diluted (1:1) and HHP treated semen compared to control (P<0.05). No significant differences were observed in percentage of membraneintact spermatozoa between control and experimental groups. Additionally, the influence of HHP on the sperm of individual bulls was assessed. In bull number 2, the HHP treatment after semen pre-dilution significantly improved progressive motility from 54.1 to 63.4 percent (P<0.05). In bull number 4, the HHP treatment after semen pre-dilution significantly improved subjective motility, rapid motility and progressive motility by 12.5, 16.8 and 16.3 percent, respectively (P<0.05). No effect was seen for 6 bulls. It is concluded that for some bulls, the application of HHP before semen freezing may improve the cryopreservation outcome. However, this requires further research in this area, also to determine the fertilizing capacity of bull semen exposed to high hydrostatic pressure.
Collapse
|
14
|
Koohestanidehaghi Y, Torkamanpari M, Shirmohamadi Z, Lorian K, Vatankhah M. The effect of cysteine and glutamine on human sperm functional parameters during vitrification. Andrologia 2020; 53:e13870. [PMID: 33215743 DOI: 10.1111/and.13870] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/21/2022] Open
Abstract
Assuming the adverse effects of reactive oxygen species (ROS) on sperm function, this study was conducted to assess the effects of cysteine and glutamine as effective antioxidants on human sperm parameters under vitrification. Twenty normozoospermic samples were used. The samples were subjected to a vitrification process and cysteine (5 and 10 mM) and glutamine (10 and 15 mM). The sperm motility parameters, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI), DNA damage and intracellular ROS damage were assessed for each sample. Statistical analyses showed that motility, mitochondrial membrane potential and DNA damage decreased in the vitrified groups with cysteine 5, 10 mM and glutamine 10, 15 mM separately. Also intracellular ROS increased significantly compared to the fresh group (p < .05). No significant differences were observed for PMI compared with the fresh group (p > .05). Supplementation of cysteine and glutamine in both concentrations separately decreased intracellular ROS and DNA damage of spermatozoa with significant increase in PMI, MMP and progressive motility compared to vitrified control group (p < .05). The results showed no significant effect of a specific concentration in cysteine and glutamine on sperm parameters compared to other concentrations. Both amino acids have the potential to improve the harmful effects of freezing on sperm parameters.
Collapse
Affiliation(s)
- Yeganeh Koohestanidehaghi
- Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Shirmohamadi
- Department of Biostatistics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keivan Lorian
- Research & Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical sciences, Yazd, Iran
| | - Mahsaneh Vatankhah
- Department of physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Uchikura A, Matsunari H, Maehara M, Yonamine S, Wakayama S, Wakayama T, Nagashima H. Hollow fiber vitrification allows cryopreservation of embryos with compromised cryotolerance. Reprod Med Biol 2020; 19:142-150. [PMID: 32273819 PMCID: PMC7138943 DOI: 10.1002/rmb2.12312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022] Open
Abstract
PURPOSE This study aims to demonstrate vitrification methods that provide reliable cryopreservation for embryos with compromised cryotolerance. METHODS Two-cell stage mouse embryos and in vitro produced porcine embryos were vitrified using the hollow fiber vitrification (HFV) and Cryotop (CT) methods. The performance of these two methods was compared by the viability of the vitrified-rewarmed embryos. RESULTS Regardless of the method used, 100% of the mouse 2-cell embryos developed successfully after vitrification-rewarming into the blastocyst stage, whereas vitrification tests using porcine morulae with the HFV method produced significantly better results. The developmental rates of vitrified porcine morula into the blastocyst stage, as well as blastocyst cell number, were 90.3% and 112.3 ± 6.9 in the HFV group compared with 63.4% and 89.5 ± 8.1 in the CT group (P < .05). Vitrification tests using 4- to 8-cell porcine embryos resulted in development into the blastocyst stage (45.5%) in the HFV group alone, demonstrating its better efficacy. The HFV method did not impair embryo viability, even after spontaneous rewarming at room temperature for vitrified embryos, which is generally considered a contraindication. CONCLUSION Vitrification test using embryos with compromised cryotolerance allows for more precise determining of effective cryopreservation methods and devices.
Collapse
Affiliation(s)
- Ayuko Uchikura
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
| | - Hitomi Matsunari
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
- Meiji University International Institute for Bio‐Resource Research (MUIIBR)KawasakiJapan
| | - Miki Maehara
- Department of Orthopaedic SurgerySurgical ScienceTokai University School of MedicineIseharaJapan
| | - Shiori Yonamine
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
| | - Sayaka Wakayama
- Department of BiotechnologyFaculty of Life and Environmental SciencesUniversity of YamanashiKohuJapan
| | - Teruhiko Wakayama
- Department of BiotechnologyFaculty of Life and Environmental SciencesUniversity of YamanashiKohuJapan
| | - Hiroshi Nagashima
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
- Meiji University International Institute for Bio‐Resource Research (MUIIBR)KawasakiJapan
| |
Collapse
|
16
|
Gardela J, Ruiz-Conca M, Álvarez-Rodríguez M, Mogas T, López-Béjar M. Induction of CIRBP expression by cold shock on bovine cumulus-oocyte complexes. Reprod Domest Anim 2020; 54 Suppl 4:82-85. [PMID: 31625234 DOI: 10.1111/rda.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to induce the cold-inducible RNA-binding protein (CIRBP) expression on cumulus-oocyte complexes (COCs) through exposure to a sub-lethal cold shock and determine the effects of hypothermic temperatures during the in vitro maturation of bovine oocytes. Nuclear maturation, cortical granule redistribution and identification of cold-inducible RNA-binding protein (CIRBP) were assessed after 24 hr of in vitro maturation of control (38.5°C) and cold-stressed oocytes (33.5°C). The presence of CIRBP was assessed by Western blot in COCs or denuded oocytes and their respective cumulus cells. Based on the odds ratio, cold-stressed oocytes presented higher abnormal cytoplasmic distribution of cortical granules and nuclear maturation than the control group. Although CIRBP was detected in both control and cold-stressed groups, cold-stressed COCs had 2.17 times more expression of CIRBP than control COCs. However, when denuded oocytes and cumulus cells were assessed separately, CIRBP only was detected in cumulus cells in both groups. In conclusion, cold shock induced CIRBP expression, but it negatively affected nuclear maturation and cortical granule distribution of bovine oocytes. Moreover, the expression of CIRBP was only identified in cumulus cells but not in oocytes.
Collapse
Affiliation(s)
- Jaume Gardela
- Department of Animal Health and Anatomy, Veterinary Faculty, ERPAW (Endocrinology, Reproductive Physiology and Animal Welfare) Research Group, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mateo Ruiz-Conca
- Department of Animal Health and Anatomy, Veterinary Faculty, ERPAW (Endocrinology, Reproductive Physiology and Animal Welfare) Research Group, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Manuel Álvarez-Rodríguez
- Department of Animal Health and Anatomy, Veterinary Faculty, ERPAW (Endocrinology, Reproductive Physiology and Animal Welfare) Research Group, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Veterinary Faculty, ERPAW (Endocrinology, Reproductive Physiology and Animal Welfare) Research Group, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
17
|
Cai L, Jeong YW, Hyun SH, Yu IJ, Hwang WS, Jeon Y. Trehalose supplementation during porcine oocytes in vitro maturation improves the developmental capacity of parthenotes. Theriogenology 2019; 141:91-97. [PMID: 31521883 DOI: 10.1016/j.theriogenology.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023]
Abstract
Autophagy is a critical process in early mammalian embryogenesis. Mammalian target of rapamycin (mTOR) inhibitors are major regulators of autophagy. However, mTOR plays a vital role in major signaling pathways controlling cell growth and metabolism; thus, more secure autophagy activation methods should be considered. The present study investigated the effects of supplementary trehalose, a novel mTOR-independent autophagy enhancer, on oocyte maturation and embryonic development after parthenogenetic activation (PA). Trehalose treatment during in vitro maturation (IVM) did not affect the nuclear maturation rates of oocytes. Oocytes treated with 25 mM trehalose during IVM had a significantly higher (P < 0.05) blastocyst formation rate (64.2%) after PA compared to that in control oocytes (52.0%). Blastocyst quality was also improved in the trehalose-treated group. The total cell numbers for blastocyst formation and expanded blastocyst formation were significantly increased in the trehalose-treated group (52.2% and 27.7%, respectively) compared to those in the control group (36.9% and 11.0%, respectively). Trehalose treatment led to the increased expression of LC3, an autophagy marker, in metaphase II oocytes and 4-cell stage embryos. Gene expression analysis revealed that the expression of several autophagy related genes (LAMP2, pATG5, and LC3) increased, while the Bax/Bcl2 ratio and pro-apoptotic Bak transcript levels were decreased in the trehalose-treated group. In conclusion, these results indicate that treatment with trehalose during IVM improved the developmental potential of porcine embryos by down-regulation of pro-apoptotic genes and up-regulation of autophagy-related genes and marker. Trehalose may be useful for the large-scale production of high-quality porcine blastocysts in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon-Woo Jeong
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Yubyeol Jeon
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
18
|
Effect of high hydrostatic pressure on mitochondrial activity, reactive oxygen species level and developmental competence of cultured pig embryos. Theriogenology 2019; 140:99-108. [PMID: 31465911 DOI: 10.1016/j.theriogenology.2019.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
High hydrostatic pressure (HHP) has been previously used to increase mammalian oocyte and embryo tolerance on subsequent stresses related with different assisted reproductive technologies. Nevertheless, the mechanisms for HHP-induced stress responses in early embryos have not been yet well understood. Previous studies focused mainly on HHP-modified gene expression while possible changes in cellular functions, including modification of energy metabolism and oxidative stress were neglected. Therefore, we aimed to analyze the effect of HHP treatment on the efficiency of subsequent in vitro pig embryos culture in NCSU-23 medium, on mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) level during their pre-implantation development. Porcine embryos were exposed to the hydrostatic pressure of 20 MPa and their quick response to such stress was analyzed 1 h later. In comparison with control embryos, we detected lower ΔΨm by ∼13% only in expanded blastocysts as well as decreased ROS level by ∼30% and ∼42% at the morula and expanded blastocyst stages, respectively. After HHP-treatment at transcriptionally inactive zygote stage and subsequent embryo culture, long-time responses were found: (1) at expanded blastocyst stage manifesting by ΔΨm decrease by ∼16%, (2) at the morula and expanded blastocyst stages in the form of ROS level reduction by ∼38% and ∼33% respectively. Following HHP stress applied at the transcriptionally active morula stage the long-time response in the expanded blastocysts as a decrease of ΔΨm by ∼19% and ROS level by ∼37% was observed. The percentage of obtained expanded blastocysts was higher after culture of HHP-treated zygotes in comparison to the control. Moreover, expanded blastocysts developed in vitro from both HHP-treated zygotes or morulae, exhibited higher total number of cells per blastocyst, higher number of cells in the inner cell mass as well as lower number of TUNEL-positive nuclei per blastocyst and lower TUNEL index, when compared to untreated embryos. Therefore, the HHP stress applied at the zygote stage, enhances developmental potential and quality of in vitro obtained porcine blastocysts due to the both decreased ΔΨm and ROS level. Our findings may contribute to better understanding of the mechanism of HHP-mediated modifications of energy metabolism and oxidative stress during in vitro development of pig embryos.
Collapse
|
19
|
Mensi L, Borroni R, Reschini M, Cassinerio E, Vegetti W, Baldini M, Cappellini MD, Somigliana E. Oocyte quality in women with thalassaemia major: insights from IVF cycles. Eur J Obstet Gynecol Reprod Biol X 2019; 3:100048. [PMID: 31404374 PMCID: PMC6687400 DOI: 10.1016/j.eurox.2019.100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Background Women with thalassaemia major typically experience hypogonadotropic hypogonadism because of the toxic effects of iron overload on the anterior pituitary. Moreover, in affected women, serum anti-Mullerian hormone (AMH) and antral follicle count (AFC) are also shown to be reduced, suggesting that the peripheral excess of iron could also harm the ovarian reserve. To date, the detrimental effects of the disease on oocyte quality have not been investigated. Materials and methods Women with thalassaemia major who underwent in vitro fertilization (IVF) cycles were retrospectively identified over a 9 years period. They were matched (with a 1:5 ratio) by study period and age to a control group of infertile women undergoing IVF. Embriological variables were compared between the two groups. The primary outcome was the rate of top quality embryos. Results Twenty-one women with thalassaemia major (exposed group) and 105 controls (unexposed group) were ultimately included. Serum AMH was 0.6 [0.2–1.8] and 1.5 [0.7–3.5] ng/ml, respectively (p = 0.05). AFC was 4 (1–7.5) and 11 (5.5–16), respectively (p < 0.001). The total dose of gonadotropins used was higher in exposed women but the number of retrieved oocytes and oocytes used did not differ. The fertilization rate was higher in exposed compared to unexposed women, being 100% (76–100%) and 75% (50–100%). respectively (p = 0.03). The cleavage rate was also higher, being 75% (39–100%) and 50% (29–64%), respectively (p = 0.04). In contrast, the rate of top quality embryos did not differ, being 20% (0–76%) and 25% (5–50%), respectively (p = 0.98). Conclusions Despite lower ovarian reserve, oocyte quality is not significantly affected in women with thalassaemia major.
Collapse
Affiliation(s)
- Laura Mensi
- Dept. of Clinical Science and Community Health, University of Milan, Milan, Italy
- Infertility Unit, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Corresponding author at: Infertility Unit, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122, Milan, Italy.
| | - Raffaella Borroni
- Infertility Unit, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Reschini
- Infertility Unit, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Cassinerio
- Dept. of Internal Medicine, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Walter Vegetti
- Infertility Unit, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Baldini
- Dept. of Internal Medicine, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Domenica Cappellini
- Dept. of Clinical Science and Community Health, University of Milan, Milan, Italy
- Dept. of Internal Medicine, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Edgardo Somigliana
- Dept. of Clinical Science and Community Health, University of Milan, Milan, Italy
- Infertility Unit, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
Sharafi M, Zhandi M, Shakeri M, Shahverdi A, Hadi Hussaini SM. Pre-conditioning with Xanthine oxidase to improve post thawed quality of bull sperm. Cryobiology 2019; 89:1-5. [PMID: 31325421 DOI: 10.1016/j.cryobiol.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/15/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to examine the effects of sub-lethal concentration of Xanthine oxidase (XO) on the post-thawed bull sperm quality. Semen samples were collected from four Holstein bulls, twice a week and during three consecutive weeks (n = 24 total ejaculates). After collection in each replicate, semen samples were pooled and then frozen by semen extender containing different concentrations [0 (XO-0), 0.05 (XO-0.05), 0.5 (XO-0.5), 5 (XO-5), 50 (XO-50) and 500 (XO-500) μM] of XO. After thawing, motion parameters (SCA), plasma membrane functionality (HOST), apoptosis status (Phosphatidylserine translocation assay), mitochondrial activity (Rhodamine 123), and acrosome integrity (PSA), were evaluated. The results showed that total motility, VAP, VSL, VCL, STR, and LIN were lower in XO-50 and XO-500 compared to other groups (P < 0.05). Progressive motility were higher in XO-0.05 and XO-0.5 compared to XO-0, XO-50, and XO-500 (P < 0.05). Mitochondrial activity was highest in XO-0.05 and XO-0.5 groups. Sperm plasma membrane functionality was significantly greater in XO-0, XO-0.05, XO-0.5, and XO-5 than that of XO-50 and XO-500. Xanthine oxidase had not significant effects on acrosome integrity and dead spermatozoa. Higher percentage of live spermatozoa was recorded for XO-0, XO-0.05, XO-0.5, and XO-5; however, the lower amount of apoptotic spermatozoa was detected in the aforementioned groups (P < 0.05). In conclusion, it seems that XO at lower doses may have beneficial effects on post-thawed bull sperm quality.
Collapse
Affiliation(s)
- Mohsen Sharafi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Malak Shakeri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | | |
Collapse
|
21
|
Extracellular vesicles of follicular fluid from heat-stressed cows modify the gene expression of in vitro-matured oocytes. Anim Reprod Sci 2019; 205:94-104. [PMID: 31060922 DOI: 10.1016/j.anireprosci.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022]
Abstract
The effect of heat stress (HS) on cattle reproduction is deleterious with respect to ovarian follicular development and oocyte quality. The objective of this study was to investigate the effect of follicular fluid extracellular vesicles (EVs) obtained from cows maintained in thermoneutral (TN) or HS conditions on in vitro oocyte maturation. Nonlactating cows were estrous synchronized. Immediately after ovulation day (D1), the cows were randomly assigned to TN or HS environments. Follicular fluid from all follicles from each treatment was pooled, and EVs were obtained. Pools of 20 cumulus oocyte-complexes (COCs), were allocated to the following treatments: Control (n = 4 COC pools): matured in base medium; TN (n = 4 COC pools): matured in base medium supplemented with TN EV suspension; and HS (n = 4 COC pools): matured in base medium that was supplemented with the HS EV suspension. All treatments were conducted at 38.5 °C for 24 h in a humid atmosphere with 5% CO2. After maturation, the COCs were evaluated for meiotic progression, DNA integrity and oocyte quality-related gene expression. When the experimental groups were compared with the control group, a treatment effect was not observed for meiotic progression and DNA integrity. In the cumulus cells of TN group, there was relatively lesser expression of the IGFBP4 gene. In the oocytes of the TN as compared with the HS group, the IGFBP2, BMP15, GDF9, CDCA8, HAS2, RPL15, STAT3 and PFKP genes were expressed to a lesser extent. The findings indicated that oocytes matured in the presence of EVs from the follicular fluid of cows collected when there were TN conditions, however, there was a lesser expression of genes related to oocyte quality.
Collapse
|
22
|
Abstract
The first 20 years of somatic cell nuclear transfer can hardly be described as a success story. Controversially, many factors leading to the fiasco are not intrinsic features of the technique itself. Misunderstandings and baseless accusations alongside with unsupported fears and administrative barriers hampered cloners to overcome the initial challenging period with obvious difficulties that are common features of a radically new approach. In spite of some promising results of mostly sporadic and small-scale experiments, the future of cloning is still uncertain. On the other hand, a reincarnation, just like the idea of electric cars, may result in many benefits in various areas of science and economy. One can only hope that-in contrast to electric cars-the ongoing paralyzed phase will not last for 100 years, and breakthroughs achieved in some promising areas will provide enough evidence to intensify research and large-scale application of cloning in the next decade.
Collapse
|
23
|
Low developmental competence and high tolerance to thermal stress of ovine oocytes in the warm compared with the cold season. Trop Anim Health Prod 2019; 51:1611-1618. [PMID: 30840214 DOI: 10.1007/s11250-019-01854-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Heat stress can potentially affect most aspects of reproduction in mammals. To our knowledge, no studies have ever been conducted for evaluating the influences of hot season on the developmental competence of ewe oocytes. In the present study, for the first time, we evaluated the effects of season (winter or summer), in vitro thermal stress, and their interaction on the ewe oocytes harvested from slaughterhouse ovaries. Cumulus-oocyte complexes (COCs) were either incubated at 39 °C for the entire length of IVM period or first incubated at 41 °C for 12 h and then at 39 °C. Evaluated endpoints included the ratios of total aspirated COCs/ovary and good-quality COCs/ovary, the apoptosis (Annexin V staining) and nuclear maturation of oocytes after 24-h IVM, and the developmental competence of oocytes after IVF. Our results showed that the number of aspirated oocytes per ovary was similar in both seasons, but the winter ovaries yielded significantly more oocytes with acceptable morphology in winter than in summer (2.1 ± 0.14 vs. 1.5 ± 0.09, P < 0.05). There was a significant interaction between season and thermal stress on the apoptosis, some nuclear maturation parameters, and blastocyst development of oocytes (P < 0.05). Although the winter oocytes were more developmentally competent than the summer oocytes, the winter oocytes were more sensitive to the thermal stress than summer oocytes. In conclusion, the developmental competence of ovine oocytes was lower in summer than in winter. However, it seemed that summer oocytes were more resistant to the in vitro thermal stress during IVM period compared with winter oocytes.
Collapse
|
24
|
Hezavehei M, Kouchesfahani HM, Shahverdi A, Sharafi M, Salekdeh GH, Eftekhari-Yazdi P. Preconditioning of sperm with sublethal nitrosative stress: a novel approach to improve frozen–thawed sperm function. Reprod Biomed Online 2019; 38:413-425. [DOI: 10.1016/j.rbmo.2018.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/26/2022]
|
25
|
Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Mol Reprod Dev 2019; 86:1307-1323. [PMID: 30767310 DOI: 10.1002/mrd.23123] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Global warming represents a major stressful environmental condition that compromises the reproductive efficiency of animals and humans via a rise of body temperature above its physiological homeothermic point (heat stress [HS]). The injuries caused by HS on reproductive function involves both male and female components, fertilization mechanisms as well as the early and late stages of embryo-fetal development. This occurrence causes great economic damage in livestock, and, in wild animals creates selective pressure towards the advantages of better-adapted genotypes to the detriment of others. Humans undergo several types of stress, including heat, and these represent putative causes of ongoing progressive decay in procreation; an increasing number of remedies in the form of antioxidant preparations are now being proposed to counteract the effects of stress. This review aims to describe the results of the most recent studies that aimed to highlight these effects and to draw information on the mechanisms acting as the basis of this problem from a comparative analysis.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
26
|
Mogas T. Update on the vitrification of bovine oocytes and invitro-produced embryos. Reprod Fertil Dev 2019; 31:105-117. [PMID: 32188546 DOI: 10.1071/rd18345] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The combined use of reproductive technologies, such as transvaginal ovum-pick up and invitro embryo production followed by direct transfer of cryopreserved embryos, has great potential for enhancing genetic selection and optimising cross-breeding schemes in beef and dairy cattle production systems. This, along with an effective cryopreservation procedure for cow oocytes, will enable the long-term conservation of female genetic traits and the advance of embryo biotechnology in this species. However, the low fertilisation rates and developmental competence of cryopreserved oocytes still need to be improved. Over the past two decades, many research efforts tried to overcome individual features of the bovine oocyte that make it notoriously difficult to cryopreserve. In addition, pregnancy rates associated with invitro-produced (IVP) embryos remain lower than those obtained using invivo counterparts. This, together with a lack of a standard methodology for IVP embryo cryopreservation that provides easier and more practical logistics for the transfer of IVP embryos on farms, has hindered international genetic trade and the management of embryo banks. This review updates developments in oocyte and IVP embryo vitrification strategies targeting high production efficiency and better outcomes.
Collapse
Affiliation(s)
- Teresa Mogas
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain. Email
| |
Collapse
|
27
|
Hezavehei M, Mohseni Kouchesfahani H, Shahverdi AH, Sharafi M, Hosseini Salekdeh GH, Eftekhari-Yazdi P. Induction of Sublethal Oxidative Stress on Human Sperm before Cryopreservation: A Time-Dependent Response in Post-Thawed Sperm Parameters. CELL JOURNAL 2018; 20:537-543. [PMID: 30124000 PMCID: PMC6099138 DOI: 10.22074/cellj.2019.5639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/11/2018] [Indexed: 11/04/2022]
Abstract
Objective A recent innovative approach, based on induction of sublethal oxidative stress to enhance sperm cryosurvival, has been applied before sperm cryopreservation. The purpose of this study was to investigate the effects of different induction times of sublethal oxidative stress before cryopreservation on human post-thawed sperm quality. Materials and Methods In this experimental study, we selected semen samples (n=20) from normozoospermic men according to 2010 World Health Organization (WHO) guidelines. After processing the samples by the density gradient method, we divided each sample into 5 experimental groups: fresh, control freezing, and 3 groups exposed to 0.01 μM sodium nitroprusside (SNP) [nitric oxide (NO) donor] for 30 (T30), 60 (T60), or 90 minutes (T90) at 37˚C and 5% CO2 before cryopreservation. Motion characteristics [computer-assisted sperm analyser], viability, apoptosis [annexin V/propidium iodide (PI) assay], DNA fragmentation [sperm chromatin structure assay (SCSA)], and caspase 3 activity (FLICA Caspase Detection Kit) were assessed after thawing. The results were analysed by using one-way ANOVA and Tukey's test. The means were significantly different at P<0.05. Results Cryopreservation significantly decreased sperm viability and motility parameters, and increased the percentage of apoptosis, caspase 3 activity, and DNA fragmentation (P<0.01) compared to the fresh group. The T60 group had a higher significant percentage of total motility (TM) and progressive motility compared with other cryopreserved groups (P<0.05). We observed a significantly lower percentage of apoptotic rate and caspase 3 activity in the T60 group compared to the other cryopreserved groups (P<0.05). DNA integrity was not significantly affected by this time of sublethal stress induction (P>0.05). Conclusion Our results have demonstrated that the application of sublethal oxidative stress by using 0.01 μM NO for 60 minutes before the freezing process can be a beneficial approach to improve post-thawed human sperm quality.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Homa Mohseni Kouchesfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. Electronic Address:
| | - Abdol Hossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| | - Mohsen Sharafi
- Department of Poultry Science, College of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | - G Hasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Horváth A, Harnos A, Szenci O, Pribenszky C. Investigation of hydrostatic pressure-induced stress preconditioning of boar semen using modified cryopreservation. Reprod Domest Anim 2018; 53:1589-1593. [PMID: 30044010 DOI: 10.1111/rda.13282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/26/2018] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the effect of varying hydrostatic pressure treatments (HP) on the boar semen quality during the modified cryopreservation. In Experiment I, combinations of pressure level (20/40/80 MPa) and duration of application (40/80/120 min) were used. Before freezing, only the magnitude but not the duration influenced the total (TM%) and progressive motilities (PM%). The 20/40 MPa levels yielded a significant (p < 0.05) improvement compared to control samples (atmospheric), but the 80 MPa was detrimental. The post-freezing-thawing (FT) motilities were influenced significantly by both the HP level and its duration. For TM%, the 40 MPa:120 min gave the highest post-FT result (54.8% ± 3.3%); however, the 40 MPa:80 min (41.0% ± 3.1%) application showed the largest and significant improvement (18.4% ± 3.1%) compared to its control (22.6% ± 3.1%) and compared to the improvement (12.9% ± 3.6%) achieved by 40 MPa:120 min. For PM%, the improvement with the 40 MPa:120 min application was slightly larger than with the 40 MPa:80 min one (15.2% ± 4.2% vs. 13.8% ± 3.3%); furthermore, the difference was not significant. In Experiment II, the 40 MPa:80 min combination was tested at four different stages of the semen handling. By pressurization after dilution with the freezing extender without glycerol, significantly higher post-FT values (TM%, intact acrosome% and head membrane%) were obtained. The two experiments demonstrated possible improvement in post-FT semen quality achievable through the appropriate application of HP to boar semen during cryopreservation.
Collapse
Affiliation(s)
- András Horváth
- Department and Clinic for Production Animals, University of Veterinary Medicine, Üllő, Hungary.,MTA-SZIE Large Animal Clinical Research Group, Üllő, Hungary
| | - Andrea Harnos
- Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| | - Otto Szenci
- Department and Clinic for Production Animals, University of Veterinary Medicine, Üllő, Hungary.,MTA-SZIE Large Animal Clinical Research Group, Üllő, Hungary
| | - Csaba Pribenszky
- Department of Animal Hygiene, Herd-health and Veterinary Ethology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
29
|
Romanek J, Opiela J, Smorąg Z. The impact of high hydrostatic pressure (40 MPa and 60 MPa) on the apoptosis rates and functional activity of cryopreserved porcine mesenchymal stem cells. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.1515/aoas-2017-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of the present study was to examine the influence of two varied high hydrostatic pressure (HHP) values on the apoptosis (assessing caspase-8, survivin, CAD, Bax, BclxL and BclxS) and functional activity (using cocultures with bovine embryos) of porcine mesenchymal stem cells (pBMSCs). pBMSCs were isolated from porcine bone marrow and cultured in vitro. Before cryopreservation and storage in liquid nitrogen, pBMSCs were subjected to HHP values of 40 MPa and 60 MPa for 1 h at 24°C. After thawing, the cells were analysed for caspase-8 activity and protein expression of survivin, CAD, Bax, BclxL and BclxS. To indirectly test the influence of HHP on the functional activity of pBMSCs, in vitro maturated bovine oocytes were fertilized in vitro, and the obtained embryos were cultured under 4 different conditions: 1. monoculture in SOF medium; 2. coculture with pBMSCs in SOF medium; 3. coculture with pBMSCs subjected to 40 MPa HHP in SOF medium and 4. coculture with pBMSCs subjected to 60 MPa HHP in SOF medium. The quality of the developed blastocysts was analysed by TUNEL assay. HHP did not induce apoptosis in pBMSCs, as no significant difference was noted in the expression of any of the analysed apoptosis- related proteins between pBMSCs subjected to HHP (40 MPa or 60 MPa) and control. The highest number of obtained blastocysts was observed when the embryos were cultured in SOF. A highly significant difference (P<0.005) was noted between embryos cultured in SOF and embryos cultured in the presence of pBMSCs subjected to 60 MPa HHP or untreated pBMSCs. A significant difference (P<0.05) was noted between embryos cultured in SOF and embryos cultured in the presence of pBMSCs subjected to 40 MPa HHP. In conclusion, HHP does not induce apoptosis in pBMSCs. The obtained results of the blastocysts cocultured in vitro with pBMSCs (HHP-treated and untreated cells) imply that coculture with pBMSCs has a negative impact on the developmental rates of blastocysts.
Collapse
Affiliation(s)
- Joanna Romanek
- Department of Biotechnology of Reproduction and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| | - Jolanta Opiela
- Department of Biotechnology of Reproduction and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| | - Zdzisław Smorąg
- Department of Biotechnology of Reproduction and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| |
Collapse
|
30
|
Romanek J, Opiela J, Lipiński D, Smorąg Z. Effect of High Hydrostatic Pressure Applied Before Cryopreservation on the Survival Rate and Quality of Porcine Mesenchymal Stem Cells After Thawing. Anim Biotechnol 2017; 29:283-292. [PMID: 29144199 DOI: 10.1080/10495398.2017.1381106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to examine the effects of varied high hydrostatic pressure (HHP) values on survival rate, proliferation rate, cell multipotency (transcript expression of SOX2, C-MYC, and REX1) and apoptosis (expression of phosphatidylserine (PS), SURVIVIN at the RNA level and BAX at the protein level) of porcine mesenchymal stem cells (MSCs). MSCs were isolated from porcine bone marrow and cultured in vitro. Before cryopreservation and storage in liquid nitrogen, MSCs were subjected to HHP at the varied pressures of 20, 30, 40, 50, or 60 MPa for 1 h at 24°C. Immediately after thawing and after 8 days of in vitro culture, cells were subjected to trypan blue staining, cell counting, real-time Polymerase Chain Reaction (PCR), western blotting, and fluorescence microscopy. BAX protein expression was only estimated immediately after HHP to exclusively examine the impact of HHP on apoptosis of MSCs. The viability of MSC subjected to 40, 50, and 60 MPa and estimated immediately after thawing increased significantly (P < 0.001 for 60 MPa and P < 0.05 for 40 and 50 MPa) in comparison to control. The proliferation rate of MSCs subjected to 40 MPa HHP was significantly higher than in the control group (P < 0.02) after 8 days of in vitro culture. After 8 days of in vitro culture, no significant differences were noted in the survival rates, PS exposure, or levels of SOX2, C-MYC, REX1, and SURVIVIN gene expression in all analyzed groups compared to control. IN CONCLUSION 40-60 MPa HHP has a positive impact by improving cell viability in short term. 20-60 MPa HHP does not induce nor decrease apoptosis in MSCs. Fortunately, HHP does not induce differentiation of MSC. Our results calls for further analysis using HHP values higher than 60 MPa.
Collapse
Affiliation(s)
- Joanna Romanek
- a Department of Animal Reproduction Biotechnology , National Research Institute of Animal Production , Kraków , Poland
| | - Jolanta Opiela
- a Department of Animal Reproduction Biotechnology , National Research Institute of Animal Production , Kraków , Poland
| | - Daniel Lipiński
- b Department of Biochemistry and Biotechnology , Poznań University of Life Sciences , Poznań , Poland
| | - Zdzisław Smorąg
- a Department of Animal Reproduction Biotechnology , National Research Institute of Animal Production , Kraków , Poland
| |
Collapse
|
31
|
Vendrell-Flotats M, Arcarons N, Barau E, López-Béjar M, Mogas T. Effect of heat stress during in vitro maturation on developmental competence of vitrified bovine oocytes. Reprod Domest Anim 2017; 52 Suppl 4:48-51. [DOI: 10.1111/rda.13055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M Vendrell-Flotats
- Facultat de Veterinària; Universitat Autònoma de Barcelona; Barcelona Spain
| | - N Arcarons
- Facultat de Veterinària; Universitat Autònoma de Barcelona; Barcelona Spain
| | - E Barau
- Facultat de Veterinària; Universitat Autònoma de Barcelona; Barcelona Spain
| | - M López-Béjar
- Facultat de Veterinària; Universitat Autònoma de Barcelona; Barcelona Spain
| | - T Mogas
- Facultat de Veterinària; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
32
|
Faragó B, Kollár T, Szabó K, Budai C, Losonczi E, Bernáth G, Csenki-Bakos Z, Urbányi B, Pribenszky C, Horváth Á, Cserepes J. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos. PLoS One 2017; 12:e0171520. [PMID: 28166301 PMCID: PMC5293226 DOI: 10.1371/journal.pone.0171520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development.
Collapse
Affiliation(s)
| | - Tímea Kollár
- Szent István University, Department of Aquaculture, Gödöllő, Hungary
| | | | | | | | - Gergely Bernáth
- Szent István University, Department of Aquaculture, Gödöllő, Hungary
| | | | - Béla Urbányi
- Szent István University, Department of Aquaculture, Gödöllő, Hungary
| | - Csaba Pribenszky
- University of Veterinary Science, Faculty of Animal Hygiene and Herdhealth and Veterinary Ethology, Budapest, Hungary
| | - Ákos Horváth
- Szent István University, Department of Aquaculture, Gödöllő, Hungary
- * E-mail: (JC); (ÁH)
| | - Judit Cserepes
- Applied Cell Technology Ltd., Budapest, Hungary
- * E-mail: (JC); (ÁH)
| |
Collapse
|
33
|
Wen Z, Pan Y, Cui Y, Peng X, Chen P, Fan J, Li G, Zhao T, Zhang J, Qin S, Yu S. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology 2017; 93:16-23. [PMID: 28257862 DOI: 10.1016/j.theriogenology.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is known to promote the development and survival of rodents and ruminants preimplantation embryos; however, the effect of CSF2 on yak embryos has not been reported. The objective of this study was to investigate the effects of CSF2 on the developmental competence of yak embryos cultured in vitro in modified synthetic oviduct fluid (mSOF) medium and on the expression pattern of heat shock protein 70 kDa 1A (HSPA1A). In each experiment, cumulus-oocyte complexes (COCs) were matured in vitro and fertilized with frozen-thawed semen. Zygotes were treated with varying concentrations of CSF2 (0, 10, 50, 100 ng/mL) until day 8 after fertilization. Embryo development was calculated as the percentage of oocytes that formed embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. The total cell numbers (TCN) per blastocyst and their allocation to the inner cell mass (ICM) and trophectoderm (TE) lineages were determined using differential CDX2 staining. The expression of HSPA1A was examined by quantitative real-time PCR (qRT-PCR) and immunochemistry to determine the mRNA and protein levels. The results showed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) increased the rate of blastocyst formation (19.01% versus 9.93%) and the TCN per blastocyst (96.94 versus 81.41) compared to the control group. However, no significant differences were observed in the other stages of development. qRT-PCR analysis confirmed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) inhibited the expression of HSPA1A mRNA in blastocysts cultured in vitro relative to the control group, but there were no significant differences between the other treatment groups. Immunocytochemical analysis confirmed that HSPA1A protein accumulation was gradually reduced in yak blastocysts cultured in 0, 10, 100 or 50 ng/mL CSF2, however, no significant differences were observed between the 10 and 100 ng/mL treatments (P > 0.05). In conclusion, these findings demonstrate that CSF2 inhibits the expression of HSPA1A to facilitate yak blastocyst formation and increase cell numbers.
Collapse
Affiliation(s)
- Zexing Wen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiumei Peng
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ping Chen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guyue Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujian Qin
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
34
|
Songsasen N, Thongkittidilok C, Yamamizu K, Wildt DE, Comizzoli P. Short-term hypertonic exposure enhances in vitro follicle growth and meiotic competence of enclosed oocytes while modestly affecting mRNA expression of aquaporin and steroidogenic genes in the domestic cat model. Theriogenology 2016; 90:228-236. [PMID: 28166973 DOI: 10.1016/j.theriogenology.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/31/2022]
Abstract
Using the domestic cat as a non-rodent, larger animal model, the objective was to determine the impact of a brief incubation in a hypertonic microenvironment on (1) ovarian follicle and oocyte growth in vitro, (2) developmental capacity of the resident oocyte, and (3) expression of aquaporin (AQP) genes in parallel with genes involved in regulation of folliculogenesis. In Study 1: Secondary or early antral follicles encapsulated in 0.5% alginate were allocated to one of three treatment groups: 1) culture in standard medium at 290 mOsm for 15 d (Control); 2) incubation in 350 mOsm medium for 1 h followed by culture in standard medium for 15 d (Hypertonic-1h); or 3) incubation in 350 mOsm medium for 24 h followed by incubation in standard medium for additional 14 d (Hypertonic-24h). After measuring follicle and oocyte diameters on Day 15, in vitro-grown oocytes were incubated for 24 h before assessing nuclear status. In Study 2: secondary or early antral follicles were subjected to one of the three treatments: 1) culture in standard medium at 290 mOsm for 48 h; 2) incubation in 350 mOsm medium for 1 h followed by culture in standard medium for additional 47 h; or 3) incubation in 350 mOsm medium for 24 h followed by culture in standard medium for additional 24 h. At the end of the culture period, all follicles were assessed for mRNA level of Cyp17a1, Cyp19a1, Star, Aqp1, 3, 5, 7 and 8 as well as Fshr using qPCR. Freshly collected follicles also were subjected to gene expression analysis and served as the 'Non-cultured control'. Hypertonic-24h follicles grew larger (P < 0.05) than the control, whereas those in Hypertonic-1h group exhibited intermediate growth, especially when the culture started at the early antral stage. Oocytes in the Hypertonic-24h group were larger and resumed meiosis at a higher rate than in the other treatments. In vitro culture affected (P < 0.05) mRNA expression of Cyp19a1, Star, Aqp1, and Aqp7 in both the secondary and early antral stage while Fshr was only affected in the former compared to the non-cultured control. Pre-incubating follicles in 350 mOsm medium for 24 h enhanced (P < 0.05) Star and Aqp7 while decreasing (P < 0.05) Aqp1 expression compared to the control in secondary follicles, but not in the early antral stage. In summary, short-term hypertonic exposure promoted cat follicle development in vitro (including the meiotic competence of the enclosed oocyte) possibly through a mechanism that does not involve water transport genes.
Collapse
Affiliation(s)
- N Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA.
| | - C Thongkittidilok
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - K Yamamizu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - D E Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - P Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| |
Collapse
|
35
|
Jiang Z, Harrington P, Zhang M, Marjani SL, Park J, Kuo L, Pribenszky C, Tian X(C. Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts. Sci Rep 2016; 6:21215. [PMID: 26883277 PMCID: PMC4756375 DOI: 10.1038/srep21215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes.
Collapse
Affiliation(s)
- Zongliang Jiang
- Center for Regenerative Biology, Department of Animal Science, University of Connecticcut, Storrs, Connecticut, 06269, USA
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China, 510005
| | - Patrick Harrington
- Department of Statistics, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China, 510005
| | - Sadie L. Marjani
- Center for Regenerative Biology, Department of Animal Science, University of Connecticcut, Storrs, Connecticut, 06269, USA
- Department of Biology, Central Connecticut State University, New Britain, Connecticut 06050, USA
| | - Joonghoon Park
- Center for Regenerative Biology, Department of Animal Science, University of Connecticcut, Storrs, Connecticut, 06269, USA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Csaba Pribenszky
- Laboratory of Assisted Reproduction, Department of Herd Health, University of Veterinary Science, Istvan u. 2. 1078 Budapest, Hungary
| | - Xiuchun (Cindy) Tian
- Center for Regenerative Biology, Department of Animal Science, University of Connecticcut, Storrs, Connecticut, 06269, USA
| |
Collapse
|
36
|
Bock I, Raveh-Amit H, Losonczi E, Carstea AC, Feher A, Mashayekhi K, Matyas S, Dinnyes A, Pribenszky C. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism? Reprod Fertil Dev 2016; 28:776-84. [DOI: 10.1071/rd14346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022] Open
Abstract
The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.
Collapse
|
37
|
Cheuquemán C, Loren P, Arias M, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Effects of short-term exposure of mature oocytes to sodium nitroprusside on in vitro embryo production and gene expression in bovine. Theriogenology 2015; 84:1431-7. [DOI: 10.1016/j.theriogenology.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/25/2015] [Accepted: 07/26/2015] [Indexed: 12/13/2022]
|
38
|
Effect of cortisol on bovine oocyte maturation and embryo development in vitro. Theriogenology 2015; 85:323-9. [PMID: 26456184 DOI: 10.1016/j.theriogenology.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 01/25/2023]
Abstract
Glucocorticoids (GCs) are important mediators of key cellular events. Herein, we investigated the effect of adding cortisol to the IVM medium on the acquisition of developmental competency in bovine oocytes. Cortisol (0.01, 0.1, or 1 μg/mL) had no effect on cleavage rates or cell numbers of resulting blastocysts; however, supplementation with 0.1 μg/mL during IVM increased blastocyst rates of in vitro-fertilized bovine oocytes as compared to untreated controls (41 ± 10% vs. 21 ± 1.2%, P < 0.05, respectively). This concentration was chosen to assess changes in the relative expression of potential GC target genes. Oocytes matured in the presence of cortisol and their corresponding cumulus cells did not show changes in expression for genes analyzed as compared to untreated controls. Notably, blastocysts from oocytes matured in cortisol-supplemented medium expressed higher relative levels of glucose transporter 1 (GLUT1), fatty acid synthase (FASN), and heat shock protein 70 (HSP70). This study supports a role for cortisol in the acquisition of bovine oocyte competence. This is evidenced by increased blastocyst development rates and presumably related to elevated embryonic transcripts with roles in glucose and lipid metabolism, as well as the cellular response to stress.
Collapse
|
39
|
Sharafi M, Zhandi M, Shahverdi A, Shakeri M. Beneficial Effects of Nitric Oxide Induced Mild Oxidative Stress on Post-Thawed Bull Semen Quality. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2015; 9:230-7. [PMID: 26246882 PMCID: PMC4518492 DOI: 10.22074/ijfs.2015.4244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
Background Cryopreservation of semen requires optimized conditions to minimize the
harmful effects of various stresses. The main approach for protection of sperm against
stress is based on the use of antioxidants and cryoprotectants, which are described as
defensive methods. Recently, the application of controlled mild stressors has been de-
scribed for activation of a temporary response in oocyte, embryo and somatic cells. In
this study a sub-lethal oxidative stress induced by precise concentrations of nitric oxide
(NO) has been evaluated for sperm during cryopreservation. Materials and Methods In this experimental study, we used different concentrations
of NO [0 µM (NO-0), 0.01 µM (NO-0.01), 0.1 µM (NO-0.1), 1 µM (NO-1), 10 µM
(NO-10) and 100 µM (NO-100)] during cryopreservation of bull semen. Their effects on
post-thawed sperm quality that included motility and velocity parameters, plasma mem-
brane functionality, acrosome integrity, apoptosis status, mitochondrial activity and lipid
peroxidation after freezing-thawing were investigated. Results Exposure of sperm before freezing to NO-1 significantly increased total motility
(88.4 ± 2.8%), progressive motility (50.4 ± 3.2%) and average path velocity (VAP, 53.8 ± 3.1
µm/s) compared to other extenders. In addition, NO-1 significantly increased plasma mem-
brane functionality (89.3 ± 2.9%) compared to NO-0 (75.3 ± 2.9%), NO-0.01 (78.3 ± 2.9%),
NO-0.1 (76.4 ± 2.9%), NO-10 (64 ± 2.9%) and NO-100 (42 ± 2.9%). Sperm exposed to NO-1
produced the highest percentage of viable (85.6 ± 2.3%) and the lowest percentage of apoptotic
(10.8 ± 2.4%) spermatozoa compared to the other extenders. Also, NO-100 resulted in a higher
percentage of dead spermatozoa (27.1 ± 2.7%) compared to the other extenders. In terms of
mitochondrial activity, there was no significant difference among NO-0 (53.4 ± 3.2), NO-0.01
(52.1 ± 3.2), NO-0.1 (50.8 ± 3.2) and NO-1 (53.1 ± 3.2). For acrosome integrity, no significant
different was observed in sperm exposed to different concentrations of NO. Conclusion Induction of sub-lethal oxidative stress with 1 µM NO would be beneficial
for cryopreservation of bull semen.
Collapse
Affiliation(s)
- Mohsen Sharafi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | - Malak Shakeri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
40
|
Effect of ethanol induced mild stress on post-thawed bull sperm quality. Cryobiology 2015; 71:12-7. [PMID: 26111883 DOI: 10.1016/j.cryobiol.2015.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/23/2022]
Abstract
This study was performed to investigate the effect of sub-lethal exposure of bull semen to ethanol on the post-thaw spermatozoa quality. Semen samples (n=24, 6 ejaculates/bull) from 4 Holstein bulls were collected and pooled. Pooled samples were divided into 4 equal parts and each part was frozen after being diluted with Optidyl® extender containing 0 (O-E0), 0.03 (O-E3), 0.09 (O-E9) and 0.15 (O-E15) % (v/v) absolute ethanol. Sperm motility and velocity, plasma membrane integrity and functionality, mitochondrial activity, malondialdehyde concentration, and apoptosis status were evaluated after thawing. A higher percentage of total motility was observed in the O-E9 group as compared to the O-E0, O-E3 and O-E15 groups (p<0.05). Also, plasma membrane integrity was higher (p<0.05) in the O-E9 group compared to the O-E3, and O-E15 groups. However, the difference between the O-E9 and O-E0 groups was not significant (p>0.05). In terms of the proportion of sperm abnormality and plasma membrane functionality no differences (p>0.05) were observed between the groups. Our results revealed that malondialdehyde level was lower in ethanol treated (O-E3, O-E9 and O-E15) groups compared to the O-E0 group (p<0.05). Furthermore, the percentage of live spermatozoa with active mitochondria was higher in the O-E9 and O-E15 groups compared to the O-E0 and O-E3 groups (p<0.05). The O-E3 and O-E9 groups resulted in the highest and lowest percentage of apoptotic spermatozoa, respectively (p<0.05). The results of this study demonstrate that supplementation of semen extender with sub-lethal concentration of ethanol influences post-thawed bull sperm quality in a dose dependent manner.
Collapse
|
41
|
Arcarons N, Morató R, Spricigo JFW, Ferraz MAMM, Mogas T. Spindle configuration and developmental competence of in vitro-matured bovine oocytes exposed to NaCl or sucrose prior to Cryotop vitrification. Reprod Fertil Dev 2015; 28:RD14516. [PMID: 25897945 DOI: 10.1071/rd14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/26/2015] [Indexed: 11/23/2022] Open
Abstract
In the present study we examined whether exposure to high concentrations of NaCl or sucrose before vitrification improves the cryotolerance of in vitro-matured bovine oocytes. In Experiment 1, oocytes were exposed to different concentrations of NaCl (375-1517 mOsm) or sucrose (375-812 mOsm) for 1h. On the basis of the results of this experiment, in Experiment 2 oocytes were exposed to 0.25% NaCl (375 mOsmol) or 2.77% sucrose (375 mOsmol) solution, vitrified and warmed. Microtubule and chromosome configurations were examined by immunocytochemistry. In Experiment 3, in vitro embryo development was assessed after vitrification of oocytes with or without 2.77% sucrose (375 mOsmol) pretreatment. There was a similar percentage of oocytes showing normal spindle configurations in the sucrose-pretreated and control groups. Higher rates of abnormal spindles were found in groups treated with NaCl or sucrose solutions with >375 mOsmol. After vitrification and warming, a significantly higher percentage of oocytes with normal chromosome configurations was recorded for oocytes exposed to 375 mOsmol sucrose solution before vitrification compared with the control vitrified oocytes. However, these percentages were significantly lower than those recorded in untreated controls. Cleavage and blastocyst rates were higher in non-vitrified than vitrified oocytes. In conclusion, pretreatment with 375 mOsmol NaCl or sucrose solution had no adverse effects on the spindle status of vitrified-warmed cow oocytes. However, sucrose pretreatment offered no benefits for embryo development.
Collapse
|
42
|
Velazquez MA. Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest Anim Endocrinol 2015; 51:27-45. [PMID: 25498236 DOI: 10.1016/j.domaniend.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
During episodes of undernutrition and overnutrition the mammalian preimplantation embryo undergoes molecular and metabolic adaptations to cope with nutrient deficits or excesses. Maternal adaptations also take place to keep a nutritional microenvironment favorable for oocyte development and embryo formation. This maternal-embryo communication takes place via several nutritional mediators. Although adaptive responses to malnutrition by both the mother and the embryo may ensure blastocyst formation, the resultant quality of the embryo can be compromised, leading to early pregnancy failure. Still, studies have shown that, although early embryonic mortality can be induced during malnutrition, the preimplantation embryo possesses an enormous plasticity that allows it to implant and achieve a full-term pregnancy under nutritional stress, even in extreme cases of malnutrition. This developmental strategy, however, may come with a price, as shown by the adverse developmental programming induced by even subtle nutritional challenges exerted exclusively during folliculogenesis and the preimplantation period, resulting in offspring with a higher risk of developing deleterious phenotypes in adulthood. Overall, current evidence indicates that malnutrition during the periconceptional period can induce cellular and molecular alterations in preimplantation embryos with repercussions for fertility and postnatal health.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
43
|
Somigliana E, Benaglia L, Paffoni A, Busnelli A, Vigano P, Vercellini P. Risks of conservative management in women with ovarian endometriomas undergoing IVF. Hum Reprod Update 2015; 21:486-99. [DOI: 10.1093/humupd/dmv012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/16/2015] [Indexed: 12/14/2022] Open
|
44
|
Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:77-128. [PMID: 25956296 DOI: 10.1007/978-1-4939-2480-6_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a tendency to prioritize differentiation by increasing the first essential lineage and decreasing later lineages. These mechanisms include stress enzymes that regulate TFs and provide stress-specific, shared homeostatic cellular and organismal responses of prioritized differentiation.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- Department of Ob/Gyn, REI Division, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
45
|
IVF outcome in women with accidental contamination of follicular fluid with endometrioma content. Eur J Obstet Gynecol Reprod Biol 2014; 181:130-4. [DOI: 10.1016/j.ejogrb.2014.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
|
46
|
Stokich B, Osgood Q, Grimm D, Moorthy S, Chakraborty N, Menze MA. Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology 2014; 69:281-90. [DOI: 10.1016/j.cryobiol.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
47
|
Vajta G, Reichart A, Ubaldi F, Rienzi L. From a backup technology to a strategy-outlining approach: the success story of cryopreservation. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.80] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Zhao Y, Tao L, Jiang D, Chen X, Li P, Ning Y, Xiong R, Liu P, Peng Y, Zhou YG. The -144C/A polymorphism in the promoter of HSP90beta is associated with multiple organ dysfunction scores. PLoS One 2013; 8:e58646. [PMID: 23516526 PMCID: PMC3596273 DOI: 10.1371/journal.pone.0058646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/05/2013] [Indexed: 01/06/2023] Open
Abstract
Introduction Variations in genetic background are the leading cause of differential susceptibility to traumatic infection. Heat shock protein 90 (HSP90), a broadly distributed and conserved molecule, regulates inflammation under stressful and traumatic conditions. However, the relationships between HSP90 genetic polymorphisms, post-traumatic inflammatory responses and organ function remain unknown. Methods A total of 286 healthy volunteers and patients with severe trauma took part in a single nucleotide polymorphism (SNP)-based analysis of the HSP90beta gene and a clinical association analysis. HSP90beta and TNF-alpha levels were determined using quantitative PCR and western blot. The transcriptional activity of the HSP90beta promoter was assayed using the Dual-Luciferase Reporter Assay System. Results The minor allele frequencies for the SNP located at −144 bp relative to the HSP90beta transcriptional start site were 28.47% and 28.52% in the normal and trauma populations, respectively; no significant differences were found between these two distributions. However, the results showed that a promoter containing the -144A allele had a higher transcriptional activity than did a promoter containing the wild-type -144C allele. Furthermore, the -144A promoter induced high expression of HSP90beta and low expression of the inflammatory factor TNF-alpha in a lipopolysaccharide-induced inflammatory model. A clinical association analysis showed that the multiple organ dysfunction scores for -144AA genotype carriers were significantly lower than those of -144CC carriers following trauma. No significant correlations were found between the presence of the two alleles and the incidence of sepsis. Conclusions These results indicate that differences in expression caused by the -144 polymorphism in the HSP90beta promoter are associated with cellular inflammatory responses and the severity of organ injury. These findings will aid in risk assessment and early prevention of complications for patients with severe trauma.
Collapse
Affiliation(s)
- Yan Zhao
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cebrian-Serrano A, Salvador I, Raga E, Dinnyes A, Silvestre MA. Beneficial Effect of Melatonin on BlastocystIn VitroProduction from Heat-Stressed Bovine Oocytes. Reprod Domest Anim 2013; 48:738-46. [DOI: 10.1111/rda.12154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - I Salvador
- Centro de Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias; Segorbe; Spain
| | - E Raga
- Centro de Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias; Segorbe; Spain
| | | | | |
Collapse
|
50
|
Driver AM, Khatib H. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Heat shock proteins: Potentially powerful markers for preimplantation embryonic development and fertility in livestock species1,2. J Anim Sci 2013; 91:1154-61. [DOI: 10.2527/jas.2012-5928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A. M. Driver
- Department of Dairy Science, University of Wisconsin, Madison 53706
| | - H. Khatib
- Department of Animal Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|