1
|
Arenas GA, Lorca RA. Effects of hypoxia on uteroplacental and fetoplacental vascular function during pregnancy. Front Physiol 2024; 15:1490154. [PMID: 39744703 PMCID: PMC11688409 DOI: 10.3389/fphys.2024.1490154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025] Open
Abstract
During pregnancy, marked changes in vasculature occur. The placenta is developed, and uteroplacental and fetoplacental circulations are established. These processes may be negatively affected by genetic anomalies, maternal environment (i.e., obesity or diabetes), and environmental conditions such as pollutants and hypoxia. Chronic hypoxia has detrimental effects on the vascular adaptations to pregnancy and fetal growth. The typical pregnancy-dependent rise in uterine blood flow by vascular remodeling and vasodilation of maternal uterine arteries is reduced, leading to increases in vascular tone. These maladaptations may lead to complications such as fetal growth restriction (FGR) and preeclampsia. In this review, the effect of hypoxia on uteroplacental and fetoplacental circulation and its impact on pregnancy outcomes in humans and animal models are discussed. Evidence is provided for several mechanisms that affect pregnancy through hypoxia-induced alterations. Future directions to fill gaps in knowledge and develop therapeutic strategies to prevent or alleviate hypoxia-related pregnancy complications, such as FGR and preeclampsia, are suggested.
Collapse
Affiliation(s)
| | - Ramón A. Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Moore LG, Lorca RA, Gumina DL, Wesolowski SR, Reisz JA, Cioffi-Ragan D, Houck JA, Banerji S, Euser AG, D'Alessandro A, Hobbins JC, Julian CG. Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia. Am J Physiol Heart Circ Physiol 2024; 327:H778-H792. [PMID: 39028630 PMCID: PMC11482288 DOI: 10.1152/ajpheart.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
High-altitude (HA) hypoxia lowers uterine artery (UtA) blood flow during pregnancy and birth weight. Adenosine monophosphate kinase (AMPK) activation has selective, uteroplacental vasodilator effects that lessen hypoxia-associated birth weight reductions. In this study, we determined the relationship between AMPK-pathway gene expression and metabolites in the maternal circulation during HA pregnancy as well as with the maintenance of UtA blood flow and birth weight at HA. Residents at HA (2,793 m) versus low altitude (LA; 1,640 m) had smaller UtA diameters at weeks 20 and 34, lower UtA blood flow at week 20, and lower birth weight babies. At week 34, women residing at HA versus women residing at LA had decreased expression of upstream and downstream AMPK-pathway genes. Expression of the α1-AMPK catalytic subunit, PRKAA1, correlated positively with UtA diameter and blood flow at weeks 20 (HA) and 34 (LA). Downstream AMPK-pathway gene expression positively correlated with week 20 fetal biometry at both altitudes and with UtA diameter and birth weight at LA. Reduced gene expression of AMPK activators and downstream targets in women residing at HA versus women residing at LA, together with positive correlations between PRKAA1 gene expression, UtA diameter, and blood flow suggest that greater sensitivity to AMPK activation at midgestation at HA may help offset later depressant effects of hypoxia on fetal growth.NEW & NOTEWORTHY Fetal growth restriction (FGR) is increased and uterine artery (UtA) blood flow is lower at high altitudes (HA) but not all HA pregnancies have FGR. Here we show that greater UtA diameter and blood flow at week 20 are positively correlated with higher expression of the gene encoding the α1-catalytic subunit of AMP protein kinase, PRKAA1, suggesting that increased AMPK activation may help to prevent the detrimental effects of chronic hypoxia on fetal growth.
Collapse
Affiliation(s)
- Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Diane L Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
| | - Stephanie R Wesolowski
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darleen Cioffi-Ragan
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Houck
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah Banerji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Anna G Euser
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John C Hobbins
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
3
|
Moronge D, Ayulo V, Elgazzaz M, Mellott E, Ogbi S, Faulkner JL. Both endothelial mineralocorticoid receptor expression and hyperleptinemia are required for clinical characteristics of placental ischemia in mice. Am J Physiol Heart Circ Physiol 2024; 327:H118-H130. [PMID: 38758130 PMCID: PMC11380964 DOI: 10.1152/ajpheart.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
One of the initiating events in preeclampsia (PE) is placental ischemia. Rodent models of placental ischemia do not present with vascular endothelial dysfunction, a hallmark of PE. We previously demonstrated a role for leptin in endothelial dysfunction in pregnancy in the absence of placental ischemia. We hypothesized that placental ischemia requires hyperleptinemia and endothelial mineralocorticoid receptor (ECMR) expression to induce PE-associated endothelial dysfunction in pregnant mice. We induced placental ischemia via the reduced uterine perfusion pressure (RUPP) procedure in pregnant ECMR-intact (ECMR+/+) and ECMR deletion (ECMR-/-) mice at gestational day (GD) 13. ECMR+/+ RUPP pregnant mice also received concurrent leptin infusion via miniosmotic pump (0.9 mg/kg/day). RUPP increased blood pressure via radiotelemetry and decreased fetal growth in ECMR+/+ pregnant mice. Both increases in blood pressure and reduced fetal growth were abolished in RUPP ECMR-/- mice. Placental ischemia did not decrease endothelial-dependent relaxation to acetylcholine (ACh) but increased phenylephrine (Phe) contraction in mesenteric arteries of pregnant mice, which was ablated by ECMR deletion. Addition of leptin to RUPP mice significantly reduced ACh relaxation in ECMR+/+ pregnant mice, accompanied by an increase in soluble FMS-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PLGF) ratio. In conclusion, our data indicate that high leptin levels drive endothelial dysfunction in PE and that ECMR is required for clinical characteristics of hypertension and fetal growth restriction in placental ischemia PE. Collectively, we show that both ECMR and leptin play a role to mediate PE.NEW & NOTEWORTHY Leptin is a key feature of preeclampsia that initiates vascular endothelial dysfunction in preeclampsia characterized by placental ischemia. Endothelial mineralocorticoid receptor (ECMR) deletion in placental ischemia protects pregnant mice from elevations in blood pressure and fetal growth restriction in pregnancy. Increases in leptin production mediate the key pathological feature of endothelial dysfunction in preeclampsia in rodents. ECMR activation contributes to the increase in blood pressure and fetal growth restriction in preeclampsia.
Collapse
Affiliation(s)
- Desmond Moronge
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Victor Ayulo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mona Elgazzaz
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Safia Ogbi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Obstetrics and Gynecology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Julian CG, Houck JA, Fallahi S, Lazo-Vega L, Matarazzo CJ, Diamond B, Miranda-Garrido V, Krause BJ, Moore LG, Shortt JA, Toledo-Jaldin L, Lorca RA. Altered placental ion channel gene expression in preeclamptic high-altitude pregnancies. Physiol Genomics 2023; 55:357-367. [PMID: 37458464 PMCID: PMC10642922 DOI: 10.1152/physiolgenomics.00013.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.
Collapse
Affiliation(s)
- Colleen G Julian
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Houck
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sahand Fallahi
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Litzi Lazo-Vega
- Department of Obstetrics and Gynecology, Hospital Materno-Infantil, La Paz, Bolivia
| | - Christopher J Matarazzo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Breea Diamond
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Jonathan A Shortt
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lilian Toledo-Jaldin
- Department of Obstetrics and Gynecology, Hospital Materno-Infantil, La Paz, Bolivia
| | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
5
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
6
|
Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. Int J Mol Sci 2022; 23:ijms23169446. [PMID: 36012712 PMCID: PMC9409294 DOI: 10.3390/ijms23169446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
A progressive increase in maternal uterine and placental blood flow must occur during pregnancy to sustain the development of the fetus. Changes in maternal vasculature enable an increased uterine blood flow, placental nutrient and oxygen exchange, and subsequent fetal development. K+ channels are important modulators of vascular function, promoting vasodilation, inducing cell proliferation, and regulating cell signaling. Different types of K+ channels, such as Ca2+-activated, ATP-sensitive, and voltage-gated, have been implicated in the adaptation of maternal vasculature during pregnancy. Conversely, K+ channel dysfunction has been associated with vascular-related complications of pregnancy, including intrauterine growth restriction and pre-eclampsia. In this article, we provide an updated and comprehensive literature review that highlights the relevance of K+ channels as regulators of uterine vascular reactivity and their potential as therapeutic targets.
Collapse
|
7
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
8
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
9
|
Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol 2020; 319:H661-H681. [PMID: 32762557 DOI: 10.1152/ajpheart.00202.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a major complication of pregnancy manifested as hypertension and often intrauterine growth restriction, but the underlying pathophysiological mechanisms are unclear. Predisposing genetic and environmental factors cause placental maladaptations leading to defective placentation, apoptosis of invasive cytotrophoblasts, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia. Placental ischemia promotes the release of bioactive factors into the maternal circulation, causing an imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and proangiogenic vascular endothelial growth factor, placental growth factor, and transforming growth factor-β. Placental ischemia also stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin type 1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, causing generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels, leading to decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. The bioactive factors also target vascular smooth muscle and enhance the mechanisms of vascular contraction, including cytosolic Ca2+, protein kinase C, and Rho-kinase. The bioactive factors could also target matrix metalloproteinases and the extracellular matrix, causing inadequate vascular remodeling, increased arterial stiffening, and further increases in vascular resistance and hypertension. As therapeutic options are limited, understanding the underlying vascular mechanisms and molecular targets should help design new tools for the detection and management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Lorca RA, Matarazzo CJ, Bales ES, Houck JA, Orlicky DJ, Euser AG, Julian CG, Moore LG. AMPK activation in pregnant human myometrial arteries from high-altitude and intrauterine growth-restricted pregnancies. Am J Physiol Heart Circ Physiol 2020; 319:H203-H212. [PMID: 32502374 DOI: 10.1152/ajpheart.00644.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-altitude (>2,500 m) residence increases the incidence of intrauterine growth restriction (IUGR) due, in part, to reduced uterine artery blood flow and impaired myometrial artery (MA) vasodilator response. A role for the AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR is suggested by genomic and transcriptomic studies in humans and functional studies in mice. AMPK is a hypoxia-sensitive metabolic sensor with vasodilatory properties. Here we hypothesized that AMPK-dependent vasodilation was increased in MAs from high versus low-altitude (<1,700 m) Colorado women with appropriate for gestational age (AGA) pregnancies and reduced in IUGR pregnancies regardless of altitude. Vasoreactivity studies showed that, in AGA pregnancies, MAs from high-altitude women were more sensitive to vasodilation by activation of AMPK with A769662 due chiefly to increased endothelial nitric oxide production, whereas MA responses to AMPK activation in the low-altitude women were endothelium independent. MAs from IUGR compared with AGA pregnancies had blunted vasodilator responses to acetylcholine at high altitude. We concluded that 1) blunted vasodilator responses in IUGR pregnancies confirm the importance of MA vasodilation for normal fetal growth and 2) the increased sensitivity to AMPK activation in AGA pregnancies at high altitude suggests that AMPK activation helped maintain MA vasodilation and fetal growth. These results highlight a novel mechanism for vasodilation of MAs under conditions of chronic hypoxia and suggest that AMPK activation could provide a therapy for increasing uteroplacental blood flow and improving fetal growth in IUGR pregnancies.NEW & NOTEWORTHY Intrauterine growth restriction (IUGR) impairs infant well- being and increases susceptibility to later-in-life diseases for mother and child. Our study reveals a novel role for AMPK in vasodilating the myometrial artery (MA) from women residing at high altitude (>2,500 m) with appropriate for gestational age pregnancies but not in IUGR pregnancies at any altitude.
Collapse
Affiliation(s)
- Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Christopher J Matarazzo
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Elise S Bales
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Houck
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Anna G Euser
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
11
|
Lorca RA, Lane SL, Bales ES, Nsier H, Yi H, Donnelly MA, Euser AG, Julian CG, Moore LG. High Altitude Reduces NO-Dependent Myometrial Artery Vasodilator Response During Pregnancy. Hypertension 2019; 73:1319-1326. [PMID: 31006328 DOI: 10.1161/hypertensionaha.119.12641] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chronic hypoxia of high-altitude (HA) residence reduces uterine artery blood flow during pregnancy, likely contributing to an increased frequency of preeclampsia and intrauterine growth restriction. We hypothesized that this lesser pregnancy blood flow rise was due, in part, to reduced vasodilation of myometrial arteries (MAs). Here, we assessed MA vasoreactivity in healthy residents of high (2902±39 m) or low altitude (LA; 1669±10 m). MA contractile responses to potassium chloride, phenylephrine, or the thromboxane A2 agonist U46619 did not differ between LA and HA women. Acetylcholine vasodilated phenylephrine or U466119 preconstricted MAs at LA, yet had no effect on HA MAs. In contrast, another vasodilator, bradykinin, relaxed MAs from both altitudes similarly. At LA, the NO synthase inhibitor L-NG-nitroarginine methyl ester decreased both acetylcholine and bradykinin vasodilation by 56% and 33%, respectively. L-NG-nitroarginine methyl ester plus the COX (cyclooxygenase) inhibitor indomethacin had similar effects on acetylcholine and bradykinin vasodilation (68% and 42% reduction, respectively) as did removing the endothelium (78% and 50% decrease, respectively), suggesting a predominantly NO-dependent vasodilation at LA. However, at HA, L-NG-nitroarginine methyl ester did not change bradykinin vasodilation, whereas indomethacin or endothelium removal decreased it by 28% and 72%, respectively, indicating impaired NO signaling at HA. Suggesting that the impairment was downstream of eNOS (endothelial NO synthase), HA attenuated the vasodilation elicited by the NO donor sodium nitroprusside. We concluded that reduced NO-dependent MA vasodilation likely contributes to diminished uteroplacental perfusion in HA pregnancies.
Collapse
Affiliation(s)
- Ramón A Lorca
- From the Division of Reproductive Sciences (R.A.L., S.L.L., E.S.B., L.G.M.), University of Colorado Denver, Aurora
| | - Sydney L Lane
- From the Division of Reproductive Sciences (R.A.L., S.L.L., E.S.B., L.G.M.), University of Colorado Denver, Aurora
| | - Elise S Bales
- From the Division of Reproductive Sciences (R.A.L., S.L.L., E.S.B., L.G.M.), University of Colorado Denver, Aurora
| | - Hisham Nsier
- BA/BS-MD Program, College of Liberal Arts and Sciences (H.N., H.Y.), University of Colorado Denver, Aurora
| | - HeaMi Yi
- BA/BS-MD Program, College of Liberal Arts and Sciences (H.N., H.Y.), University of Colorado Denver, Aurora
| | - Meghan A Donnelly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology (M.A.D., A.G.E.), University of Colorado Denver, Aurora
| | - Anna G Euser
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology (M.A.D., A.G.E.), University of Colorado Denver, Aurora
| | - Colleen G Julian
- Division of Bioinformatics and Personalized Medicine, Department of Medicine (C.G.J.), University of Colorado Denver, Aurora
| | - Lorna G Moore
- From the Division of Reproductive Sciences (R.A.L., S.L.L., E.S.B., L.G.M.), University of Colorado Denver, Aurora
| |
Collapse
|
12
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
13
|
Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci 2019; 20:ijms20184411. [PMID: 31500313 PMCID: PMC6769656 DOI: 10.3390/ijms20184411] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam-Golm 14476, Germany.
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada.
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine (ITERM), School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), New Territories, Hong Kong, China
| | - Ralf-Peter Franke
- Central Institute for Biomedical Technology, Dep. Biomaterials, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany
| |
Collapse
|
14
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Marshall SA, Leo CH, Girling JE, Tare M, Beard S, Hannan NJ, Parry LJ. Relaxin treatment reduces angiotensin II-induced vasoconstriction in pregnancy and protects against endothelial dysfunction†. Biol Reprod 2018; 96:895-906. [PMID: 28379296 DOI: 10.1093/biolre/iox023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/31/2017] [Indexed: 01/31/2023] Open
Abstract
The peptide relaxin has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in cardiovascular disease. In this study, we tested the hypothesis that relaxin treatment alleviates systemic vascular dysfunction characteristic of hypertensive diseases of pregnancy. We investigated vascular effects and mechanisms of relaxin action in (i) pregnant relaxin-deficient (Rln-/-) mice with enhanced responses to angiotensin II (AngII) and (ii) arteries pre-incubated ex vivo in trophoblast conditioned media (TCM) to induce endothelial dysfunction. Pregnant Rln-/- mice received 0.5 μg/h recombinant human H2 relaxin (rhRLX: n = 5) or placebo (20 nM sodium acetate; n = 7) subcutaneously via osmotic minipumps for 5 days prior to gestational day 17.5. This treatment protocol significantly reduced AngII-mediated contraction of mesenteric arteries and increased plasma 6-keto prostaglandin F1α. These vascular effects were endothelium independent and likely involve smooth muscle-derived vasodilator prostanoids. In the second study, mesenteric arteries were incubated ex vivo for 24 h at 37°C in TCM, which contained high levels of soluble Flt-1 (>20 ng/ml) and soluble Eng (>1 ng/ml). TCM incubation caused significant reduction in endothelium-dependent relaxation and increased sensitivity to AngII. Co-incubation of arteries with rhRLX for 24 h (n = 6-16/treatment) prevented endothelial dysfunction but had no effect on AngII-mediated contraction. In conclusion, relaxin treatment prevents and/or reverses vascular dysfunction in mesenteric arteries, but acts through different vascular pathways depending on duration of relaxin treatment and type of vascular dysfunction. Overall, our data suggest that relaxin is a potential therapeutic to alleviate maternal systemic vascular dysfunction associated with hypertensive diseases in pregnant women.
Collapse
Affiliation(s)
- Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia.,Monash Rural Health, Monash University, Victoria, Australia
| | - Sally Beard
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Natalie J Hannan
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
18
|
Affiliation(s)
- Styliani Goulopoulou
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| |
Collapse
|
19
|
Reyna-Villasmil E, Mejia-Montilla J, Santos-Bolívar J, Torres-Cepeda D, Navarro-Briceño Y, Reyna-Villasmil N, Cuevas-González A. Óxido nítrico plasmático y doppler de las arterias uterinas en preeclámpticas y embarazadas normotensas sanas. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2017. [DOI: 10.1016/j.gine.2016.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Balasubbramanian D, Gelston CAL, Mitchell BM, Chatterjee P. Toll-like receptor activation, vascular endothelial function, and hypertensive disorders of pregnancy. Pharmacol Res 2017; 121:14-21. [DOI: 10.1016/j.phrs.2017.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 11/26/2022]
|
21
|
Leo CH, Jelinic M, Ng HH, Marshall SA, Novak J, Tare M, Conrad KP, Parry LJ. Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol 2016; 174:1002-1014. [PMID: 27590257 DOI: 10.1111/bph.13614] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/28/2022] Open
Abstract
The peptide hormone relaxin regulates the essential maternal haemodynamic adaptations in early pregnancy through direct actions on the renal and systemic vasculature. These vascular actions of relaxin occur mainly through endothelium-derived NO-mediated vasodilator pathways and improvements in arterial compliance in small resistance-size arteries. This work catalysed a plethora of studies which revealed quite heterogeneous responses across the different regions of the vasculature, and also uncovered NO-independent mechanisms of relaxin action. In this review, we first describe the role of endogenous relaxin in maintaining normal vascular function, largely referring to work in pregnant and male relaxin-deficient animals. We then discuss the diversity of mechanisms mediating relaxin action in different vascular beds, including the involvement of prostanoids, VEGF, endothelium-derived hyperpolarisation and antioxidant activity in addition to the classic NO-mediated vasodilatory pathway. We conclude the review with current perspectives on the vascular remodelling capabilities of relaxin. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C H Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - M Jelinic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - H H Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - S A Marshall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - J Novak
- Division of Mathematics and Science, Walsh University, North Canton, OH, USA
| | - M Tare
- Department of Physiology, Monash University, Clayton, VIC, Australia.,School of Rural Health, Monash University, Clayton, VIC, Australia
| | - K P Conrad
- Department of Physiology and Functional Genomics, Department of Obstetrics and Gynaecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Marshall SA, Leo CH, Senadheera SN, Girling JE, Tare M, Parry LJ. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R847-57. [DOI: 10.1152/ajpregu.00506.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient ( Rln−/−) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant ( day 17.5) wild-type ( Rln+/+) and Rln−/− mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln+/+ mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln−/− mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 ( Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln+/+ mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids.
Collapse
Affiliation(s)
- Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Jane E. Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia; and
- School of Rural Health, Monash University, Victoria, Australia
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
|
24
|
Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med 2014; 21:88-97. [PMID: 25541377 DOI: 10.1016/j.molmed.2014.11.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada.
| |
Collapse
|
25
|
Brennan LJ, Morton JS, Davidge ST. Vascular dysfunction in preeclampsia. Microcirculation 2014; 21:4-14. [PMID: 23890192 DOI: 10.1111/micc.12079] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
26
|
Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol 2014; 306:F1121-35. [PMID: 24647709 DOI: 10.1152/ajprenal.00042.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the first trimester of human pregnancy, the maternal systemic circulation undergoes remarkable vasodilation. The kidneys participate in this vasodilatory response resulting in marked increases in renal plasma flow (RPF) and glomerular filtration rate (GFR). Comparable circulatory adaptations are observed in conscious gravid rats. Administration of the corpus luteal hormone relaxin (RLN) to nonpregnant rats and humans elicits vasodilatory changes like those of pregnancy. Systemic and renal vasodilation are compromised in midterm pregnant rats by neutralization or elimination of circulating RLN and in women conceiving with donor eggs who lack a corpus luteum and circulating RLN. Although RLN exerts both rapid (minutes) and sustained (hours to days) vasodilatory actions through different molecular mechanisms, a final common pathway is endothelial nitric oxide. In preeclampsia (PE), maternal systemic and renal vasoconstriction leads to hypertension and modest reduction in GFR exceeding that of RPF. Elevated level of circulating soluble vascular endothelial growth factor receptor-1 arising from the placenta is implicated in the hypertension and disruption of glomerular fenestrae and barrier function, the former causing reduced Kf and the latter proteinuria. Additional pathogenic factors are discussed. Last, potential clinical ramifications include RLN replacement in women conceiving with donor eggs and its therapeutic use in PE. Another goal has been to apply knowledge gained from investigating circulatory adaptations in pregnancy toward identifying and developing novel therapeutic strategies for renal and cardiovascular disease in the nonpregnant population. So far, one candidate to emerge is RLN and its potential therapeutic use in heart failure.
Collapse
Affiliation(s)
- Kirk P Conrad
- Departments of Physiology and Functional Genomics and Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida; and
| | - John M Davison
- Institute of Cellular Medicine and Royal Victoria Infirmary, Newcastle University and Newcastle Hospitals National Health Service Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
27
|
Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:27-47. [DOI: 10.1007/978-1-4939-1031-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Moyes AJ, Gray GA, Denison FC. Bradykinin B1 receptor-mediated vasodilation is impaired in myometrial arteries from women with pre-eclampsia. Hypertens Pregnancy 2013; 33:177-90. [PMID: 24304135 DOI: 10.3109/10641955.2013.846368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the vascular functional activity, localisation and expression of B1 and B2 kinin receptors in normal pregnancy and pre-eclampsia. METHODS Kinin receptor-mediated relaxation of myometrial arteries was assessed using wire myography. Immunohistochemical staining and gene expression of kinin receptors in the myometrium was determined. RESULTS B2 receptor-mediated relaxation was reduced in pre-eclampsia. B1 receptor-mediated relaxation was observed in a proportion of healthy women and was impaired in pre-eclampsia. Receptor expression and localisation was unaltered in pre-eclampsia. CONCLUSION Here, we demonstrate a novel B1 receptor-mediated vasodilatation in healthy myometrial vessels that is absent in pre-eclampsia.
Collapse
|
29
|
Abstract
Pregnancy encompasses substantial changes in vascular function to accommodate dramatic increases in blood volume and uteroplacental blood flow to the growing fetus. Despite increased hemodynamics, decreased peripheral resistance results in a reduction in mean arterial blood pressure. Vascular tone, and hence peripheral resistance, is determined by a delicate balance of constrictor and dilator capacities. In the normal physiological response to pregnancy, endothelial-derived hyperpolarization (EDH) has been shown to be a major contributor; both EDH and nitric oxide (NO) are predominantly involved in providing an increased vascular capacity for vasodilation. The ability of EDH and NO to adequately accommodate increased blood volume is tested in pathological states such as placental insufficiency or diabetes and both EDH and NO-dependent mechanisms seem to be impacted in these situations. Pregnancy complications also have an impact on the cardiovascular health of the offspring. In adult offspring born from complicated pregnancies, the data suggest that EDH mechanisms are largely maintained, whereas NO is commonly reduced. A diversity of EDH mechanisms may be useful in providing many targets for potential therapeutic avenues for compromised pregnancies; however, further research delineating the mechanisms of EDH and the interactions of NO and EDH, in normal and pathological pregnancies is required.
Collapse
|
30
|
Turgut NH, Temiz TK, Turgut B, Karadas B, Parlak M, Bagcivan I. Investigation of the role of the NO-cGMP pathway on YC-1 and DEA/NO effects on thoracic aorta smooth muscle responses in a rat preeclampsia model. Can J Physiol Pharmacol 2013; 91:797-803. [PMID: 24144050 DOI: 10.1139/cjpp-2013-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the effects of YC-1, a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO, a NO donor, on smooth muscle responses in the preeclampsia model with suramin-treated rats and on the levels of cyclic guanosine monophosphate (cGMP) of thoracic aorta rings isolated from term-pregnant rats. Rats of 2 groups, control group and suramin group, were given intraperitoneal injection of saline or suramin, respectively. Suramin injection caused increased blood pressure, protein in urine, and fetal growth retardation. Thoracic aorta rings were exposed to contractile and relaxant agents. KCl contraction and papaverine relaxation responses were similar. Relaxation responses of YC-1 and DEA/NO decreased in suramin group. In both groups in the presence of ODQ, a sGC inhibitor, the relaxation responses of YC-1 and DEA/NO decreased. The cGMP content was determined by radioimmunoassay technique. The content of cGMP in the suramin group decreased. In the presence of YC-1 and DEA/NO in both groups, cGMP content increased, but in ODQ-added groups, there was a significant decrease. We conclude that in preeclampsia, the decrease of relaxation responses and the decrease of cGMP content could be due to the reduction in stimulation of sGC and the decrease in cGMP levels.
Collapse
Affiliation(s)
- Nergiz Hacer Turgut
- a Department of Pharmacology, Faculty of Pharmacy, Cumhuriyet University, Sivas 58140, Turkey
| | | | | | | | | | | |
Collapse
|
31
|
Gokina NI, Bonev AD, Gokin AP, Goloman G. Role of impaired endothelial cell Ca(2+) signaling in uteroplacental vascular dysfunction during diabetic rat pregnancy. Am J Physiol Heart Circ Physiol 2013; 304:H935-45. [PMID: 23376827 DOI: 10.1152/ajpheart.00513.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus in pregnancy is associated with impaired endothelium-mediated dilatation of maternal arteries, although the underlying cellular mechanisms remain unknown. In this study, we hypothesized that diabetes during rat gestation attenuates agonist-induced uterine vasodilation through reduced endothelial cell (EC) Ca(2+) elevations and impaired smooth muscle cell (SMC) hyperpolarization and SMC intracellular Ca(2+) concentration ([Ca(2+)]i) responses. Diabetes was induced by an injection of streptozotocin to second-day pregnant rats and confirmed by the development of maternal hyperglycemia. Control rats were injected with a citrate buffer. Fura-2-based measurements of SMC [Ca(2+)]i or microelectrode recordings of SMC membrane potential were performed concurrently with dilator responses to ACh in uteroplacental arteries from control and diabetic pregnant rats. Basal levels of EC [Ca(2+)]i and ACh-induced EC [Ca(2+)]i elevations in pressurized vessels and small EC sheets were studied as well. Diabetes reduced ACh-induced vasodilation due to a markedly impaired EDHF-mediated response. Diminished vasodilation to ACh was associated with attenuated SMC hyperpolarization and [Ca(2+)]i responses. Basal levels of EC [Ca(2+)]i and ACh-induced EC [Ca(2+)]i elevations were significantly reduced by diabetes. In conclusion, these data demonstrate that reduced endothelium-mediated hyperpolarization contributes to attenuated uteroplacental vasodilation and SMC [Ca(2+)]i responses to ACh in diabetic pregnancy. Impaired endothelial Ca(2+) signaling is in part responsible for endothelial dysfunction in the uterine resistance vasculature of diabetic rats. Pharmacological improvement of EC Ca(2+) handling may provide an important strategy for the restoration of endothelial function and enhancement of maternal blood flow in human pregnancies complicated by diabetes.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology, and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
32
|
Herse F, Lamarca B, Hubel CA, Kaartokallio T, Lokki AI, Ekholm E, Laivuori H, Gauster M, Huppertz B, Sugulle M, Ryan MJ, Novotny S, Brewer J, Park JK, Kacik M, Hoyer J, Verlohren S, Wallukat G, Rothe M, Luft FC, Muller DN, Schunck WH, Staff AC, Dechend R. Cytochrome P450 subfamily 2J polypeptide 2 expression and circulating epoxyeicosatrienoic metabolites in preeclampsia. Circulation 2012; 126:2990-9. [PMID: 23155181 DOI: 10.1161/circulationaha.112.127340] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia. METHODS AND RESULTS We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 control subjects. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. Reverse-transcription polymerase chain reaction confirmed the upregulation, and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acid (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids, were elevated in preeclamptic women compared with controls in the latter two thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine tumor necrosis factor-α enhanced CYP2J2 gene and protein expression. In 2 independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic angiotensin II rat, we observed elevated EET, dihydroxyeicosatrienoic acid, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MsPPOH). Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel activity. CONCLUSIONS Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.
Collapse
Affiliation(s)
- Florian Herse
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M. Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? Microcirculation 2012; 19:403-15. [PMID: 22074364 DOI: 10.1111/j.1549-8719.2011.00146.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In several species and in many vascular beds, ultrastructural studies describe close contact sites between the endothelium and smooth muscle of <∼20nm. Such sites are thought to facilitate the local action of signaling molecules and/or the passage of current, as metabolic and electrical coupling conduits between the arterial endothelium and smooth muscle. These sites have the potential for bidirectional communication between the endothelium and smooth muscle, as a key pathway for coordinating vascular function. The aim of this brief review is to summarize the literature on the ultrastructural anatomy and distribution of key components of MECC sites in arteries. In addition to their traditional role of facilitating electrical coupling between the two cell layers, data on the role of MECC sites in arteries, as signaling microdomains involving a spatial localization of channels, receptors and calcium stores are highlighted. Diversity in the density and specific characteristics of MECC sites as signaling microdomains suggests considerable potential for functional diversity within and between arteries in health and disease.
Collapse
Affiliation(s)
- Shaun L Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The present review first summarizes the complex chain of events, in endothelial and vascular smooth muscle cells, that leads to endothelium-dependent relaxations (vasodilatations) due to the generation of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and how therapeutic interventions may improve the bioavailability of NO and thus prevent/cure endothelial dysfunction. Then, the role of other endothelium-derived mediators (endothelium-derived hyperpolarizing (EDHF) and contracting (EDCF) factors, endothelin-1) and signals (myoendothelial coupling) is summarized also, with special emphasis on their interaction(s) with the NO pathway, which make the latter not only a major mediator but also a key regulator of endothelium-dependent responses.
Collapse
|
35
|
Eckman DM, Gupta R, Rosenfeld CR, Morgan TM, Charles SM, Mertz H, Moore LG. Pregnancy increases myometrial artery myogenic tone via NOS- or COX-independent mechanisms. Am J Physiol Regul Integr Comp Physiol 2012; 303:R368-75. [PMID: 22739352 DOI: 10.1152/ajpregu.00490.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myogenic tone (MT) is a primary modulator of blood flow in the resistance vasculature of the brain, kidney, skeletal muscle, and perhaps in other high-flow organs such as the pregnant uterus. MT is known to be regulated by endothelium-derived factors, including products of the nitric oxide synthase (NOS) and/or the cyclooxygenase (COX) pathways. We asked whether pregnancy influenced MT in myometrial arteries (MA), and if so, whether such an effect could be attributed to alterations in NOS and/or COX. MA (200-300 μm internal diameter, 2-3 mm length) were isolated from 10 nonpregnant and 12 pregnant women undergoing elective hysterectomy or cesarean section, respectively. In the absence of NOS and/or COX inhibition, pregnancy was associated with increased MT in endothelium-intact MA compared with MA from nonpregnant women (P < 0.01). The increase in MT was not due to increased Ca(2+) entry via voltage-dependent channels since both groups of MA exhibited similar levels of constriction when exposed to 50 mM KCl. NOS inhibition (N(ω)-nitro-L-arginine methyl ester, L-NAME) or combined NOS/COX inhibition (L-NAME/indomethacin) increased MT in MA from pregnant women (P = 0.001 and P = 0.042, respectively) but was without effect in arteries from nonpregnant women. Indomethacin alone was without effect on MT in MA from either nonpregnant or pregnant women. We concluded that MT increases in MA during human pregnancy and that this effect was partially opposed by enhanced NOS activity.
Collapse
Affiliation(s)
- Delrae M Eckman
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Luksha L, Stenvinkel P, Hammarqvist F, Carrero JJ, Davidge ST, Kublickiene K. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease. PLoS One 2012; 7:e36056. [PMID: 22563439 PMCID: PMC3338576 DOI: 10.1371/journal.pone.0036056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/29/2012] [Indexed: 11/21/2022] Open
Abstract
The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD) patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS), prerequisites for myoendothelial gap junctions (MEGJ), and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA) suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.
Collapse
Affiliation(s)
- Leanid Luksha
- Division of Obstetrics & Gynecology, Karolinska Institutet, Karolinska University Hospital, Department of Clinical Science, Intervention & Technology, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Karolinska Institutet, Karolinska University Hospital, Department of Clinical Science, Intervention & Technology, Stockholm, Sweden
| | - Folke Hammarqvist
- Division of Surgery, Karolinska Institutet, Karolinska University Hospital, Department of Clinical Science, Intervention & Technology, Stockholm, Sweden
| | - Juan Jesús Carrero
- Division of Renal Medicine, Karolinska Institutet, Karolinska University Hospital, Department of Clinical Science, Intervention & Technology, Stockholm, Sweden
| | - Sandra T. Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Karolina Kublickiene
- Division of Obstetrics & Gynecology, Karolinska Institutet, Karolinska University Hospital, Department of Clinical Science, Intervention & Technology, Stockholm, Sweden
| |
Collapse
|
37
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
|
39
|
Wareing M, Greenwood SL. Review: Potassium channels in the human fetoplacental vasculature. Placenta 2011; 32 Suppl 2:S203-6. [PMID: 21227507 DOI: 10.1016/j.placenta.2010.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 01/12/2023]
Abstract
Despite their fundamental importance for normal cellular function, potassium (K) channels have been poorly studied in placental vascular tissues. This lack of experimental focus may relate to the fact that, as yet, no pregnancy complications have been directly attributable to a specific "channelopathy". K channel activity is central to normal cellular function. Vascular smooth muscle and endothelial cells within the fetoplacental circulation would be expected to be heavily influenced by the behaviour of K channels, as has been well-documented in other vascular beds. In this review, we summarise current understanding of K channel expression and activity in fetoplacental vasculature in normal and complicated pregnancies.
Collapse
Affiliation(s)
- M Wareing
- Maternal and Fetal Health Research Centre, School of Biomedicine, The University of Manchester, St. Mary's Hospital, Manchester, UK.
| | | |
Collapse
|