1
|
Zheng X, Li X, Qi R, Li Z, Liao Q, Xu Q, Miao J, Pan L. Ovarian toxicity of 2,6-di-tert-butyl-hydroxytoluene on female Ruditapes philippinarum: Reproductive endocrine disruption and oxidative stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138289. [PMID: 40245711 DOI: 10.1016/j.jhazmat.2025.138289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Synthetic phenolic antioxidants (SPAs) are the most widely used antioxidants in the world. There is a growing concern due to their potential toxic effects and high pollution levels in aquatic environments. Existing studies have confirmed the neurotoxic, immunotoxic, and developmental toxicity of SPAs on aquatic organisms. However, there is limited research on the reproductive toxicity of SPAs, particularly in aquatic invertebrates. In this study, female Ruditapes philippinarum were selected as research objects to investigate the reproductive toxicity effects of typical SPAs 2,6-di-tert-butyl hydroxytoluene (BHT) on clams at different reproductive stages. The results showed that BHT downregulated the level of ovarian steroid hormones by disrupting steroid production, and showed anti-estrogenic effects. This interference impedes meiosis, follicular development, and ovulation, resulting in a decrease in the number of mature oocytes and gonadal index. Furthermore, exposure to BHT increased ROS levels and suppressed antioxidant defenses, resulting in biomacromolecular damage. BHT also induced apoptosis, ferroptosis, and pyroptosis in ovarian cells, impairing ovarian development. Collectively, this study elucidates the potential molecular mechanisms of reproductive toxicity caused by BHT in bivalve shellfish, focusing on endocrine disruption, oxidative damage, and cell death pathways. The findings provide data supporting the conservation of marine shellfish germplasm.
Collapse
Affiliation(s)
- Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiaohui Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qiuhong Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Vrooman LA, Gieske MC, Lawson C, Cesare J, Zhang S, Bartolomei MS, Garcia BA, Hassold TJ, Hunt PA. Effect of Brief Maternal Exposure to Bisphenol A on the Fetal Female Germline in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47002. [PMID: 40036665 PMCID: PMC11980919 DOI: 10.1289/ehp15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Environmental contamination by endocrine-disrupting chemicals (EDCs) has created serious public health, ecological, and regulatory concerns. Prenatal exposures can affect a wide range of developing organ systems and are associated with adverse changes to behavior, metabolism, fertility, and disease risk in the adult. The most serious and puzzling observation for some EDC exposures is the transmission of effects to subsequent unexposed generations (transgenerational effects) in animal models. This requires the induction of epigenetic aberrations to the germline that are not subject to the normal processes of erasure and resetting in subsequent generations. Understanding when and how the germline is vulnerable to environmental contaminants is an essential first step in devising strategies to prevent and reverse their effects. METHODS Fetal mouse oocytes were collected after exposure of the dam to various concentrations of bisphenol A (BPA) or placebo. Meiotic effects were assessed by immunostaining to visualize the synaptonemal complex and recombination sites, as well as whole chromosome fluorescence in situ hybridization probes. Enriched oocyte pools were analyzed by mass spectrometry and RNA sequencing to determine differences in histone posttranslational modifications and gene expression, respectively. RESULTS We found germline effects across a wide range of exposure levels, the severity of which was positively associated with BPA concentration. We identified the onset of meiotic prophase as the vulnerable window of exposure and found surprising exposure-related differences in chromatin. Oocyte analysis by mass spectrometry and immunofluorescence suggested H4K20me2, a histone posttranslational modification involved in DNA damage repair, was particularly affected. Subsequent RNA-seq analysis revealed a relatively small number of differentially expressed genes, but in addition to genes involved in chromatin dynamics, several with important roles in DNA repair/recombination and centromere stability were affected. DISCUSSION Together, our data from a mouse model suggest BPA exposure induced complex molecular differences in the germline that dysregulated chromatin and affected several critical and interrelated meiotic pathways. https://doi.org/10.1289/EHP15046.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mary C. Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Joseph Cesare
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuo Zhang
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terry J. Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Rizan C, Rotchell JM, Eng PC, Robaire B, Ciocan C, Kapoor N, Kalra S, Sherman JD. Mitigating the environmental effects of healthcare: the role of the endocrinologist. Nat Rev Endocrinol 2025:10.1038/s41574-025-01098-9. [PMID: 40082727 DOI: 10.1038/s41574-025-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
Human health depends on planetary health, and yet healthcare provision can have unintended consequences for the health of the planet. Emissions from the healthcare sector include greenhouse gases, air pollution and plastic pollution, alongside chemical contamination. Chemical pollution resulting in endocrine disruption has been associated with plastics, which are a source of concerning additives such as phthalates, bisphenols, perfluoroalkyl and polyfluoroalkyl substances, and flame retardants (all routinely found in healthcare products). Many endocrine-disrupting chemicals are persistent and ubiquitous in the environment (including water and food sources), with potential secondary harms for human health, including disrupting reproductive, metabolic and thyroid function. Here we review evidence-based strategies for mitigating environmental effects of healthcare delivery. We focus on what endocrinologists can do, including reducing demand for healthcare services through better preventative health, focusing on high-value care and improving sustainability of medical equipment and pharmaceuticals through adopting circular economy principles (including reduce, reuse and, as a last resort, recycle). The specific issue of endocrine-disrupting chemicals might be mitigated through responsible disposal and processing, alongside advocating for the use of alternative materials and replacing additive chemicals with those that have lower toxicity profiles, as well as tighter regulations. We must work to urgently transition to sustainable models of care provision, minimizing negative effects on human and planetary health.
Collapse
Affiliation(s)
- Chantelle Rizan
- Centre for Sustainable Medicine, National University of Singapore, Singapore, Singapore.
- Brighton and Sussex Medical School, Brighton, UK.
| | | | - Pei Chia Eng
- Department of Endocrinology, National University Hospital, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Bernard Robaire
- Faculty of Medicine and Biomedical Sciences, McGill University, Montreal, Quebec, Canada
| | - Corina Ciocan
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Nitin Kapoor
- Department of Endocrinology, Christian Medical College, Vellore, India
- The Non-Communicable Disease Unit, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Jodi D Sherman
- Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
AbuAlia KFN, Damm E, Ullrich KK, Mukaj A, Parvanov E, Forejt J, Odenthal-Hesse L. Natural variation in the zinc-finger-encoding exon of Prdm9 affects hybrid sterility phenotypes in mice. Genetics 2024; 226:iyae004. [PMID: 38217871 PMCID: PMC10917509 DOI: 10.1093/genetics/iyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.
Collapse
Affiliation(s)
- Khawla F N AbuAlia
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Elena Damm
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Kristian K Ullrich
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Amisa Mukaj
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| |
Collapse
|
5
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
6
|
Li C, Qi T, Ma L, Lan YB, Luo J, Chu K, Huang Y, Ruan F, Zhou J. In utero bisphenol A exposure disturbs germ cell cyst breakdown through the PI3k/Akt signaling pathway and BDNF expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115031. [PMID: 37210998 DOI: 10.1016/j.ecoenv.2023.115031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE To determine the influence of the environmental endocrine disruptor bisphenol A (BPA) on germ cell cyst breakdown and explore the possible mechanisms regulating this activity. METHODS BPA (2 μg/kg/d or 20 μg/kg/d) or tocopherol-stripped corn oil (vehicle control) was administered to pregnant mice by gavage at gestational day 11, and the offspring (prenatally treated mice) were sacrificed and ovariectomized at postnatal day (PND) 4 and PND22. Ovarian morphology was documented in the first filial (F1) generation female offspring, and the follicles were analyzed and classified morphologically on PND 4. To discover differentially expressed genes and associated target pathways, we used RNA-seq, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Ontology (GO) analysis. The mRNA expression of key steroid hormone synthesis-related genes was evaluated by Q-PCR in forskolin-induced KGN cells. Western blotting (WB) and qRTPCR were used to determine the protein and gene expression levels of brain-derived neurotrophic factor (BDNF). RESULTS BPA, a typical endocrine disrupting chemical (EDC), decreased the expression of the key steroid hormone synthesis-related genes P450scc and aromatase, while the expression of Star increased significantly and caused no significant difference in the expression of Cyp17a1 or HSD3β in forskolin-induced KGN cells. Moreover, we confirmed that in utero exposure to environmentally relevant concentrations of BPA (2 μg/kg/d and 20 μg/kg/d) could significantly disrupt germ cell cyst breakdown, leading to the generation of fewer primordial follicles than in the control group. The factors mediating the inhibitory effects included the PI3K-Akt signaling pathway and a significant downregulation of BDNF. CONCLUSIONS These findings indicate that in utero exposure to BPA at low doses, which are lower than recommended as 'safe' dosages, may influence the formation of primordial follicles by inhibiting the expression of steroid hormone synthesis-related genes and partly by regulating the BDNF-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Tongyun Qi
- Department of Gynecology, The first Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yi Bing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fei Ruan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
7
|
Abdallah S, Jampy A, Moison D, Wieckowski M, Messiaen S, Martini E, Campalans A, Radicella JP, Rouiller-Fabre V, Livera G, Guerquin MJ. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120791. [PMID: 36464114 DOI: 10.1016/j.envpol.2022.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.
Collapse
Affiliation(s)
- Sonia Abdallah
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Amandine Jampy
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Delphine Moison
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Margaux Wieckowski
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Sébastien Messiaen
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Emmanuelle Martini
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Anna Campalans
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Juan Pablo Radicella
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Gabriel Livera
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Marie-Justine Guerquin
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France.
| |
Collapse
|
8
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
9
|
Frost ER, Ford EA, Peters AE, Lovell-Badge R, Taylor G, McLaughlin EA, Sutherland JM. A New Understanding, Guided by Single-Cell Sequencing, of the Establishment and Maintenance of the Ovarian Reserve in Mammals. Sex Dev 2022; 17:145-155. [PMID: 36122567 DOI: 10.1159/000526426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oocytes are a finite and non-renewable resource that are maintained in primordial follicle structures. The ovarian reserve is the totality of primordial follicles, present from birth, within the ovary and its establishment, size, and maintenance dictates the duration of the female reproductive lifespan. Understanding the cellular and molecular dynamics relevant to the establishment and maintenance of the reserve provides the first steps necessary for modulating both individual human and animal reproductive health as well as population dynamics. SUMMARY This review details the key stages of establishment and maintenance of the ovarian reserve, encompassing germ cell nest formation, germ cell nest breakdown, and primordial follicle formation and activation. Furthermore, we spotlight several formative single-cell sequencing studies that have significantly advanced our knowledge of novel molecular regulators of the ovarian reserve, which may improve our ability to modulate female reproductive lifespans. KEY MESSAGES The application of single-cell sequencing to studies of ovarian development in mammals, especially when leveraging genetic and environmental models, offers significant insights into fertility and its regulation. Moreover, comparative studies looking at key stages in the development of the ovarian reserve across species has the potential to impact not just human fertility, but also conservation biology, invasive species management, and agriculture.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Emmalee A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Güneş Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
10
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
11
|
Jala A, Varghese B, Kaur G, Rajendiran K, Dutta R, Adela R, Borkar RM. Implications of endocrine-disrupting chemicals on polycystic ovarian syndrome: A comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58484-58513. [PMID: 35778660 DOI: 10.1007/s11356-022-21612-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex multifactorial disorder of unknown pathogenesis in which genetic and environmental factors contribute synergistically to its phenotypic expressions. Endocrine-disrupting chemicals (EDCs), a group of widespread pollutants freely available in the environment and consumer products, can interfere with normal endocrine signals. Extensive evidence has shown that EDCs, environmental contributors to PCOS, can frequently induce ovarian and metabolic abnormalities at low doses. The current research on environmental EDCs suggests that there may be link between EDC exposure and PCOS, which calls for more human bio-monitoring of EDCs using highly sophisticated analytical techniques for the identification and quantification and to discover the underlying pathophysiology of the disease. This review briefly elaborated on the general etiology of PCOS and listed various epidemiological and experimental data from human and animal studies correlating EDCs and PCOS. This review also provides insights into various analytical tools and sample preparation techniques for biomonitoring studies for PCOS risk assessment. Furthermore, we highlight the role of metabolomics in disease-specific biomarker discovery and its use in clinical practice. It also suggests the way forward to integrate biomonitoring studies and metabolomics to underpin the role of EDCs in PCOS pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Gurparmeet Kaur
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | | | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India.
| |
Collapse
|
12
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
13
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
14
|
Lopez-Rodriguez D, Franssen D, Heger S, Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab 2021; 35:101579. [PMID: 34563408 DOI: 10.1016/j.beem.2021.101579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual maturation in humans is characterized by a unique individual variability. Pubertal onset is a highly heritable polygenic trait but it is also affected by environmental factors such as obesity or endocrine disrupting chemicals. The last 30 years have been marked by a constant secular trend toward earlier age at onset of puberty in girls and boys around the world. More recent data, although more disputed, suggest an increased incidence in idiopathic central precocious puberty. Such trends point to a role for environmental factors in pubertal changes. Animal data suggest that the GnRH-neuronal network is highly sensitive to endocrine disruption during development. This review focuses on the most recent data regarding secular trend in pubertal timing as well as potential new epigenetic mechanisms explaining the developmental and transgenerational effects of endocrine disrupting chemicals on pubertal timing.
Collapse
Affiliation(s)
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium
| | - Sabine Heger
- Children's Hospital Bult, Janusz-Korczak-Allee 12, 30173, Hannover, Germany
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| |
Collapse
|
15
|
Liu Q. Effects of Environmental Endocrine-Disrupting Chemicals on Female Reproductive Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:205-229. [PMID: 33523436 DOI: 10.1007/978-981-33-4187-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) are xenobiotic compounds that are frequently contacted in daily life. With the species and quantity of substances created and utilized by human beings significantly surpassing the self-purification capacity of nature, a large number of hazardous substances are enriched in the human body through the respiratory tract, digestive tract, and skin. Some of these compounds cause many problems endangering female reproductive health by simulating/antagonizing endogenous hormones or affecting the synthesis, metabolism, and bioavailability of endogenous hormones, including reproductive disorders, fetal birth defects, fetal developmental abnormalities, endocrine and metabolic disorders, and even gynecological malignancies. Therefore, the study of the relationship between environmental EDCs and female reproductive diseases and related mechanisms is of considerable significance to women, children health care, and improve the quality of the population.
Collapse
Affiliation(s)
- Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
16
|
The Influence of Environmental Factors on Ovarian Function, Follicular Genesis, and Oocyte Quality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:41-62. [PMID: 33523429 DOI: 10.1007/978-981-33-4187-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) exist ubiquitously in the environment. Epidemiological data suggest that the increasing prevalence of infertility may be related to the numerous chemicals. Exposure to EDCs may have significant adverse impacts on the reproductive system including fertility, ovarian reserve, and sex steroid hormone levels. This chapter covers the common exposure ways, the origins of EDCs, and their effects on ovarian function, follicular genesis, and oocyte quality. Furthermore, we will review the origin and the physiology of ovarian development, as well as explore the mechanisms in which EDCs act on the ovary from human and animal data. And then, we will focus on the bisphenol A (BPA), which has been shown to reduce fertility and ovarian reserve, as well as disrupt steroidogenesis in animal and human models. Finally, we will discuss the future direction of prevention and solution methods.
Collapse
|
17
|
Abdoli R, Mirhoseini SZ, Ghavi Hossein-Zadeh N, Zamani P, Ferdosi MH, Gondro C. Genome-wide association study of four composite reproductive traits in Iranian fat-tailed sheep. Reprod Fertil Dev 2020; 31:1127-1133. [PMID: 30958977 DOI: 10.1071/rd18282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/27/2019] [Indexed: 01/21/2023] Open
Abstract
Composite reproductive traits are a combination of growth and reproductive traits. They have the advantage of being better attuned to the market drivers since producers are paid on a per kilogram basis and not on a per head basis. In this study, 124 Lori---Bakhtiari ewes were genotyped using the medium-density Illumina Ovine SNP50 array. A genome-wide association study was performed on estimated breeding values of four composite reproductive traits and genetic parameters were also estimated. The traits were litter mean weight at birth, litter mean weight at weaning, total litter weight at birth and total litter weight at weaning. Several suggestive and associated single nucleotide polymorphisms (SNPs) were identified. Neighbouring the top SNPs there were five genes, inhibin β E subunit (INHBE), inhibin β C subunit (INHBC), testis expressed 12 (TEX12), β-carotene oxygenase 2 (BCO2) and WD Repeat Domain 70 (WDR70) identified as possible candidate genes for composite reproductive traits of the Lori-Bakhtiari sheep. These genes are in pathways known to be relevant to fertility and growth characteristics. The results provide new information for the functional annotation of genes associated with fertility traits and add new evidence towards a consensus of quantitative trait loci associated with reproductive traits in sheep.
Collapse
Affiliation(s)
- R Abdoli
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran
| | - S Z Mirhoseini
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran; and Corresponding author. ;
| | - N Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran
| | - P Zamani
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan 65178-33131, Iran
| | - M H Ferdosi
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW 2351, Australia
| | - C Gondro
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Brown PR, Gillera SEA, Fenton SE, Yao HHC. Developmental Exposure to Tetrabromobisphenol A Has Minimal Impact on Male Rat Reproductive Health. Reprod Toxicol 2020; 95:59-65. [PMID: 32416200 PMCID: PMC7323851 DOI: 10.1016/j.reprotox.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
The flame retardant and plasticizer, tetrabromobisphenol-A (TBBPA) has rapidly become a common component in the manufacture of circuit boards and plastics worldwide. It is also an analog of bisphenol A (BPA), an endocrine disrupting chemical identified by the Endocrine Society. As such, TBBPA needs to be investigated for similar potential human health risks. Using rats as a model, we exposed pregnant dams and their progeny to 0, 0.1, 25, or 250 mg TBBPA/kg of body weight until the offspring reached adulthood and assessed the first generation of males for any reproductive tract abnormalities. We found no differences in the morphology of testes, sperm, prostates, or secondary sex organs from post-natal day 21 through one-year of age. A delay in the time to preputial separation was found with the 250 mg/kg treatment. Also, minor differences of sperm count at one-year old with the 25 mg/kg treatment and expression levels of two steroidogenic pathway enzymes at either post-natal day 90 or one-year old in the 250 mg/kg treatment group were detected, but spermatogenesis was not disrupted. While these results may lead to the supposition that TBBPA is less harmful than its parent compound BPA, more studies need to be conducted to assess long-term exposure effects.
Collapse
Affiliation(s)
- Paula R Brown
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sagi Enicole A Gillera
- Reproductive Endocrinology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suzanne E Fenton
- Reproductive Endocrinology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
19
|
Li C, Cao M, Qi T, Ye X, Ma L, Pan W, Luo J, Chen P, Liu J, Zhou J. The association of bisphenol A exposure with premature ovarian insufficiency: a case-control study. Climacteric 2020; 24:95-100. [PMID: 32668991 DOI: 10.1080/13697137.2020.1781078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND A few epidemiological investigations and animal studies have demonstrated that bisphenol A (BPA) may affect female reproductive health. However, no epidemiologic study has investigated the relationship between BPA exposure and the risk of premature ovarian insufficiency (POI). METHODS In this case-control study, urinary concentrations of BPA and serum levels of reproductive hormone were measured. Associations between BPA concentrations and the risk of POI and POI-related hormone levels were estimated. RESULTS Among BPA quartiles, no obvious association was found between BPA levels and the risk of POI (p = 0.603). Although the adjusted odds ratio (OR) of POI was slightly increased for participants in the highest BPA concentration quartile, the association was not statistically significant (OR = 1.282, 95% confidence interval [CI] 0.615-2.049 for the highest vs. lowest quartile, p = 0.508). Although follicle stimulating hormone (FSH) and anti-Mullerian hormone (AMH) levels showed no tendency of an association with BPA (p = 0.941 and p = 0.876 for FSH and AMH, respectively), the highest quartile of luteinizing hormone was significantly positively associated with BPA levels (OR = 1.333, 95% CI 0.986-1.803, p = 0.042). CONCLUSIONS The urinary concentrations of BPA determined in this study were consistent with the range of exposure currently observed in Chinese women. However, BPA exposure at a relatively low level is not associated with POI in Chinese women. Further epidemiological studies are needed to confirm our findings.
Collapse
Affiliation(s)
- C Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - M Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - T Qi
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - X Ye
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - L Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - J Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - J Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - J Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Arch Toxicol 2020; 94:3359-3379. [PMID: 32638039 PMCID: PMC7502037 DOI: 10.1007/s00204-020-02834-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause–effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman’s reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause–effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.
Collapse
|
21
|
Ruebel ML, Latham KE. Listening to mother: Long-term maternal effects in mammalian development. Mol Reprod Dev 2020; 87:399-408. [PMID: 32202026 DOI: 10.1002/mrd.23336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
The oocyte is a complex cell that executes many crucial and unique functions at the start of each life. These functions are fulfilled by a unique collection of macromolecules and other factors, all of which collectively support meiosis, oocyte activation, and embryo development. This review focuses on the effects of oocyte components on developmental processes that occur after the initial stages of embryogenesis. These include long-term effects on genome function, metabolism, lineage allocation, postnatal progeny health, and even subsequent generations. Factors that regulate chromatin structure, genome programming, and mitochondrial function are elements that contribute to these oocyte functions.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
22
|
Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F, Kannan K, Colaiácovo MP. Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline. Genetics 2020; 214:381-395. [PMID: 31852725 PMCID: PMC7017011 DOI: 10.1534/genetics.119.302939] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals are ubiquitously present in our environment, but the mechanisms by which they adversely affect human reproductive health and strategies to circumvent their effects remain largely unknown. Here, we show in Caenorhabditis elegans that supplementation with the antioxidant Coenzyme Q10 (CoQ10) rescues the reprotoxicity induced by the widely used plasticizer and endocrine disruptor bisphenol A (BPA), in part by neutralizing DNA damage resulting from oxidative stress. CoQ10 significantly reduces BPA-induced elevated levels of germ cell apoptosis, phosphorylated checkpoint kinase 1 (CHK-1), double-strand breaks (DSBs), and chromosome defects in diakinesis oocytes. BPA-induced oxidative stress, mitochondrial dysfunction, and increased gene expression of antioxidant enzymes in the germline are counteracted by CoQ10. Finally, CoQ10 treatment also reduced the levels of aneuploid embryos and BPA-induced defects observed in early embryonic divisions. We propose that CoQ10 may counteract BPA-induced reprotoxicity through the scavenging of reactive oxygen species and free radicals, and that this natural antioxidant could constitute a low-risk and low-cost strategy to attenuate the impact on fertility by BPA.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- School of Pharmaceutical Sciences of Ribeirao Preto, Universidade de Sao Paulo, 14040-903, Brazil
| | - Nara Shin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirao Preto, Universidade de Sao Paulo, 14040-903, Brazil
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, New York 12201
| | | |
Collapse
|
23
|
[Cancers and environmental exposures: Between uncertainties and certainties]. Bull Cancer 2019; 106:975-982. [PMID: 31607391 DOI: 10.1016/j.bulcan.2019.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022]
Abstract
While improvements in the environment and living conditions have contributed to a significant increase in human longevity for over a century, the role of environmental factors in the occurrence of cancer has become a public health concern. It is recognized that a number of environmental factors such as environmental quality (air, water, soil), or environmental changes contribute to the occurrence of certain cancers. Despite this awareness, their potential impacts on health raise many scientific questions. The development of new methodological tools for the characterization of exposure, the study of the association between environmental agents and cancer through an exposure-cancer approach and the health impacts associated, have led to changes in scientific paradigms including the concept of exposome. This concept, at the heart of health and environmental issues, takes into account the determinants of health related to the quality of populations' living environments and provides assistance in public policy decision-making. Ultimately, the aim is to develop measures likely to reduce exposure and prevent health risks and damage to the most vulnerable populations, both in their physical environment and in their living environment, including the economic and social determinants.
Collapse
|
24
|
Transcriptome analysis revealed bisphenol A and nonylphenol affect reproduction. Reprod Toxicol 2019; 88:39-47. [DOI: 10.1016/j.reprotox.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
|
25
|
Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci 2019; 76:1729-1746. [PMID: 30810760 PMCID: PMC11105173 DOI: 10.1007/s00018-019-03028-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman's reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman's reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
26
|
Mathew H, Mahalingaiah S. Do prenatal exposures pose a real threat to ovarian function? Bisphenol A as a case study. Reproduction 2019; 157:R143-R157. [PMID: 30689546 DOI: 10.1530/rep-17-0734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/28/2019] [Indexed: 01/02/2023]
Abstract
Fetal development represents a time of potential vulnerability due to rapid cell division, organ development and limited fetal kidney/liver activity for detoxification and metabolism of exposures. Health effects of prenatal toxicant exposure have previously been described, but there is little cohesive evidence surrounding effects on ovarian function. Using bisphenol A (BPA) as a case study, we seek to examine whether a prominent prenatal environmental exposure can pose a real threat to human ovarian function. To do so, we broadly review human oogenesis and menstrual cycle biology. We then present available literature addressing prenatal bisphenol A and diverse outcomes at the level of the ovary. We highlight relevant human cohorts and mammalian models to review the existing data on prenatal exposures and ovarian disruption. Doing so suggests that while current exposures to BPA have not shown marked or consistent results, there is data sufficient to raise concerns regarding ovarian function. Challenges in the examination of this question suggest the need for additional models and pathways by which to expand these examinations in humans.
Collapse
Affiliation(s)
- Hannah Mathew
- Circle Health Diabetes and Endocrine Center, Dracut, Massachusetts, USA.,Department of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shruthi Mahalingaiah
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Shin N, Cuenca L, Karthikraj R, Kannan K, Colaiácovo MP. Assessing effects of germline exposure to environmental toxicants by high-throughput screening in C. elegans. PLoS Genet 2019; 15:e1007975. [PMID: 30763314 PMCID: PMC6375566 DOI: 10.1371/journal.pgen.1007975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chemicals that are highly prevalent in our environment, such as phthalates and pesticides, have been linked to problems associated with reproductive health. However, rapid assessment of their impact on reproductive health and understanding how they cause such deleterious effects, remain challenging due to their fast-growing numbers and the limitations of various current toxicity assessment model systems. Here, we performed a high-throughput screen in C. elegans to identify chemicals inducing aneuploidy as a result of impaired germline function. We screened 46 chemicals that are widely present in our environment, but for which effects in the germline remain poorly understood. These included pesticides, phthalates, and chemicals used in hydraulic fracturing and crude oil processing. Of the 46 chemicals tested, 41% exhibited levels of aneuploidy higher than those detected for bisphenol A (BPA), an endocrine disruptor shown to affect meiosis, at concentrations correlating well with mammalian reproductive endpoints. We further examined three candidates eliciting aneuploidy: dibutyl phthalate (DBP), a likely endocrine disruptor and frequently used plasticizer, and the pesticides 2-(thiocyanomethylthio) benzothiazole (TCMTB) and permethrin. Exposure to these chemicals resulted in increased embryonic lethality, elevated DNA double-strand break (DSB) formation, activation of p53/CEP-1-dependent germ cell apoptosis, chromosomal abnormalities in oocytes at diakinesis, impaired chromosome segregation during early embryogenesis, and germline-specific alterations in gene expression. This study indicates that this high-throughput screening system is highly reliable for the identification of environmental chemicals inducing aneuploidy, and provides new insights into the impact of exposure to three widely used chemicals on meiosis and germline function. The ever-increasing number of new chemicals introduced into our environment poses a significant problem for risk assessment. In addition, assessing the direct impact of toxicants on human meiosis remains challenging. We successfully utilized a high-throughput platform in the nematode C. elegans, a genetically tractable model organism which shares a high degree of gene conservation with humans, to identify chemicals that affect the germline leading to aneuploidy. We assessed chemicals that are highly prevalent in the environment in worms carrying a fluorescent reporter construct allowing for the identification of X chromosome nondisjunction combined with a mutation increasing cuticle permeability for analysis of low doses of exposure. Follow up analysis of three chemicals: DBP, permethrin and TCMTB, further validated the use of this strategy. Exposure to these chemicals resulted in elevated levels of DNA double-strand breaks, activation of a DNA damage checkpoint, chromosome morphology defects in late meiotic prophase I as well as impaired early embryogenesis and germline-specific changes in gene expression. Our results support the use of this high-throughput screening system to identify environmental chemicals inducing aneuploidy, and provide new insights into the effects of exposure to DBP, permethrin, and TCMTB on meiosis and germline function.
Collapse
Affiliation(s)
- Nara Shin
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Luciann Cuenca
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lin Q, Hou S, Guan F, Lin C. HORMAD2 methylation-mediated epigenetic regulation of gene expression in thyroid cancer. J Cell Mol Med 2018; 22:4640-4652. [PMID: 30039914 PMCID: PMC6156446 DOI: 10.1111/jcmm.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
This study is aimed to investigate the methylation level of candidate genes and its impact on thyroid carcinoma (THCA) development. Infinium Human Methylation 450 BeadChip Arrays by Illumina (Illumina HM450K) was the most popular CpG microarray platform widely used in biological and medical research. The methylation level of differentially expressed genes and their corresponding CpG sites were analysed by R programme. The expression of HORMAD2 was evaluated by qRT-PCR and Western blot, while the methylation level was examined via methylation-specific PCR. Cell viability, metastasis, cell cycle and apoptosis were detected by MTT assay, transwell and wound healing assay and flow cytometry, respectively, after treatment with 5-aza-2'-deoxycytidine (5-Aza). Tumour formation assay was used to analyse thyroid tumour growth in nude mice in vivo. The methylation levels of all 116 differentially expressed genes were analysed. HORMAD2 was significantly hypermethylated and its mRNA expression was inhibited in THCA cells. After treatment with 5-Aza, HORMAD2 expression was up-regulated in THCA cells and its overexpression can suppress thyroid cancer cell viability, mobility and invasiveness remarkably. Up-regulation of HORMAD2 in THCA cells could prolong G0/G1 phase and shorten S phase to impede cell mitosis as well as promote thyroid cancer cells apoptosis. Furthermore, tumour formation assay showed that increased HORMAD2 level impeded tumour growth in vivo. Hypermethylation of HORMAD2 could induce THCA progression, while hypomethylation of HORMAD2 retard cell growth and mobility and facilitate apoptosis through increasing its mRNA expression.
Collapse
Affiliation(s)
- Qiuyu Lin
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Sen Hou
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Feng Guan
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Chenghe Lin
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
29
|
Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod Toxicol 2018; 79:96-123. [PMID: 29925041 DOI: 10.1016/j.reprotox.2018.06.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments.
Collapse
Affiliation(s)
- Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Lei Yin
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States; ReproTox Biotech LLC, Athens 30602, GA, United States
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Shenuxan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
30
|
Huang RP, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z. Bisphenol A concentrations in human urine, human intakes across six continents, and annual trends of average intakes in adult and child populations worldwide: A thorough literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:971-981. [PMID: 29898562 DOI: 10.1016/j.scitotenv.2018.01.144] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is an important industrial raw material that is widely applied in daily products. BPA is also an endocrine-disrupting chemical that may adversely affect humans. This review thoroughly collected data on BPA concentration in human urine and determined main influencing factors. The average BPA intake of humans across six continents or the average value worldwide was calculated based on a simple model. Results showed that the average BPA intake was ranked from high to low as follows: Oceania, Asia, Europe, and North America in the child population and Oceania, Europe, Asia, and North America in the adult population. The annual trend of the average BPA intake was similar between the adult and child populations. The BPA intake in the two populations evidently decreased from 2000 to 2008 and then slightly increased from 2008 to 2011. The BPA intake in the child population started to decrease again from 2011, whereas the corresponding intake in the adult population continued to increase. The distinct difference likely contributed to the wide prohibition of the use of BPA in food-related products for children in many countries since 2009; the bans effectively decreased the total BPA exposure in the child population.
Collapse
Affiliation(s)
- Ri-Ping Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ping-Xiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Neng-Wu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
31
|
Acevedo N, Rubin BS, Schaeberle CM, Soto AM. Perinatal BPA exposure and reproductive axis function in CD-1 mice. Reprod Toxicol 2018; 79:39-46. [PMID: 29752986 DOI: 10.1016/j.reprotox.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
Perinatal Bisphenol-A (BPA) exposure reduces fertility and fecundity in mice. This study examined effects of early BPA exposure on activation of gonadotropin releasing hormone (GnRH) neurons in conjunction with a steroid-induced luteinizing hormone (LH) surge, characterized patterns of estrous cyclicity and fertility over time, and assessed the ovarian follicular reserve to further explore factors responsible for the reduced fertility we previously described in this model. The percent activated GnRH neurons was reduced in BPA-exposed females at 3-6 months, and periods of persistent proestrus were increased. These data suggest that perinatal exposure to BPA reduces GnRH neuronal activation required for the generation of the LH surge and estrous cyclicity. Assessments of anti-Müllerian hormone (AMH) levels failed to suggest a decline in the follicular reserve at the BPA exposure levels examined.
Collapse
Affiliation(s)
- Nicole Acevedo
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA
| | - Beverly S Rubin
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA
| | - Cheryl M Schaeberle
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA.
| |
Collapse
|
32
|
Yu M, Xu Y, Li M, Li D, Lu Y, Yu D, Du W. Bisphenol A accelerates meiotic progression in embryonic chickens via the estrogen receptor β signaling pathway. Gen Comp Endocrinol 2018; 259:66-75. [PMID: 29113915 DOI: 10.1016/j.ygcen.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 01/29/2023]
Abstract
Bisphenol A (BPA) as an endocrine-disrupting chemical with weak estrogenic activity affects formation of primordial follicles. This study aimed to identify the potential effects and molecular mechanisms of BPA on meiosis and primordial follicle formation in chickens. The results suggest that the cortical layer was thickened and the number of germ cells that entered into meiosis was increased in BPA-treated ovaries. The percentage of γH2AX-positive cells increased significantly. In addition, up-regulated mRNA expression of meiotic genes, including stimulated by retinoic acid gene 8 (Stra8), disrupted meiotic cDNA 1 homologue (Dmc1) and synaptonemal complex protein 3 (Scp3) were observed in BPA-treated ovaries. Therefore, progression to meiosis prophase I was accelerated by exposure to BPA. Furthermore, the results demonstrated that injection of BPA resulted in hypomethylation of Dazl (Deleted in A Zoospermia-Like gene) and Stra8 and up-regulation mRNA expression of Dazl and Stra8 during meiotic onset. Finally, the relationship between estrogen receptor (ER) expression and BPA-induced meiosis was revealed using an in vitro ovarian culture system. BPA enhanced ERβ expression at the levels of mRNA and protein, while BPA exerted no significant effect on ERα and membrane-bound estrogen receptor (GPR30) expression. The inducing effects of BPA on meiosis were blocked by ER inhibitor. Collectively, these results demonstrate the dynamic ovarian response to BPA exposure, which indicate that BPA affects the formation of primordial follicles by promoting meiotic progression of oocytes via hypomethylation of Dazl and Stra8 and ERβ signaling pathways.
Collapse
Affiliation(s)
- Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Yali Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Ming Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Wenxing Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
33
|
Cheng SF, Li L, Li B, Liu JC, Lai FN, Zhao Y, Zhang XF, Shen W, Li L. Low-dose diethylhexyl phthalate exposure does not impair the expressive patterns of epigenetics-related genes and DNA methylation of breast cancer-related genes in mouse mammary glands. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0016-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13:400-414. [PMID: 28450750 DOI: 10.1038/nrendo.2017.36] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Tomza-Marciniak A, Stępkowska P, Kuba J, Pilarczyk B. Effect of bisphenol A on reproductive processes: A review of in vitro, in vivo and epidemiological studies. J Appl Toxicol 2017; 38:51-80. [PMID: 28608465 DOI: 10.1002/jat.3480] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
Abstract
As bisphenol A (BPA) is characterized by a pronounced influence on human hormonal regulation, particular attention has been aimed at understanding its role in reproductive processes in males and females, as well as on fetal development. Owing to the increasing number of alarming reports on the negative consequences of the presence of BPA in human surroundings, more and more studies are being undertaken to clarify the negative effects of BPA on human reproductive processes. The aim of this work was to collect and summarize data on the influence of BPA exposure on reproductive health. Based on an analysis of selected publications it was stated that there is strong proof confirming that BPA is an ovarian, uterine and prostate toxicant at a level below the lowest observed adverse effect level (50 mg kg-1 bodyweight) as well as a level below the proposed safe level (4 μg kg-1 bodyweight). It seems there is also reliable evidence in relation to the negative effect of BPA on sperm quality and motility. Limited evidence also pertains to the case of the potential of BPA to affect polycystic ovary syndrome occurrence. Although in epidemiological studies this disease was common, in studies on animal models such results were still not confirmed. No unambiguous results of epidemiological studies and with animal models were obtained in relation to the evaluation of associations between BPA and implantation failure in women, evaluation of associations between BPA and sexual dysfunction in men, and impact of BPA on birth rate, birth weight and length of gestation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Agnieszka Tomza-Marciniak
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Paulina Stępkowska
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Jarosław Kuba
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| |
Collapse
|
36
|
Singh AK, Srivastava PP, Verma R, Srivastava SC, Kumar D, Ansari A. Effect of dietary administration of letrozole and tamoxifen on gonadal development, sex differentiation and biochemical changes in common carp (Cyprinus carpio L.). Reprod Fertil Dev 2017; 27:449-57. [PMID: 24411670 DOI: 10.1071/rd13234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022] Open
Abstract
The effect of letrozole and tamoxifen on the specific growth rate (SGR; % day(-1)), gonado-somatic index (GSI), total haemoglobin (g%), gonadal and serum protein as well as lipid, sex differentiation and 17β-oestradiol levels were studied in sexually undifferentiated Cyprinus carpio fingerlings 30 days post fertilisation (30 dpf) for 60 days. Results showed decreased GSI with tamoxifen treatment whereas letrozole increased it. There were reduced protein, lipid, triglyceride and cholesterol levels after treatment with tamoxifen and letrozole during gonadal development. Tamoxifen (200mgkg(-1) feed) induced 82.5% masculinisation, whereas letrozole in the same dose produced 98.5% males. Gonadal 17β-oestradiol significantly declined from 86.0±1.41pg per 100mg (control) to 45.5±1.94pg per 100mg with tamoxifen and 36.0±0.72pg per 100mg with letrozole treatment. Similarly, serum 17β-oestradiol levels also decreased after tamoxifen and letrozole treatments. Testicular development in 37.8% of fish treated with tamoxifen and letrozole was found to be more advanced (spermatocytes) than in the control (spermatogonium); however, there was reduced ovarian growth and increased atresia. It was concluded that letrozole and tamoxifen both significantly affect sex differentiation and gonadal maturity in C. carpio leading to the production of sex-reversed males, yet the effect of letrozole was more potent.
Collapse
Affiliation(s)
- Atul K Singh
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - P P Srivastava
- Biochemistry and Genomics Laboratory of Molecular Biology and Biotechnology Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Rita Verma
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Sharad C Srivastava
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Dinesh Kumar
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Abubakar Ansari
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| |
Collapse
|
37
|
Derivation of an oral Maximum Allowable Dose Level for Bisphenol A. Regul Toxicol Pharmacol 2017; 86:312-318. [PMID: 28377091 DOI: 10.1016/j.yrtph.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is a high production volume chemical that is used in plastics and epoxy coatings. In 2015, California's Office of Environmental Health Hazard Assessment (OEHHA) added BPA to the Proposition 65 list of chemicals "known to cause reproductive toxicity" based on its Developmental and Reproductive Toxicant Identification Committee's (DART-IC) conclusion that BPA has been shown to cause female reproductive toxicity. A critical factor in determining compliance with Proposition 65 is a Maximum Allowable Dose Level (MADL), which is the exposure level at which a chemical would have no observable reproductive effect even if a person were exposed to 1000 times that level. We performed a comprehensive review of the literature, including the studies reviewed by DART-IC, and derived an oral MADL. Of all the studies we identified, Delclos et al. (2014) is of sufficient quality, has the lowest no observed effect level (NOEL), and results in the most conservative MADL of 157 μg/d. This is generally supported by other studies, including those that were considered by DART-IC. Also, the oral MADL provides a similar margin of safety as OEHHA's dermal MADL and other regulatory guidelines. Taken together, the scientific data support an oral MADL of 157 μg/d.
Collapse
|
38
|
Hewlett M, Chow E, Aschengrau A, Mahalingaiah S. Prenatal Exposure to Endocrine Disruptors: A Developmental Etiology for Polycystic Ovary Syndrome. Reprod Sci 2016; 24:19-27. [PMID: 27342273 DOI: 10.1177/1933719116654992] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common and complex endocrinopathies among reproductive-age women. Polycystic ovary syndrome is characterized by symptomatology of oligomenorrhea and androgen excess, with or without presence of polycystic ovarian morphology. The etiology of PCOS is multifactorial, including genetic and environmental components. It has been previously established that prenatal androgen exposure results in a PCOS phenotype in experimental animal models and epidemiologic human studies. Investigators hypothesize that prenatal exposure to endocrine-disrupting chemicals (EDCs) may contribute to PCOS development. This review examines the emerging research investigating prenatal exposure to 3 major classes of EDCs-bisphenol A (BPA), phthalates, and androgenic EDCs-and the development of PCOS and/or PCOS-related abnormalities in humans and animal models. Highlights of this review are as follows: (1) In rodent studies, maternal BPA exposure alters postnatal development and sexual maturation;, (2) gestational exposure to dibutyl phthalate and di(2-ethylhexyl)phthalate results in polycystic ovaries and a hormonal profile similar to PCOS; and (3) androgenic EDCs, nicotine and 3,4,4'-trichlorocarbanilide, create a hyperandrogenic fetal environment and may pose a potential concern. In summary, prenatal exposure to EDCs may contribute to the altered fetal programming hypothesis and explain the significant variability in severity and presentation.
Collapse
Affiliation(s)
- Meghan Hewlett
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Erika Chow
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Ann Aschengrau
- 2 Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA.,2 Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
39
|
Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: A review on the major concerns. ACTA ACUST UNITED AC 2016; 108:224-242. [PMID: 27653964 DOI: 10.1002/bdrc.21137] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
There is a widespread exposure of general population, including pregnant women and developing fetuses, to the endocrine disrupting chemicals (EDCs). These chemicals have been reported to be present in urine, blood serum, breast milk, and amniotic fluid. Endocrine disruptions induced by environmental toxicants have placed a heavy burden on society, since environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life-a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical, and cellular events. Humans may encounter EDCs daily and during all stages of life, from conception and fetal development through adulthood and senescence. Nevertheless, prenatal and early postnatal windows are the most critical for proper development, due to rapid changes in system growth. Although there are still gaps in our knowledge, currently available data support the urgent need for health and environmental policies aimed at protecting the public and, in particular, the developing fetus and women of reproductive age. Birth Defects Research (Part C) 108:224-242, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddalena Mallozzi
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Giulia Bordi
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Chiara Garo
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Donatella Caserta
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza.
| |
Collapse
|
40
|
Ferris J, Mahboubi K, MacLusky N, King WA, Favetta LA. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reprod Toxicol 2016; 59:128-38. [DOI: 10.1016/j.reprotox.2015.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/06/2015] [Accepted: 12/09/2015] [Indexed: 02/02/2023]
|
41
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1406] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
42
|
Moore-Ambriz TR, Acuña-Hernández DG, Ramos-Robles B, Sánchez-Gutiérrez M, Santacruz-Márquez R, Sierra-Santoyo A, Piña-Guzmán B, Shibayama M, Hernández-Ochoa I. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes. Toxicol Appl Pharmacol 2015; 289:507-14. [PMID: 26493930 DOI: 10.1016/j.taap.2015.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability.
Collapse
Affiliation(s)
- Teresita Rocio Moore-Ambriz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Deyanira Guadalupe Acuña-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Brenda Ramos-Robles
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Manuel Sánchez-Gutiérrez
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo 42000, México
| | - Ramsés Santacruz-Márquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | | | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México.
| |
Collapse
|
43
|
Huo X, Chen D, He Y, Zhu W, Zhou W, Zhang J. Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11101-16. [PMID: 26371021 PMCID: PMC4586663 DOI: 10.3390/ijerph120911101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Background: Bisphenol-A (BPA) is widely used and ubiquitous in the environment. Animal studies indicate that BPA affects reproduction, however, the gene-environment interaction mechanism(s) involved in this association remains unclear. We performed a literature review to summarize the evidence on this topic. Methods: A comprehensive search was conducted in PubMed using as keywords BPA, gene, infertility and female reproduction. Full-text articles in both human and animals published in English prior to December 2014 were selected. Results: Evidence shows that BPA can interfere with endocrine function of hypothalamic-pituitary axis, such as by changing gonadotropin-releasing hormones (GnRH) secretion in hypothalamus and promoting pituitary proliferation. Such actions affect puberty, ovulation and may even result in infertility. Ovary, uterus and other reproductive organs are also targets of BPA. BPA exposure impairs the structure and functions of female reproductive system in different times of life cycle and may contribute to infertility. Both epidemiological and experimental evidences demonstrate that BPA affects reproduction-related gene expression and epigenetic modification that are closely associated with infertility. The detrimental effects on reproduction may be lifelong and transgenerational. Conclusions: Evidence on gene-environment interactions, especially from human studies, is still limited. Further research on this topic is warranted.
Collapse
Affiliation(s)
- Xiaona Huo
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China
| | - Dan Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
| | - Yonghua He
- School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Wenting Zhu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Wei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
- School of Public Health, Guilin Medical University, Guilin 541004, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
44
|
Iqbal K, Tran DA, Li AX, Warden C, Bai AY, Singh P, Wu X, Pfeifer GP, Szabó PE. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol 2015; 16:59. [PMID: 25853433 PMCID: PMC4376074 DOI: 10.1186/s13059-015-0619-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
Background Exposure to environmental endocrine-disrupting chemicals during pregnancy reportedly causes transgenerationally inherited reproductive defects. We hypothesized that to affect the grandchild, endocrine-disrupting chemicals must alter the epigenome of the germ cells of the in utero-exposed G1 male fetus. Additionally, to affect the great-grandchild, the aberration must persist in the germ cells of the unexposed G2 grandchild. Results Here, we treat gestating female mice with vinclozolin, bisphenol A, or di-(2-ethylhexyl)phthalate during the time when global de novo DNA methylation and imprint establishment occurs in the germ cells of the G1 male fetus. We map genome-wide features in purified G1 and G2 prospermatogonia, in order to detect immediate and persistent epigenetic aberrations, respectively. We detect changes in transcription and methylation in the G1 germline immediately after endocrine-disrupting chemicals exposure, but changes do not persist into the G2 germline. Additional analysis of genomic imprints shows no persistent aberrations in DNA methylation at the differentially methylated regions of imprinted genes between the G1 and G2 prospermatogonia, or in the allele-specific transcription of imprinted genes between the G2 and G3 soma. Conclusions Our results suggest that endocrine-disrupting chemicals exert direct epigenetic effects in exposed fetal germ cells, which are corrected by reprogramming events in the next generation. Avoiding transgenerational inheritance of environmentally-caused epigenetic aberrations may have played an evolutionary role in the development of dual waves of global epigenome reprogramming in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0619-z) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Lumholdt L, Fourmentin S, Nielsen TT, Larsen KL. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene. Beilstein J Org Chem 2015; 10:2743-50. [PMID: 25550739 PMCID: PMC4273208 DOI: 10.3762/bjoc.10.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/29/2014] [Indexed: 11/23/2022] Open
Abstract
Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.
Collapse
Affiliation(s)
- Ludmilla Lumholdt
- Section of Chemistry, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | - Sophie Fourmentin
- University Lille Nord de France, F-59000 Lille, France ; ULCO, UCEIV, F-59140 Dunkerque, France
| | - Thorbjørn T Nielsen
- Section of Chemistry, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | - Kim L Larsen
- Section of Chemistry, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| |
Collapse
|
46
|
Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. Bisphenol a and reproductive health: update of experimental and human evidence, 2007-2013. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:775-86. [PMID: 24896072 PMCID: PMC4123031 DOI: 10.1289/ehp.1307728] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND In 2007, an expert panel reviewed associations between bisphenol A (BPA) exposure and reproductive health outcomes. Since then, new studies have been conducted on the impact of BPA on reproduction. OBJECTIVE In this review, we summarize data obtained since 2007, focusing on a) findings from human and animal studies, b) the effects of BPA on a variety of reproductive end points, and c) mechanisms of BPA action. METHODS We reviewed the literature published from 2007 to 2013 using a PubMed search based on keywords related to BPA and male and female reproduction. DISCUSSION Because BPA has been reported to affect the onset of meiosis in both animal and in vitro models, interfere with germ cell nest breakdown in animal models, accelerate follicle transition in several animal species, alter steroidogenesis in multiple animal models and women, and reduce oocyte quality in animal models and women undergoing in vitro fertilization (IVF), we consider it an ovarian toxicant. In addition, strong evidence suggests that BPA is a uterine toxicant because it impaired uterine endometrial proliferation, decreased uterine receptivity, and increased implantation failure in animal models. BPA exposure may be associated with adverse birth outcomes, hyperandrogenism, sexual dysfunction, and impaired implantation in humans, but additional studies are required to confirm these associations. Studies also suggest that BPA may be a testicular toxicant in animal models, but the data in humans are equivocal. Finally, insufficient evidence exists regarding effects of BPA on the oviduct, the placenta, and pubertal development. CONCLUSION Based on reports that BPA impacts female reproduction and has the potential to affect male reproductive systems in humans and animals, we conclude that BPA is a reproductive toxicant.
Collapse
Affiliation(s)
- Jackye Peretz
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Veiga-Lopez A, Beckett EM, Abi Salloum B, Ye W, Padmanabhan V. Developmental programming: prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep. Toxicol Appl Pharmacol 2014; 279:119-28. [PMID: 24923655 DOI: 10.1016/j.taap.2014.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/20/2022]
Abstract
Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5mg/kgBW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2-3mm, 4-5mm, and ≥6mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females.
Collapse
Affiliation(s)
- A Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - E M Beckett
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - B Abi Salloum
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - W Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; The Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Caserta D, Di Segni N, Mallozzi M, Giovanale V, Mantovani A, Marci R, Moscarini M. Bisphenol A and the female reproductive tract: an overview of recent laboratory evidence and epidemiological studies. Reprod Biol Endocrinol 2014; 12:37. [PMID: 24886252 PMCID: PMC4019948 DOI: 10.1186/1477-7827-12-37] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/01/2014] [Indexed: 02/05/2023] Open
Abstract
Bisphenol A (BPA) is a high production volume monomer used for making a wide variety of polycarbonate plastics and resins. A large body of evidence links BPA to endocrine disruption in laboratory animals, and a growing number of epidemiological studies support a link with health disorders in humans. The aim of this review is to summarize the recent experimental studies describing the effects and mechanisms of BPA on the female genital tract and to compare them to the current knowledge regarding the impact of BPA impact on female reproductive health. In particular, BPA has been correlated with alterations in hypothalamic-pituitary hormonal production, reduced oocyte quality due to perinatal and adulthood exposure, defective uterine receptivity and the pathogenesis of polycystic ovary syndrome. Researchers have reported conflicting results regarding the effect of BPA on premature puberty and endometriosis development. Experimental studies suggest that BPA's mechanism of action is related to life stage and that its effect on the female reproductive system may involve agonism with estrogen nuclear receptors as well as other mechanisms (steroid biosynthesis inhibition). Notwithstanding uncertainties and knowledge gaps, the available evidence should be seen as a sufficient grounds to take precautionary actions against excess exposure to BPA.
Collapse
Affiliation(s)
- Donatella Caserta
- Department of Gynecology-Obstetrics and Urological Sciences, “Sapienza”, University of Rome, S. Andrea Hospital, Rome, Italy
| | - Noemi Di Segni
- Department of Gynecology-Obstetrics and Urological Sciences, “Sapienza”, University of Rome, S. Andrea Hospital, Rome, Italy
| | - Maddalena Mallozzi
- Department of Gynecology-Obstetrics and Urological Sciences, “Sapienza”, University of Rome, S. Andrea Hospital, Rome, Italy
| | - Valentina Giovanale
- Department of Gynecology-Obstetrics and Urological Sciences, “Sapienza”, University of Rome, S. Andrea Hospital, Rome, Italy
| | - Alberto Mantovani
- Food and Veterinary Toxicology Section, Istituto Superiore di Sanità, Roma, Italy
| | - Roberto Marci
- Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and Gynaecology, University of Ferrara, Ferrara, Italy
| | - Massimo Moscarini
- Department of Gynecology-Obstetrics and Urological Sciences, “Sapienza”, University of Rome, S. Andrea Hospital, Rome, Italy
| |
Collapse
|
49
|
High intake of dietary sugar enhances bisphenol A (BPA) disruption and reveals ribosome-mediated pathways of toxicity. Genetics 2014; 197:147-57. [PMID: 24614930 DOI: 10.1534/genetics.114.163170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bisphenol A (BPA) is an organic compound to which human populations are ubiquitously exposed. Epidemiological data suggest BPA exposure might be associated with higher rates of diabetes and reproductive anomalies. Health concerns also include transgenerational consequences, but these mechanisms are crudely defined. Similarly, little is known about synergistic interactions between BPA and other substances. Here we show that acute and chronic exposure to BPA causes genome-wide modulation of several functionally coherent genetic pathways in the fruit fly Drosophila melanogaster. In particular, BPA exposure causes massive downregulation of testis-specific genes and upregulation of ribosome-associated genes widely expressed across tissues. In addition, it causes the modulation of transposable elements that are specific to the ribosomal DNA loci, suggesting that nucleolar stress might contribute to BPA toxicity. The upregulation of ribosome-associated genes and the impairment of testis-specific gene expression are significantly enhanced upon BPA exposure with a high-sugar diet. Our results suggest that BPA and dietary sugar might functionally interact, with consequences to regulatory programs in both reproductive and somatic tissues.
Collapse
|
50
|
Wang W, Hafner KS, Flaws JA. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicol Appl Pharmacol 2014; 276:157-64. [PMID: 24576723 DOI: 10.1016/j.taap.2014.02.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/15/2014] [Accepted: 02/08/2014] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age.
Collapse
Affiliation(s)
- Wei Wang
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, USA.
| | - Katlyn S Hafner
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, USA.
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, USA.
| |
Collapse
|