1
|
Hackwell E, Ladyman SR, Clarkson J, McQullian HJ, Boehm U, Herbison AE, Brown R, Grattan DR. Prolactin-mediates a lactation-induced suppression of arcuate kisspeptin neuronal activity necessary for lactational infertility in mice. eLife 2025; 13:RP94570. [PMID: 39819370 PMCID: PMC11741520 DOI: 10.7554/elife.94570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.
Collapse
Affiliation(s)
- Eleni Hackwell
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
| | - Sharon R Ladyman
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Jenny Clarkson
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - H James McQullian
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
| | - Ulrich Boehm
- Saarland University School of Medicine, Centre for Molecular Signalling (PZMS), Experimental PharmacologyHomburgGermany
| | - Allan Edward Herbison
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Rosemary Brown
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - David R Grattan
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| |
Collapse
|
2
|
Dulka EA, Burger LL, Moenter SM. Ovarian Androgens Maintain High GnRH Neuron Firing Rate in Adult Prenatally-Androgenized Female Mice. Endocrinology 2020; 161:5686883. [PMID: 31875912 PMCID: PMC7397485 DOI: 10.1210/endocr/bqz038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.
Collapse
Affiliation(s)
- Eden A Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Suzanne M. Moenter, PhD; 7725 Med Sci II; 1137 E Catherine St; Ann Arbor, Michigan 48109-5622; phone: 734-647-1755;
| |
Collapse
|
3
|
Brown RSE, Khant Aung Z, Phillipps HR, Barad Z, Lein HJ, Boehm U, Szawka RE, Grattan DR. Acute Suppression of LH Secretion by Prolactin in Female Mice Is Mediated by Kisspeptin Neurons in the Arcuate Nucleus. Endocrinology 2019; 160:1323-1332. [PMID: 30901026 DOI: 10.1210/en.2019-00038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Hyperprolactinemia causes infertility, but the specific mechanism is unknown. It is clear that elevated prolactin levels suppress pulsatile release of GnRH from the hypothalamus, with a consequent reduction in pulsatile LH secretion from the pituitary. Only a few GnRH neurons express prolactin receptors (Prlrs), however, and thus prolactin must act indirectly in the underlying neural circuitry. Here, we have tested the hypothesis that prolactin-induced inhibition of LH secretion is mediated by kisspeptin neurons, which provide major excitatory inputs to GnRH neurons. To evaluate pulsatile LH secretion, we collected serial blood samples from diestrous mice and measured LH levels by ultrasensitive ELISA. Acute prolactin administration decreased LH pulses in wild-type mice. Kisspeptin neurons in the arcuate nucleus and in the rostral periventricular area of the third ventricle (RP3V) acutely responded to prolactin, but prolactin-induced signaling in kisspeptin neurons was up to fourfold higher in the arcuate nucleus when compared with the RP3V. Consistent with this, conditional knockout of Prlr specifically in arcuate nucleus kisspeptin neurons prevented prolactin-induced suppression of LH secretion. Our data establish that during hyperprolactinemia, suppression of pulsatile LH secretion is mediated by Prlr on arcuate kisspeptin neurons.
Collapse
Affiliation(s)
- Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hsin-Jui Lein
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
4
|
Tortonese DJ. Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding. Domest Anim Endocrinol 2016; 56 Suppl:S191-203. [PMID: 27345316 PMCID: PMC5380791 DOI: 10.1016/j.domaniend.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that, in conjunction with dynamic changes in the secretion of GnRH from the hypothalamus, paracrine interactions within the pituitary gland play an important role in the regulation of fertility during the annual reproductive cycle. Morphological studies have provided evidence for close associations between gonadotropes and lactotropes and gap junction coupling between these cells in a variety of species. The physiological significance of this cellular interaction was supported by subsequent studies revealing the expression of prolactin receptors in both the pars distalis and pars tuberalis regions of the pituitary. This cellular interaction is critical for adequate gonadotropin output because, in the presence of dopamine, prolactin can negatively regulate the LH response to GnRH. Receptor signaling studies showed that signal convergence at the level of protein kinase C and phospholipase C within the gonadotrope underlies the resulting inhibition of LH secretion. Although this is a conserved mechanism present in all species studied so far, in seasonal breeders such as the sheep and the horse, this mechanism is regulated by photoperiod, as it is only apparent during the long days of spring and summer. At this time of year, the nonbreeding season of the sheep coincides with the breeding season of the horse, indicating that this inhibitory system plays different roles in short- and long-day breeders. Although in the sheep, it contributes to the complete suppression of the reproductive axis, in the horse, it is likely to participate in the fine-tuning of gonadotropin output by preventing gonadotrope desensitization. The photoperiodic regulation of this inhibitory mechanism appears to rely on alterations in the folliculostellate cell population. Indeed, electron microscopic studies have recently shown increased folliculostellate cell area together with upregulation of their adherens junctions during the spring and summer. The association between gonadotropes and lactotropes could also underlie an interaction between the gonadotropic and prolactin axes in the opposite direction. In support of this alternative, a series of studies have demonstrated that GnRH stimulates prolactin secretion in sheep through a mechanism that does not involve the mediatory actions of LH or FSH and that this stimulatory effect of GnRH on the prolactin axis is seasonally regulated. Collectively, these findings highlight the importance of intercellular communications within the pituitary in the control of gonadotropin and prolactin secretion during the annual reproductive cycle in seasonal breeders.
Collapse
Affiliation(s)
- D J Tortonese
- Centre for Comparative and Clinical Anatomy, Faculty of Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Tegge AN, Sharp N, Murali TM. Xtalk: a path-based approach for identifying crosstalk between signaling pathways. Bioinformatics 2015; 32:242-51. [PMID: 26400040 DOI: 10.1093/bioinformatics/btv549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. RESULTS We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. AVAILABILITY AND IMPLEMENTATION The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. CONTACT ategge@vt.edu, murali@cs.vt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Department of Statistics and
| | | | - T M Murali
- Department of Computer Science, ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Lebedeva IY, Singina GN, Lopukhov AV, Shedova EN, Zinovieva NA. Prolactin and growth hormone affect metaphase-II chromosomes in aging oocytes via cumulus cells using similar signaling pathways. Front Genet 2015; 6:274. [PMID: 26379702 PMCID: PMC4550791 DOI: 10.3389/fgene.2015.00274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023] Open
Abstract
General senescence of the adult organism is closely connected with reproductive one. Meanwhile, the age-related reduction in the female fertility is primarily associated with a decline in the gamete quality. Molecular and cellular changes in oocytes of old mammalian females are very similar to those occurring during aging of matured ova of their young counterparts, suggesting similarities in underlying mechanisms. The aim of the present work was to study actions of two related pituitary hormones, prolactin (PRL) and growth hormone (GH), on age-associated modifications of metaphase-II (M-II) chromosomes in bovine oocytes using a model of the prolonged culture. We analyzed: (1) effects of PRL and GH on abnormal changes in the chromosome morphology in aging matured oocytes and the role of cumulus cells in these effects and (2) signaling pathways involved in the hormone actions. During the prolonged culture of oocytes, a gradual rise in the frequency of destructive modifications of M-II chromosomes was revealed. In the case of cumulus-enclosed oocytes (CEOs), PRL and GH exerted dose-dependent biphasic effects on the frequency of these modifications. Both PRL (50 ng/ml) and GH (10 ng/ml) decelerated the abnormal chromosome changes in CEOs, but did not affect the chromosome configuration in denuded oocytes. Concurrently, the presence of PRL and GH receptors in cumulus cells surrounding matured oocytes was demonstrated. Attenuating effects of both hormones on the chromosome modifications in aging CEOs were abolished by PP2 (an inhibitor of Src-family tyrosine kinases), triciribine (an inhibitor of Akt kinase), and calphostin C (a protein kinase C inhibitor). Our findings indicate that PRL and GH can exert the similar decelerating action on age-associated alterations in the M-II chromosome morphology in bovine ova, which is mediated by cumulus cells and may be related to activation of Src-family tyrosine kinases as well as Akt- and protein kinase C-dependent signal pathways.
Collapse
Affiliation(s)
- Irina Y Lebedeva
- Center of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Institute of Animal Husbandry , Podolsk, Moscow Region, Russia
| | - Galina N Singina
- Center of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Institute of Animal Husbandry , Podolsk, Moscow Region, Russia
| | - Alexander V Lopukhov
- Center of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Institute of Animal Husbandry , Podolsk, Moscow Region, Russia
| | - Ekaterina N Shedova
- Center of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Institute of Animal Husbandry , Podolsk, Moscow Region, Russia
| | - Natalia A Zinovieva
- Center of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Institute of Animal Husbandry , Podolsk, Moscow Region, Russia
| |
Collapse
|
7
|
Lin C, Jiang X, Hu G, Ko WKW, Wong AOL. Grass carp prolactin: molecular cloning, tissue expression, intrapituitary autoregulation by prolactin and paracrine regulation by growth hormone and luteinizing hormone. Mol Cell Endocrinol 2015; 399:267-83. [PMID: 25458702 DOI: 10.1016/j.mce.2014.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
Abstract
Prolactin (PRL), a pituitary hormone with diverse functions, is well-documented to be under the control of both hypothalamic and peripheral signals. Intrapituitary modulation of PRL expression via autocrine/paracrine mechanisms has also been reported, but similar information is still lacking in lower vertebrates. To shed light on autocrine/paracrine regulation of PRL in fish model, grass carp PRL was cloned and its expression in the carp pituitary has been confirmed. In grass carp pituitary cells, local secretion of PRL could suppress PRL release with concurrent rises in PRL production and mRNA levels. Paracrine stimulation by growth hormone (GH) was found to up- regulate PRL secretion, PRL production and PRL transcript expression, whereas the opposite was true for the local actions of luteinizing hormone (LH). Apparently, local interactions of PRL, GH and LH via autocrine/paracrine mechanisms could modify PRL production in carp pituitary cells through differential regulation of PRL mRNA stability and gene transcription.
Collapse
Affiliation(s)
- Chengyuan Lin
- School of Biological Sciences, University of Hong Kong, Hong Kong; YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Xue Jiang
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | - Guangfu Hu
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | - Wendy K W Ko
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | | |
Collapse
|
8
|
Lebedeva IY, Singina GN, Volkova NA, Vejlsted M, Zinovieva NA, Schmidt M. Prolactin affects bovine oocytes through direct and cumulus-mediated pathways. Theriogenology 2014; 82:1154-64. [DOI: 10.1016/j.theriogenology.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/18/2014] [Accepted: 08/02/2014] [Indexed: 12/21/2022]
|
9
|
Hodson DJ, Henderson HL, Townsend J, Tortonese DJ. Photoperiodic modulation of the suppressive actions of prolactin and dopamine on the pituitary gonadotropin responses to gonadotropin-releasing hormone in sheep. Biol Reprod 2012; 86:122. [PMID: 22302689 DOI: 10.1095/biolreprod.111.096909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In a variety of species, the LH-secretory response to gonadotropin-releasing hormone (GnRH) is completely suppressed by the combined actions of prolactin (PRL) and dopamine (DA). In sheep, this effect is only observed under long days (nonbreeding season [NBS]). To investigate the level at which these mechanisms operate, we assessed the effects of PRL and bromocriptine (Br), a DA agonist, on the gonadotropin-secretory and mRNA responses to GnRH in pituitary cell cultures throughout the ovine annual reproductive cycle. As expected, the LH-secretory response to GnRH was only abolished during the NBS following combined PRL and Br application. Conversely, the LHB subunit response to GnRH was reduced during both the BS and NBS by the combined treatment and Br alone. Similar results were obtained in pars distalis-only cultures, indicating that the effects are pars tuberalis (PT)- independent. Further signaling studies revealed that PRL and Br alter the LH response to GnRH via convergence at the level of PLC and PKC. Results for FSH generally reflected those for LH, except during the BS where removal of the PT allowed PRL and Br to suppress the FSH-secretory response to GnRH. These data show that suppression of the LH-secretory response to GnRH by PRL and DA is accompanied by changes in mRNA synthesis, and that the photoperiodic modulation of this inhibition operates primarily at the level of LH release through alterations in PKC and PLC. Furthermore, the suppressive effects of PRL and DA on the secretion of FSH are photoperiodically regulated in a PT-dependent manner.
Collapse
Affiliation(s)
- David J Hodson
- Department of Anatomy, University of Bristol, Bristol, England, United Kingdom
| | | | | | | |
Collapse
|
10
|
Hodson DJ, Romanò N, Schaeffer M, Fontanaud P, Lafont C, Fiordelisio T, Mollard P. Coordination of calcium signals by pituitary endocrine cells in situ. Cell Calcium 2011; 51:222-30. [PMID: 22172406 DOI: 10.1016/j.ceca.2011.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022]
Abstract
The pulsatile secretion of hormones from the mammalian pituitary gland drives a wide range of homeostatic responses by dynamically altering the functional set-point of effector tissues. To accomplish this, endocrine cell populations residing within the intact pituitary display large-scale changes in coordinated calcium-spiking activity in response to various hypothalamic and peripheral inputs. Although the pituitary gland is structurally compartmentalized into specific and intermingled endocrine cell networks, providing a clear morphological basis for such coordinated activity, the mechanisms which facilitate the timely propagation of information between cells in situ remain largely unexplored. Therefore, the aim of the current review is to highlight the range of signalling modalities known to be employed by endocrine cells to coordinate intracellular calcium rises, and discuss how these mechanisms are integrated at the population level to orchestrate cell function and tissue output.
Collapse
Affiliation(s)
- David J Hodson
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim HJ, Gieske MC, Trudgen KL, Hudgins-Spivey S, Kim BG, Krust A, Chambon P, Jeong JW, Blalock E, Ko C. Identification of estradiol/ERα-regulated genes in the mouse pituitary. J Endocrinol 2011; 210:309-21. [PMID: 21700660 DOI: 10.1530/joe-11-0098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogen acts to prime the pituitary prior to the GnRH-induced LH surge by undiscovered mechanisms. This study aimed to identify the key components that mediate estrogen action in priming the pituitary. RNA extracted from the pituitaries of metestrous (low estrogen) and proestrus (high estrogen) stage mice, as well as from ovariectomized wild-type and estrogen receptor α (ERα) knockout mice treated with 17β-estradiol (E(2)) or vehicle, was used for gene expression microarray. Microarray data were then aggregated, built into a functional electronic database, and used for further characterization of E(2)/ERα-regulated genes. These data were used to compile a list of genes representing diverse biological pathways that are regulated by E(2) via an ERα-mediated pathway in the pituitary. This approach substantiates ERα regulation of membrane potential regulators and intracellular vesicle transporters, among others, but not the basic components of secretory machinery. Subsequent characterization of six selected genes (Cacna1a, Cacna1g, Cited1, Abep1, Opn3, and Kcne2) confirmed not only ERα dependency for their pituitary expression but also the significance of their expression in regulating GnRH-induced LH secretion. In conclusion, findings from this study suggest that estrogen primes the pituitary via ERα by equipping pituitary cells with critical cellular components that potentiate LH release on subsequent GnRH stimulations.
Collapse
Affiliation(s)
- Hyun Joon Kim
- Division of Reproductive Sciences, Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|