1
|
Serrano-Albal M, Aquilina MC, Kiazim LG, Zak LJ, Griffin DK, Ellis PJ. Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes. Animals (Basel) 2024; 14:2544. [PMID: 39272329 PMCID: PMC11394568 DOI: 10.3390/ani14172544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have a negative effect on the quality of the sample. Microfluidic chip-based sperm (MCS) sorting has been proposed as an alternative technique for the selection of high-quality sperm with the purpose of improving reproductive outcomes in IVF. This device does not require centrifugation or any toxic solution to prepare the sample for fertilisation. The sample is not subjected to unnecessary stress, and the process is less operator-dependent. In this study, we compared the sperm parameters of unselected extender-diluted boar semen samples with selected samples using DGS and MCS methods. The results show an expected reduction in sperm concentration after both methods. All the groups were significantly different from one another, with MCS being the group with the lowest concentration. Though the three groups had a similar overall motility, significant differences were found in progressive motility when comparing the unselected group (control, 19.5 ± 1.4%) with DGS and MCS. Progressive motility in DGS was also significantly higher than in MCS (65.2 ± 4.9% and 45.7% ± 5.3, respectively). However, MCS selection resulted in enriched sperm samples with a significantly lower proportion of morphologically abnormal sperm compared to DGS. After fertilisation, no statistical differences were found between the two methods for embryological parameters such as cleavage rates, blastulation rates, and embryo quality. The number of cells in blastocysts derived from MCS was significantly greater than those derived from DGS sperm. Thus, we demonstrate that MCS is at least as good as the standard DGS for most measures. As a more gentle and reproducible approach for sperm selection, however, it could improve consistency and improve IVP outcomes as mediated by a greater proportion of morphologically normal sperm and manifested by a higher cell count in blastocysts.
Collapse
Affiliation(s)
| | | | - Lucas G Kiazim
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Louisa J Zak
- Topigs Norsvin Research Center, Meerendonkweg 25, 5216 TZ 's-Hertogenbosch, The Netherlands
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Peter J Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| |
Collapse
|
2
|
Santana PDPB, Pinheiro KDC, Pereira LCDS, Andrade SS, Aburjaile FF, Ramos PDCDA, de Souza EB, da Costa NN, Cordeiro MDS, Santos SDSD, Miranda MDS, Ramos RTJ, da Silva ALDC. RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo. Anim Reprod 2024; 21:e20230131. [PMID: 38912163 PMCID: PMC11192227 DOI: 10.1590/1984-3143-ar2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-throughput data and provides transcriptomes that can undergo additional computational analyses. This study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, ±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were identified. Gene co-expression network and module preservation analysis revealed strong preservation of functional modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which may reflect differences in embryo development kinetics and the activation of cell signaling pathways between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays.
Collapse
Affiliation(s)
| | | | | | - Soraya Silva Andrade
- Laboratório de Genômica e Bioinformática, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Eduardo Baia de Souza
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Nathalia Nogueira da Costa
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Moysés dos Santos Miranda
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | |
Collapse
|
3
|
Ruan D, Xuan Y, Tam TTKK, Li Z, Wang X, Xu S, Herrmann D, Niemann H, Lai L, Gao X, Nowak-Imialek M, Liu P. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells. Nat Protoc 2024; 19:1710-1749. [PMID: 38509352 DOI: 10.1038/s41596-024-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.
Collapse
Affiliation(s)
- Degong Ruan
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - ZhuoXuan Li
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiao Wang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shao Xu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Hannover Medical School (MHH), Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover, Germany
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Monika Nowak-Imialek
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- First Department of Medicine, Cardiology, Klinikum rechts der Isar-Technical University of Munich, Munich, Germany.
| | - Pentao Liu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China.
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
4
|
Travaglione A, Candela A, De Gregorio V, Genovese V, Cimmino M, Barbato V, Talevi R, Gualtieri R. Individually Cultured Bovine Zygotes Successfully Develop to the Blastocyst Stage in an Extremely Confined Environment. Cells 2024; 13:868. [PMID: 38786090 PMCID: PMC11119105 DOI: 10.3390/cells13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (A.T.); (A.C.); (V.D.G.); (V.G.); (M.C.); (V.B.); (R.T.)
| |
Collapse
|
5
|
Qu HX, Wang YQ, Dong YW, Qi JJ, Wei HK, Zhang Y, Sun H, Sun BX, Liang S. Chlorogenic acid improves the development of porcine parthenogenetic embryos by regulating oxidative stress and ameliorating mitochondrial function. Reprod Domest Anim 2024; 59:e14596. [PMID: 38757656 DOI: 10.1111/rda.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 μM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Geisert RD, Johns DN, Pfeiffer CA, Sullivan RM, Lucas CG, Simintiras CA, Redel BK, Wells KD, Spencer TE, Prather RS. Gene editing provides a tool to investigate genes involved in reproduction of pigs. Mol Reprod Dev 2023; 90:459-468. [PMID: 35736243 DOI: 10.1002/mrd.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Riley M Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Sadeghi M, Andani MR, Hajian M, Sanei N, Moradi-Hajidavaloo R, Mahvash N, Jafarpour F, Nasr-Esfahani MH. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 2023; 18:e0281331. [PMID: 37075045 PMCID: PMC10115261 DOI: 10.1371/journal.pone.0281331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023] Open
Abstract
The specific role of the canonical WNT/β-catenin signaling pathway during the preimplantation development of goat remains unclear. Our objective was to investigate the expression of β-CATENIN, one of the critical components of Wnt signaling pathway, in IVF embryos and compare it with SCNT embryos in goat. In addition, we evaluated the consequence of inhibition of β-catenin using IWR1. Initially, we observed cytoplasmic expression of β-CATENIN in 2 and 8-16 cell stage embryos and membranous expression of β-CATENIN in compact morula and blastocyst stages. Furthermore, while we observed exclusively membranous localization of β-catenin in IVF blastocysts, we observed both membranous and cytoplasmic localization in SCNT blastocysts. We observed that Inhibition of WNT signaling by IWR1 during compact morula to blastocyst transition (from day 4 till day 7 of in vitro culture) increased blastocyst formation rate in both IVF and SCNT embryos. In conclusion, it seems that WNT signaling system has functional role in the preimplantation goat embryos, and inhibition of this pathway during the period of compact morula to blastocyst transition (D4-D7) can improve preimplantation embryonic development.
Collapse
Affiliation(s)
- Marjan Sadeghi
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafiseh Sanei
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nasrin Mahvash
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
8
|
Aoki S, Inoue Y, Shinozawa A, Tanaka K, Shirasuna K, Iwata H. miR-17-5p in bovine oviductal fluid affects embryo development. Mol Cell Endocrinol 2022; 551:111651. [PMID: 35452772 DOI: 10.1016/j.mce.2022.111651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
Abstract
This study identified microRNAs (miRNAs) in bovine oviductal fluids (OFs) and examined the effect of miR-17-5p in OFs on embryonic development to the blastocyst stage. Small RNA-seq of extracellular vesicles of OFs revealed 242 miRNAs. Additionally, analyzing expressions of randomly selected OF-miRNAs with RT-qPCR in the culture medium of oviductal epithelial cells indicated that the abundance of miRNAs in OFs increased during the luteal phase. miR-17-5p mimic-treated eight-cell-stage zona pellucida-free embryos showed improved embryonic development to the blastocyst stage. The effect of the miR-17-5p mimic was confirmed using a dual-luciferase assay and immunostaining. In addition, RNA-seq of the miR-17-5p mimic- or control-treated embryos revealed differentially expressed genes (DEGs), suggesting possible pathways that overlapped with the in silico-predicted pathways for miR-17-5p targeting genes. Furthermore, ingenuity pathway analysis of DEG predicted miR-17 to be a significant upstream regulator. Our results suggest that miR-17-5p in OFs regulates embryonic development in bovines.
Collapse
Affiliation(s)
- Sogo Aoki
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Yuki Inoue
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
9
|
Seo H, Kramer AC, McLendon BA, Cain JW, Burghardt RC, Wu G, Bazer FW, Johnson GA. Elongating porcine conceptuses can utilize Glutaminolysis as an Anaplerotic pathway to maintain the TCA cycle. Biol Reprod 2022; 107:823-833. [PMID: 35552608 DOI: 10.1093/biolre/ioac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
During the peri-implantation period of pregnancy, the trophectoderm of pig conceptuses utilize glucose via multiple biosynthetic pathways to support elongation and implantation, resulting in limited availability of pyruvate for metabolism via the TCA cycle. Therefore, we hypothesized that porcine trophectoderm cells replenish TCA cycle intermediates via a process known as anaplerosis, and that trophectoderm cells convert glutamine to α-ketoglutarate, a TCA cycle intermediate, through glutaminolysis. Results demonstrate: 1) that expression of glutaminase (GLS) increases in trophectoderm and glutamine synthetase (GLUL) increases in extra-embryonic endoderm of conceptuses, suggesting that extra-embryonic endoderm synthesizes glutamine, and trophectoderm converts glutamine into glutamate; and 2) that expression of glutamate dehydrogenase 1 (GLUD1) decreases and expression of aminotransferases including PSAT1 increase in trophectoderm, suggesting that glutaminolysis occurs in the trophectoderm through the GLS-aminotransferase pathway during the peri-implantation period. We then incubated porcine conceptuses with 13C-glutamine in the presence or absence of glucose in the culture media, and then monitored the movement of glutamine-derived carbons through metabolic intermediates within glutaminolysis and the TCA cycle. The accumulation of 13C-labeled carbons significantly increased in glutamate, α-ketoglutarate, succinate, malate, citrate, and aspartate in the absence of glucose in the media. Collectively, our results indicate that during the peri-implantation period of pregnancy, the proliferating and migrating trophectoderm cells of elongating porcine conceptuses utilize glutamine via glutaminolysis as an alternate carbon source to maintain TCA cycle flux.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| |
Collapse
|
10
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
11
|
Zeng J, Zhang Z, Liao Q, Lu Q, Liu J, Yuan L, Liu G. CircPan3 Promotes the Ghrelin System and Chondrocyte Autophagy by Sponging miR-667-5p During Rat Osteoarthritis Pathogenesis. Front Cell Dev Biol 2021; 9:719898. [PMID: 34869311 PMCID: PMC8640465 DOI: 10.3389/fcell.2021.719898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the potential roles of circRNAs in regulating osteoarthritis (OA)-related ghrelin synthesis, autophagy induction, and the relevant molecular mechanisms. Results showed that Col2a1, Acan, ghrelin, and autophagy-related markers expression were downregulated, while matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) expressions increased in both IL-1β-induced rat chondrocytes and cartilage tissues of OA rats. A total of 130 circRNAs and 731 mRNAs were differentially expressed in IL-1β-induced rat chondrocytes. Among them, we found that circPan3 expression was significantly decreased in both cellular and animal OA models. CircPan3 directly targeted miR-667-5p. CircPan3 overexpression promoted Col2a1, Acan, ghrelin, beclin 1, and LC3-II expression but reduced MMP13 and ADAMTS5 expression in rat chondrocytes, whereas overexpression of miR-667-5p exhibited opposite effects on the above markers. Furthermore, we found that miR-667-5p bound directly to the 3′-UTR sequence of ghrelin gene. Moreover, the circPan3-induced alterations in chondrocytes were antagonized by miR-667-5p overexpression. Taken together, our findings demonstrate that circPan3 promotes ghrelin synthesis and chondrocyte autophagy via targeting miR-667-5p, protecting against OA injury. This study provided experimental evidence that circPan3/miR-667-5p/ghrelin axis might serve as targets of drug development for the treatment of OA.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Nanfang University of Science and Technology Hospital, Shenzhen, China
| | - Zhenzhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Hankou Hospital, Wuhan, China
| | - Qing Liao
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Qijin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| |
Collapse
|
12
|
Fu B, Ma H, Zhang DJ, Wang L, Li ZQ, Guo ZH, Liu ZG, Wu SH, Meng XR, Wang F, Chen WG, Liu D. Porcine oviductal extracellular vesicles facilitate early embryonic development via relief of endoplasmic reticulum stress. Cell Biol Int 2021; 46:300-310. [PMID: 34854517 DOI: 10.1002/cbin.11730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 11/06/2022]
Abstract
The key to successful in vitro embryo production (IVEP) is to mimic the natural in vivo oviductal microenvironment. Although the chemically defined media in extensive use for the in vitro culture of mammalian embryos is based on the composition of oviductal fluid, the IVEP systems in current use must still bypass the oviduct to produce embryos in vitro. Extracellular vesicles (EVs) in the oviduct are versatile intercellular delivery vehicles for maternal-embryo communication, and a lack of them can be associated with failed early embryonic development under in vitro culture conditions. Herein, we isolated EVs from porcine oviduct fluid and confirmed that oviductal EV supplementation improves the embryonic development of parthenogenetically activated (PA) embryos in terms of blastocyst formation rates and total cell numbers. Our experiments also revealed that a beneficial effect of oviductal EVs on PA embryos was achievable, at least in part, by relieving endoplasmic reticulum stress. These results suggest that the maternal-embryo communication mediated by oviductal EVs benefits early embryonic development. Given the contribution of oviductal EVs to early embryonic development, these findings offer novel insights for the optimization of current IVEP systems.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Dong-Jie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhong-Qiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhen-Hua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zi-Guang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Sai-Hui Wu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiang-Ren Meng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wen-Gui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
13
|
Chen PR, Lucas CG, Cecil RF, Pfeiffer CA, Fudge MA, Samuel MS, Zigo M, Seo H, Spate LD, Whitworth KM, Sutovsky P, Johnson GA, Wells KD, Geisert RD, Prather RS. Disrupting porcine glutaminase does not block preimplantation development and elongation nor decrease mTORC1 activation in conceptuses†. Biol Reprod 2021; 105:1104-1113. [PMID: 34453429 DOI: 10.1093/biolre/ioab165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023] Open
Abstract
Elongation of pig conceptuses is a dynamic process, requiring adequate nutrient provisions. Glutamine is used as an energy substrate and is involved in the activation of mechanistic target of rapamycin complex 1 (mTORC1) during porcine preimplantation development. However, the roles of glutamine have not been extensively studied past the blastocyst stage. Therefore, the objective of the current study was to determine if glutaminase (GLS), which is the rate-limiting enzyme in glutamine metabolism, was necessary for conceptus elongation to proceed and was involved in mTORC1 activation. The CRISPR/Cas9 system was used to induce loss-of-function mutations in the GLS gene of porcine fetal fibroblasts. Wild type (GLS+/+) and knockout (GLS-/-) fibroblasts were used as donor cells for somatic cell nuclear transfer, and GLS+/+ and GLS-/- blastocyst-stage embryos were transferred into surrogates. On day 14 of gestation, GLS+/+ conceptuses primarily demonstrated filamentous morphologies, and GLS-/- conceptuses exhibited spherical, ovoid, tubular, and filamentous morphologies. Thus, GLS-/- embryos were able to elongate despite the absence of GLS protein and minimal enzyme activity. Furthermore, spherical GLS-/- conceptuses had increased abundance of transcripts related to glutamine and glutamate metabolism and transport compared to filamentous conceptuses of either genotype. Differences in phosphorylation of mTORC1 components and targets were not detected regarding conceptus genotype or morphology, but abundance of two transcriptional targets of mTORC1, cyclin D1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was increased in spherical conceptuses. Therefore, porcine GLS is not essential for conceptus elongation and is not required for mTORC1 activation at this developmental timepoint.
Collapse
Affiliation(s)
- Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Melissa A Fudge
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
15
|
Chen PR, Lucas CG, Spate LD, Prather RS. Glutaminolysis is involved in the activation of mTORC1 in in vitro-produced porcine embryos. Mol Reprod Dev 2021; 88:490-499. [PMID: 34075648 PMCID: PMC8361685 DOI: 10.1002/mrd.23516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
Glutamine supplementation to porcine embryo culture medium improves development, increases leucine consumption, and enhances mitochondrial activity. In cancer cells, glutamine has been implicated in the activation of mechanistic target of rapamycin complex 1 (mTORC1) to support rapid proliferation. The objective of this study was to determine if glutamine metabolism, known as glutaminolysis, was involved in mTORC1 activation in porcine embryos. Culture with 3.75 mM GlutaMAX improved development to the blastocyst stage compared to culture with 1 mM GlutaMAX, and culture with 0 mM GlutaMAX decreased development compared to all groups with GlutaMAX. Ratios of phosphorylated to total MTOR were increased when embryos were cultured with 3.75 or 10 mM GlutaMAX, which was enhanced by the absence of leucine, but ratios for RPS6K were unchanged. As another indicator of mTORC1 activation, colocalization of MTOR and a lysosomal marker was increased in embryos cultured with 3.75 or 10 mM GlutaMAX in the absence of leucine. Culturing embryos with glutaminase inhibitors decreased development and the ratio of phosphorylated to total MTOR, indicating reduced activation of the complex. Therefore, glutaminolysis is involved in the activation of mTORC1 in porcine embryos, but further studies are needed to characterize downstream effects on development.
Collapse
Affiliation(s)
- Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Cambra JM, Martinez EA, Rodriguez-Martinez H, Gil MA, Cuello C. Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals (Basel) 2021; 11:ani11051414. [PMID: 34069238 PMCID: PMC8156047 DOI: 10.3390/ani11051414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.
Collapse
Affiliation(s)
- Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
- Correspondence:
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
17
|
van der Weijden VA, Schmidhauser M, Kurome M, Knubben J, Flöter VL, Wolf E, Ulbrich SE. Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos. BMC Genomics 2021; 22:139. [PMID: 33639836 PMCID: PMC7913449 DOI: 10.1186/s12864-021-07430-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts. RESULTS In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, xenobiotic metabolism general signaling pathway, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts further were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts. CONCLUSIONS Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.
Collapse
Affiliation(s)
- Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland
| | - Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Johannes Knubben
- Physiology Weihenstephan, Technical University Munich, Freising, Germany
| | - Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland.,Physiology Weihenstephan, Technical University Munich, Freising, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland.
| |
Collapse
|
18
|
Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer. Int J Mol Sci 2020; 21:ijms21197116. [PMID: 32993198 PMCID: PMC7582512 DOI: 10.3390/ijms21197116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Although assisted reproduction technologies (ARTs) are recognised as safe, and most of the offspring seem apparently healthy, there is clear evidence that ARTs are associated with changes in the embryo’s developmental trajectory, which incur physiological consequences during the prenatal and postnatal stages of life. The present study aimed to address the influence of early (day-3 embryos) embryo transfer and cryopreservation on embryo survival, size, and metabolome at the preimplantation stage (day-6 embryos). To this end, fresh-transferred (FT) and vitrified-transferred (VT) embryos were compared using naturally-conceived (NC) embryos as a control reference. The results show that as in vitro manipulation was increased (NC < FT < VT), both embryo survival rate (0.91 ± 0.02, 0.78 ± 0.05 and 0.63 ± 0.05, for NC, FT, and VT groups, respectively) and embryo size (3.21 ± 0.49 mm, 2.15 ± 0.51 mm, 1.76 ± 0.46 mm of diameter for NC, FT, and VT groups, respectively) were significantly decreased. Moreover, an unbiased metabolomics analysis showed overall down-accumulation in 40 metabolites among the three experimental groups, with embryo transfer and embryo cryopreservation procedures both exerting a cumulative effect. In this regard, targeted metabolomics findings revealed a significant reduction in some metabolites involved in metabolic pathways, such as the Krebs cycle, amino acids, unsaturated fatty acids, and arachidonic acid metabolisms. Altogether, these findings highlight a synergistic effect between the embryo transfer and vitrification procedures in preimplantation embryos. However, the ex vivo manipulation during embryo transfer seemed to be the major trigger of the embryonic changes, as the deviations added by the vitrification process were relatively smaller.
Collapse
|
19
|
Moraes JGN, Behura SK, Bishop JV, Hansen TR, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites†. Biol Reprod 2020; 102:571-587. [PMID: 31616912 PMCID: PMC7331878 DOI: 10.1093/biolre/ioz197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Survival and growth of the bovine conceptus is dependent on endometrial secretions or histotroph. Previously, serial blastocyst transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components (proteins and metabolites) in the uterine lumen of day 17 fertility-classified heifers. Interferon tau (IFNT) was more abundant in uterine lumenal fluid (ULF) of pregnant HF than SF animals as the conceptus was longer in HF heifers. However, no differences in endometrial expression of selected classical and nonclassical interferon-stimulated genes (ISGs) were observed, suggesting that IFNT signaling in the endometrium of pregnant HF and SF heifers was similar. Pregnancy significantly increased the abundance of several proteins in ULF. Based on functional annotation, the abundance of a number of proteins involved in energy metabolism, oxidative stress, amino acid metabolism, and cell proliferation and differentiation were greater in the ULF of pregnant HF than SF heifers. Metabolomics analysis found that pregnancy only changed the metabolome composition of ULF from HF heifers. The majority of the metabolites that increased in the ULF of pregnant HF as compared to SF heifers were associated with energy and amino acid metabolism. The observed differences in ULF proteome and metabolome are hypothesized to influence uterine receptivity with consequences on conceptus development and survival in fertility-classified heifers.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
Noguchi T, Aizawa T, Munakata Y, Iwata H. Comparison of gene expression and mitochondria number between bovine blastocysts obtained <i>in vitro</i> and <i>in vivo</i>. J Reprod Dev 2019; 66:35-39. [PMID: 31748448 PMCID: PMC7040209 DOI: 10.1262/jrd.2019-100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Embryo transfer uses embryos developed in vivo or in vitro for cattle production, however there is a difference in the quality of the embryos obtained by
the two methods. This study addresses the differences in gene expression between blastocysts developed in vitro and in vivo. In vivo
blastocysts were flushed from the uteri of super-ovulated cows and blastocysts developed in vitro were derived from in vitro matured and fertilized embryos.
The same batch of frozen bull sperm was used for insemination and in vitro fertilization. Blastocysts were then subjected to RNA sequencing. Differentially expressed genes
upregulated in in vitro blastocysts were annotated to focal adhesion, extracellular matrix (ECM)-receptor interaction, and PI3K-Akt signaling and the genes that were
upregulated in in vivo blastocysts were annotated to oxidation-reduction processes, mitochondrion organization, and mitochondrial translation. Although the total cell number
of the two types of blastocysts was similar, the mitochondrial quantity (determined by mitochondrial DNA copy numbers and expression levels of TOMM20), and ATP content in the blastocysts
were lower in in vivo blastocysts compared with those developed in vitro. In conclusion, RNAseq revealed differential molecular backgrounds between
in vitro and in vivo developed blastocysts and mitochondrial number and function are responsible for these differences.
Collapse
Affiliation(s)
- Tatsuo Noguchi
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takuro Aizawa
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasuhisa Munakata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
21
|
Lucas CG, Chen PR, Seixas FK, Prather RS, Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol Reprod Dev 2019; 86:1531-1547. [PMID: 31478591 PMCID: PMC7183242 DOI: 10.1002/mrd.23260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
An appropriate environment to optimize porcine preimplantation embryo production in vitro is required as genetically modified pigs have become indispensable for biomedical research and agriculture. To provide suitable culture conditions, omics technologies have been applied to elucidate which metabolic substrates and pathways are involved during early developmental processes. Metabolomic profiling and transcriptional analysis comparing in vivo- and in vitro-derived embryos have demonstrated the important role of amino acids during preimplantation development. Transcriptional profiling studies have been helpful in assessing epigenetic reprogramming agents to allow for the correction of gene expression during the cloning process. Along with this, nanotechnology, which is a highly promising field, has allowed for the use of engineered nanoplatforms in reproductive biology. A growing number of studies have explored the use of nanoengineered materials for sorting, labeling, and targeting purposes; which demonstrates their potential to become one of the solutions for precise delivery of molecules into gametes and embryos. Considering the contributions of omics and the recent progress in nanoscience, in this review, we focused on their emerging applications for current in vitro pig embryo production systems to optimize the generation of genetically modified animals.
Collapse
Affiliation(s)
- Caroline G Lucas
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Paula R Chen
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Fabiana K Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Randall S Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Santana PDPB, da Silva ALDC, Ramos RTJ, Gonçalves AA, da Costa NN, Ramos PDCA, Silva TVG, Cordeiro MDS, Santos SDSD, Ohashi OM, Miranda MDS. Contributions of RNA-seq to improve in vitro embryo production (IVP). Anim Reprod 2019; 16:249-259. [PMID: 33224284 PMCID: PMC7673591 DOI: 10.21451/1984-3143-ar2017-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Vitro Embryo Production (IVP) is widely used to improve the reproductive efficiency of livestock animals, however increasing the embryo development rates and pregnancy outcomes is still a challenge for some species. Thus, the lack of biological knowledge hinders developing specie-specific IVP protocols. Therefore, the contributions of RNA-seq to generate relevant biological knowledge and improve the efficiency of IVP in livestock animals are reviewed herein.
Collapse
Affiliation(s)
| | | | | | - Arnaldo Algaranhar Gonçalves
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Nathalia Nogueira da Costa
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | | | | | - Marcela da Silva Cordeiro
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | | | - Otávio Mitio Ohashi
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Moysés Dos Santos Miranda
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
23
|
Chen PR, Redel BK, Spate LD, Ji T, Salazar SR, Prather RS. Glutamine supplementation enhances development of in vitro-produced porcine embryos and increases leucine consumption from the medium. Biol Reprod 2019; 99:938-948. [PMID: 29860318 DOI: 10.1093/biolre/ioy129] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023] Open
Abstract
Improper composition of culture medium contributes to reduced viability of in vitro-produced embryos. Glutamine (Gln) is a crucial amino acid for preimplantation embryos as it supports proliferation and is involved in many different biosynthetic pathways. Previous transcriptional profiling revealed several upregulated genes related to Gln transport and metabolism in in vitro-produced porcine blastocysts compared to in vivo-produced counterparts, indicating a potential deficiency in the culture medium. Therefore, the objective of this study was to determine the effects of Gln supplementation on in vitro-produced porcine embryo development, gene expression, and metabolism. Cleaved embryos were selected and cultured in MU2 medium supplemented with 1 mM Gln (control), 3.75 mM Gln (+Gln), 3.75 mM GlutaMAX (+Max), or 3.75 mM alanine (+Ala) until day 6. Embryos cultured with +Gln or +Max had increased development to the blastocyst stage and total number of nuclei compared to the control (P < 0.05). Moreover, expression of misregulated transcripts involved in glutamine and glutamate transport and metabolism was corrected when embryos were cultured with +Gln or +Max. Metabolomics analysis revealed increased production of glutamine and glutamate into the medium by embryos cultured with +Max and increased consumption of leucine by embryos cultured with +Gln or +Max. As an indicator of cellular health, mitochondrial membrane potential was increased when embryos were cultured with +Max which was coincident with decreased apoptosis in these blastocysts. Lastly, two embryo transfers by using embryos cultured with +Max resulted in viable piglets, confirming that this treatment is consistent with in vivo developmental competence.
Collapse
Affiliation(s)
- Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, USA
| | | | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
24
|
Romar R, Cánovas S, Matás C, Gadea J, Coy P. Pig in vitro fertilization: Where are we and where do we go? Theriogenology 2019; 137:113-121. [PMID: 31182223 DOI: 10.1016/j.theriogenology.2019.05.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pig is an important livestock animal. Biotechnological interest in this species has increased due to its use, among others, in the generation of transgenic animals for use in biomedicine based on its greater physiological proximity to the human species than other large domestic animals. This development has paralleled an improvement in Assisted Reproduction Techniques (ART) used for this species. However, the ability to generate animals from embryos produced entirely in vitro is still limited and a wide margin for improvement remains. Here we review the procedures, additives, and devices used during pig in vitro fertilization (IVF), focusing on the main points of each step that have offered the best results in terms of increased efficiency of the system. The lack of standardized protocols and consensus on the parameters to be assessed makes it difficult to compare results across different studies, but some conclusions are drawn from the literature. We anticipate that new physiological protocols will advance the field of swine IVF, including induction of prefertilization ZP hardening with oviductal fluid, sperm preparation by swim-up method, increased viscosity through the addition of inert molecules or reproductive biofluids, and the incorporation of 3D devices. Here we also reflect on the need to expand the variables on which the efficiency of pig IVF is based, providing new parameters that should be considered to supply more objective and quantitative assessment of IVF additives and protocols.
Collapse
Affiliation(s)
- Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain.
| | - Sebastián Cánovas
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
25
|
He X, Tan C, Li Z, Zhao C, Shi J, Zhou R, Wang X, Jiang G, Cai G, Liu D, Wu Z. Characterization and comparative analyses of transcriptomes of cloned and in vivo fertilized porcine pre-implantation embryos. Biol Open 2019; 8:bio.039917. [PMID: 30952695 PMCID: PMC6504007 DOI: 10.1242/bio.039917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is the only method known to rapidly reprogram differentiated cells into totipotent embryos. Most cloned embryos become arrested before implantation and the details of the underlying molecular mechanism remain largely unknown. Dynamic regulation of the transcriptome is a key molecular mechanism driving early embryonic development. Here, we report comprehensive transcriptomic analysis of cloned embryos (from Laiwu and Duroc pigs) and in vivo fertilized embryos (from Duroc pigs) using RNA-sequencing. Comparisons between gene expression patterns were performed according to differentially expressed genes, specific-expressed genes, first-expressed genes, pluripotency genes and pathway enrichment analysis. In addition, we closely analyzed the improperly expressed histone lysine methyltransferases and histone lysine demethylases during cell reprogramming in cloned embryos. In summary, we identified altered gene expression profiles in porcine cloned pre-implantation embryos in comparison to normal in vivo embryos. Our findings provide a substantial framework for further discovery of the epigenetic reprogramming mechanisms in porcine SCNT embryos. Summary: Comparative transcriptome analyses of cloned and in vivo fertilized pre-implantation embryos: transcriptional defects and reprogramming barriers in porcine somatic cell nuclear reprogramming.
Collapse
Affiliation(s)
- Xiaoyan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Cheng Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chengfa Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Rong Zhou
- Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gelong Jiang
- Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Ramos-Ibeas P, Heras S, Gómez-Redondo I, Planells B, Fernández-González R, Pericuesta E, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019; 86:1292-1306. [PMID: 30719806 DOI: 10.1002/mrd.23119] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sonia Heras
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
27
|
Jiang X, Xue S, Kang T, Liu H, Ren H, Hua R, Ni D, Lei M. Annexin A8 (ANXA8) regulates proliferation of porcine endometrial cells via Akt signalling pathway. Reprod Domest Anim 2019; 54:3-10. [PMID: 30040162 DOI: 10.1111/rda.13280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Annexin A8 (ANXA8) gene, a member of the annexin family, encodes an anticoagulant protein involved in blood coagulation cascade and acts as an indirect inhibitor of the thromboplastin-specific complex. However, little is known about the function of ANXA8 in porcine endometrial cells so far. Here, ANXA8 mRNA was found to be abundant in porcine endometrium on days 11-13 of pregnancy. Real-time RT-PCR analysis indicated that the mRNA expression of the leukaemia inhibitory factor (LIF) and the epidermal growth factor (EGF) was upregulated by ANXA8 in porcine endometrial cells. Immunofluorescence technology and cell cycle analysis revealed that ANXA8 promoted the proliferation of endometrial cells, as evidenced by the abundant proliferating cell nuclear antigen (PCNA) expression and an increase in the S phase. Western blot analysis results indicated that ANXA8 activated the phosphorylation of the target protein kinase B (Akt) protein. Immunofluorescence technology results showed that the PCNA protein had no significant change in porcine endometrial cells with both ANXA8 overexpression and the addition of Akt inhibitor. Furthermore, the number of implantation sites was significantly reduced by injection of mus-siRNA-ANXA8 into the uterine horn of mice. Collectively, these results suggest that ANXA8 promotes the proliferation of endometrial cells through the Akt signalling pathway.
Collapse
Affiliation(s)
- Xiaona Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songyi Xue
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Kang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huijing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huihui Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Renwu Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Debin Ni
- National Engineering Research Center for Livestock, Huazhong Agricultural University, Wuhan, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Engineering Research Center for Livestock, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
28
|
Duranthon V, Chavatte-Palmer P. Long term effects of ART: What do animals tell us? Mol Reprod Dev 2018; 85:348-368. [DOI: 10.1002/mrd.22970] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/09/2018] [Indexed: 01/01/2023]
|
29
|
Mun SE, Sim BW, Yoon SB, Jeong PS, Yang HJ, Choi SA, Park YH, Kim YH, Kang P, Jeong KJ, Lee Y, Jin YB, Song BS, Kim JS, Huh JW, Lee SR, Choo YK, Kim SU, Chang KT. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs. PLoS One 2017; 12:e0175427. [PMID: 28406938 PMCID: PMC5391019 DOI: 10.1371/journal.pone.0175427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite the application of numerous supplements to improve in vitro culture (IVC) conditions of mammalian cells, studies regarding the effect of fetal bovine serum (FBS) on mammalian early embryogenesis, particularly in relation to redox homeostasis, are lacking. Herein, we demonstrated that early development of in vitro-produced (IVP) porcine embryos highly depends on the combination of FBS supplementation timing and embryonic reactive oxygen species (ROS) requirements. Interestingly, FBS significantly reduced intracellular ROS levels in parthenogenetically activated (PA) embryos regardless of the developmental stage. However, the beneficial effect of FBS on early embryogenesis was found only during the late phase (IVC 4-6 days) treatment group. In particular, developmental competence parameters, such as blastocyst formation rate, cellular survival, total cell number and trophectoderm proportion, were markedly increased by FBS supplementation during the late IVC phase. In addition, treatment with FBS elevated antioxidant transcript levels during the late IVC phase. In contrast, supplementation with FBS during the entire period (1-6 days) or during the early IVC phase (1-2 days) greatly impaired the developmental parameters. Consistent with the results from PA embryos, the developmental competence of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) embryos were markedly improved by treatment with FBS during the late IVC phase. Moreover, the embryonic stage-specific effects of FBS were reversed by the addition of an oxidant and were mimicked by treatment with an antioxidant. These findings may increase our understanding of redox-dependent early embryogenesis and contribute to the large-scale production of high-quality IVP embryos.
Collapse
Affiliation(s)
- Seong-Eun Mun
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Jeollabuk-do, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Pil-Soo Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Hae-Jun Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Jeollabuk-do, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Philyong Kang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Kuk Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Jeollabuk-do, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
- * E-mail: (SUK); (KTC)
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
- * E-mail: (SUK); (KTC)
| |
Collapse
|
30
|
Wang YK, Li X, Song ZQ, Yang CX. Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes. Reprod Domest Anim 2017; 52:722-730. [PMID: 28407308 DOI: 10.1111/rda.12972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/25/2017] [Indexed: 11/28/2022]
Abstract
To ensure accurate normalization and quantification of target RNA transcripts using reverse transcription quantitative polymerase chain reaction (RT-qPCR), most studies focus on the identification of stably expressed gene(s) as internal reference. However, RNA preparation methods could also be an important factor, especially for test samples of limited quantity (e.g. oocytes). In this study, we aimed to select appropriate reference gene(s), and evaluate the effect of RNA preparation methods on gene expression quantification in porcine oocytes and cumulus cells during in vitro maturation. Expression profiles of seven genes (GAPDH, 18S, YWHAG, BACT, RPL4, HPRT1 and PPIA) were examined, on RNA samples extracted from cumulus cells (RNeasy Kit) and oocytes (RNeasy Kit and Lysis Kit) during in vitro maturation, respectively. Interestingly, different RNA preparation methods were found to potentially affect the quantification of reference gene expression in pig oocytes cultured in vitro. After geNorm analyses, the most suitable genes for normalization were identified, GAPDH/18S for cumulus cells and YWHAG/BACT for oocytes, respectively. Thus, our results provide useful data and information on the selection of better reference genes and RNA preparation method for related functional studies.
Collapse
Affiliation(s)
- Y-K Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - X Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Z-Q Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - C-X Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Krisher RL, Heuberger AL, Paczkowski M, Stevens J, Pospisil C, Prather RS, Sturmey RG, Herrick JR, Schoolcraft WB. Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod Fertil Dev 2017; 27:602-20. [PMID: 25763765 DOI: 10.1071/rd14359] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/10/2015] [Indexed: 12/16/2022] Open
Abstract
The advent of metabolomics technology and its application to small samples has allowed us to non-invasively monitor the metabolic activity of embryos in a complex culture environment. The aim of this study was to apply metabolomics technology to the analysis of individual embryos from several species during in vitro development to gain an insight into the metabolomics pathways used by embryos and their relationship with embryo quality. Alanine is produced by both in vivo- and in vitro-derived human, murine, bovine and porcine embryos. Glutamine is also produced by the embryos of these four species, but only those produced in vitro. Across species, blastocysts significantly consumed amino acids from the culture medium, whereas glucose was not significantly taken up. There are significant differences in the metabolic profile of in vivo- compared with in vitro-produced embryos at the blastocyst stage. For example, in vitro-produced murine embryos consume arginine, asparagine, glutamate and proline, whereas in vivo-produced embryos do not. Human embryos produce more alanine, glutamate and glutamine, and consume less pyruvate, at the blastocyst compared with cleavage stages. Glucose was consumed by human blastocysts, but not at a high enough level to reach significance. Consumption of tyrosine by cleavage stage human embryos is indicative of blastocyst development, although tyrosine consumption is not predictive of blastocyst quality. Similarly, although in vivo-produced murine blastocysts consumed less aspartate, lactate, taurine and tyrosine than those produced in vitro, consumption of these four amino acids by in vitro-derived embryos with high octamer-binding transcription factor 4 (Oct4) expression, indicative of high quality, did not differ from those with low Oct4 expression. Further application of metabolomic technologies to studies of the consumption and/or production of metabolites from individual embryos in a complete culture medium could transform our understanding of embryo physiology and improve our ability to produce developmentally competent embryos in vitro.
Collapse
Affiliation(s)
- Rebecca L Krisher
- National Foundation for Fertility Research, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Adam L Heuberger
- Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO 80523, USA
| | - Melissa Paczkowski
- National Foundation for Fertility Research, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - John Stevens
- Fertility Laboratories of Colorado, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Courtney Pospisil
- Fertility Laboratories of Colorado, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Roger G Sturmey
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, UK
| | - Jason R Herrick
- National Foundation for Fertility Research, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - William B Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| |
Collapse
|
32
|
Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase-dimethylarginine dimethylaminohydrolase-nitric oxide axis. Reprod Fertil Dev 2017; 27:655-66. [PMID: 25765074 DOI: 10.1071/rd14293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/14/2015] [Indexed: 12/15/2022] Open
Abstract
Culture systems promote development at rates lower than the in vivo environment. Here, we evaluated the embryo's transcriptome to determine what the embryo needs during development. A previous mRNA sequencing endeavour found upregulation of solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), an arginine transporter, in in vitro- compared with in vivo-cultured embryos. In the present study, we added different concentrations of arginine to our culture medium to meet the needs of the porcine embryo. Increasing arginine from 0.12 to 1.69mM improved the number of embryos that developed to the blastocyst stage. These blastocysts also had more total nuclei compared with controls and, specifically, more trophectoderm nuclei. Embryos cultured in 1.69mM arginine had lower SLC7A1 levels and a higher abundance of messages involved with glycolysis (hexokinase 1, hexokinase 2 and glutamic pyruvate transaminase (alanine aminotransferase) 2) and decreased expression of genes involved with blocking the tricarboxylic acid cycle (pyruvate dehydrogenase kinase, isozyme 1) and the pentose phosphate pathway (transaldolase 1). Expression of the protein arginine methyltransferase (PRMT) genes PRMT1, PRMT3 and PRMT5 throughout development was not affected by arginine. However, the dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 message was found to be differentially regulated through development, and the DDAH2 protein was localised to the nuclei of blastocysts. Arginine has a positive effect on preimplantation development and may be affecting the nitric oxide-DDAH-PRMT axis.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Kimberly J Tessanne
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Lee D Spate
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Clifton N Murphy
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Canovas S, Ivanova E, Romar R, García-Martínez S, Soriano-Úbeda C, García-Vázquez FA, Saadeh H, Andrews S, Kelsey G, Coy P. DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife 2017; 6. [PMID: 28134613 PMCID: PMC5340525 DOI: 10.7554/elife.23670] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/28/2017] [Indexed: 12/14/2022] Open
Abstract
The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT. DOI:http://dx.doi.org/10.7554/eLife.23670.001 Infertility has become more common in many countries, particularly those where many people delay having children until later in life. To help individuals experiencing infertility conceive a child, scientists have developed treatments called assisted reproductive technologies (or ARTs for short). So far, more than 5 million children have been born with the help of these treatments. Most of the children seem healthy; however, birth defects are more common in ART-conceived babies than those conceived without treatment. The cause of these birth defects is not known, though scientists suspect it may have something to do with techniques used in ART. One possible culprit is the liquid that is used in the laboratory to help the parents’ sperm and egg come together for fertilization. This same liquid is also used to bathe the developing embryo for the first few days after fertilization before it is implanted into its mother’s womb. Some scientists wonder whether adding the fluids normally found in the reproductive tract of their mother to this liquid could reduce defects in children conceived via ART. Now, Canovas et al. have shown that fertilizing and growing pig embryos in liquids supplemented with fluid from the wombs of female pigs results in embryos that are closer to naturally conceived pig embryos than in non-supplemented liquids. In the experiments, naturally conceived embryos were compared to ART embryos exposed to the usual liquids and with ART embryos grown in liquids with fluid collected from the pig’s reproductive tract added. Cutting edge technologies were used to sequence the entire genomes of all of the embryos and compare which genes were active in each case. Canovas et al. also looked at chemical markers on the DNA – called epigenetic changes – that turn on or off the expression of genes without changing the DNA code itself. The analysis showed that ART-conceived embryos grown in the usual liquid had different patterns of gene expression and epigenetic changes compared to naturally conceived embryos. Gene expression and epigenetic changes in the ART embryos grown with the pig reproductive fluid was more similar to the naturally conceived embryos. These findings suggest that abnormal gene expression in the ART-liquid exposed embryos may lead to birth defects, and that using natural reproductive fluids may be safer. To confirm this, scientists will have to implant embryos conceived in these three different conditions into mother pigs and assess the health and gene expression patterns of the resulting piglets. If successful, these new insights might one day lead to improvements in ART techniques used to treat infertility in people. DOI:http://dx.doi.org/10.7554/eLife.23670.002
Collapse
Affiliation(s)
- Sebastian Canovas
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raquel Romar
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Soledad García-Martínez
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Cristina Soriano-Úbeda
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Francisco A García-Vázquez
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Heba Saadeh
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Pilar Coy
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| |
Collapse
|
34
|
Whitworth KM, Benne JA, Spate LD, Murphy SL, Samuel MS, Murphy CN, Richt JA, Walters E, Prather RS, Wells KD. Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs. Transgenic Res 2017; 26:97-107. [PMID: 27744533 PMCID: PMC5247313 DOI: 10.1007/s11248-016-9989-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
The CRISPR/Cas9 genome editing tool has increased the efficiency of creating genetically modified pigs for use as biomedical or agricultural models. The objectives were to determine if DNA editing resulted in a delay in development to the blastocyst stage or in a skewing of the sex ratio. Six DNA templates (gBlocks) that were designed to express guide RNAs that target the transmembrane protease, serine S1, member 2 (TMPRSS2) gene were in vitro transcribed. Pairs of CRISPR guide RNAs that flanked the start codon and polyadenylated Cas9 were co-injected into the cytoplasm of zygotes and cultured in vitro to the blastocyst stage. Blastocysts were collected as they formed on days 5, 6 or 7. PCR was performed to determine genotype and sex of each embryo. Separately, embryos were surgically transferred into recipient gilts on day 4 of estrus. The rate of blastocyst development was not significantly different between CRISPR injection embryos or the non-injected controls at day 5, 6 or 7 (p = 0.36, 0.09, 0.63, respectively). Injection of three CRISPR sets of guides resulted in a detectable INDEL in 92-100 % of the embryos analyzed. There was not a difference in the number of edits or sex ratio of male to female embryos when compared between days 5, 6 and 7 to the controls (p > 0.22, >0.85). There were 12 resulting piglets and all 12 had biallelic edits of TMRPSS2. Zygote injection with CRISPR/Cas9 continues to be a highly efficient tool to genetically modify pig embryos.
Collapse
Affiliation(s)
- Kristin M Whitworth
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Stephanie L Murphy
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Clifton N Murphy
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Jürgen A Richt
- College of Veterinary Medicine, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Eric Walters
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA.
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA.
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| |
Collapse
|
35
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
36
|
Ning P, Zhou Y, Liang W, Zhang Y. Different RNA splicing mechanisms contribute to diverse infective outcome of classical swine fever viruses of differing virulence: insights from the deep sequencing data in swine umbilical vein endothelial cells. PeerJ 2016; 4:e2113. [PMID: 27330868 PMCID: PMC4906664 DOI: 10.7717/peerj.2113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
Abstract
Molecular mechanisms underlying RNA splicing regulation in response to viral infection are poorly understood. Classical swine fever (CSF), one of the most economically important and highly contagious swine diseases worldwide, is caused by classical swine fever virus (CSFV). Here, we used high-throughput sequencing to obtain the digital gene expression (DGE) profile in swine umbilical vein endothelial cells (SUVEC) to identify different response genes for CSFV by using both Shimen and C strains. The numbers of clean tags obtained from the libraries of the control and both CSFV-infected libraries were 3,473,370, 3,498,355, and 3,327,493 respectively. In the comparison among the control, CSFV-C, and CSFV-Shimen groups, 644, 158, and 677 differentially expressed genes (DEGs) were confirmed in the three groups. Pathway enrichment analysis showed that many of these DEGs were enriched in spliceosome, ribosome, proteasome, ubiquitin-mediated proteolysis, cell cycle, focal adhesion, Wnt signalling pathway, etc., where the processes differ between CSFV strains of differing virulence. To further elucidate important mechanisms related to the differential infection by the CSFV Shimen and C strains, we identified four possible profiles to assess the significantly expressed genes only by CSFV Shimen or CSFV C strain. GO analysis showed that infection with CSFV Shimen and C strains disturbed ‘RNA splicing’ of SUVEC, resulting in differential ‘gene expression’ in SUVEC. Mammalian target of rapamycin (mTOR) was identified as a significant response regulator contributed to impact on SUVEC function for CSFV Shimen. This computational study suggests that CSFV of differing virulence could induce alterations in RNA splicing regulation in the host cell to change cell metabolism, resulting in acute haemorrhage and pathological damage or infectious tolerance.
Collapse
Affiliation(s)
- Pengbo Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi; School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yulu Zhou
- College of Science, Northwest A&F University , Yangling , China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi
| |
Collapse
|
37
|
Umeyama K, Watanabe K, Watanabe M, Horiuchi K, Nakano K, Kitashiro M, Matsunari H, Kimura T, Arima Y, Sampetrean O, Nagaya M, Saito M, Saya H, Kosaki K, Nagashima H, Matsumoto M. Generation of heterozygous fibrillin-1 mutant cloned pigs from genome-edited foetal fibroblasts. Sci Rep 2016; 6:24413. [PMID: 27074716 PMCID: PMC4830947 DOI: 10.1038/srep24413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant genetic disease caused by abnormal formation of the extracellular matrix with an incidence of 1 in 3, 000 to 5, 000. Patients with Marfan syndrome experience poor quality of life caused by skeletal disorders such as scoliosis, and they are at high risk of sudden death from cardiovascular impairment. Suitable animal models of MFS are essential for conquering this intractable disease. In particular, studies employing pig models will likely provide valuable information that can be extrapolated to humans because of the physiological and anatomical similarities between the two species. Here we describe the generation of heterozygous fibrillin-1 (FBN1) mutant cloned pigs (+/Glu433AsnfsX98) using genome editing and somatic cell nuclear transfer technologies. The FBN1 mutant pigs exhibited phenotypes resembling those of humans with MFS, such as scoliosis, pectus excavatum, delayed mineralization of the epiphysis and disrupted structure of elastic fibres of the aortic medial tissue. These findings indicate the value of FBN1 mutant pigs as a model for understanding the pathogenesis of MFS and for developing treatments.
Collapse
Affiliation(s)
- Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214–8571, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214–8571, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214–8571, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214–8571, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 160–8582, Japan
- Anti-aging Orthopaedic Research, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214–8571, Japan
| | - Masateru Kitashiro
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214–8571, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214–8571, Japan
| | - Tokuhiro Kimura
- Department of Pathology, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214–8571, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, 980–8575, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214–8571, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214–8571, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 160–8582, Japan
| |
Collapse
|
38
|
Redel BK, Spate LD, Lee K, Mao J, Whitworth KM, Prather RS. Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births. Mol Reprod Dev 2016; 83:246-58. [PMID: 26824641 PMCID: PMC5067679 DOI: 10.1002/mrd.22618] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/17/2016] [Indexed: 01/09/2023]
Abstract
Most in vitro culture conditions are less‐than‐optimal for embryo development. Here, we used a transcriptional‐profiling database to identify culture‐induced differences in gene expression in porcine blastocysts compared to in vivo‐produced counterparts. Genes involved in glycine transport (SLC6A9), glycine metabolism (GLDC, GCSH, DLD, and AMT), and serine metabolism (PSAT1, PSPH, and PHGDH) were differentially expressed. Addition of 10 mM glycine to the culture medium (currently containing 0.1 mM) reduced the abundance of SLC6A9 transcript and increased total cell number, primarily in the trophectoderm lineage (P = 0.003); this was likely by decreasing the percentage of apoptotic nuclei. As serine and glycine can be reversibly metabolized by serine hydroxymethyltransferase 2 (SHMT2), we assessed the abundance of SHMT2 transcript as well as its functional role by inhibiting it with aminomethylphosphonic acid (AMPA), a glycine analog, during in vitro culture. Both AMPA supplementation and elevated glycine decreased the mRNA abundance of SHMT2 and tumor protein p53 (TP53), which is activated in response to cellular stress, compared to controls (P ≤ 0.02). On the other hand, mitochondrial activity of blastocysts, mtDNA copy number, and abundance of mitochondria‐related transcripts did not differ between control and 10 mM glycine culture conditions. Despite improvements to these metrics of blastocyst quality, transfer of embryos cultured in 10 mM glycine did not result in pregnancy whereas the transfer of in vitro‐produced embryos cultured in control medium yielded live births. Mol. Reprod. Dev. 83: 246–258, 2016. © 2016 The Authors.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Sciences, Animal Science Research Center, Columbia, Missouri
| | - Lee D Spate
- Division of Animal Sciences, Animal Science Research Center, Columbia, Missouri
| | - Kiho Lee
- Division of Animal Sciences, Animal Science Research Center, Columbia, Missouri
| | - Jiude Mao
- Division of Animal Sciences, Animal Science Research Center, Columbia, Missouri
| | - Kristin M Whitworth
- Division of Animal Sciences, Animal Science Research Center, Columbia, Missouri
| | - Randall S Prather
- Division of Animal Sciences, Animal Science Research Center, Columbia, Missouri
| |
Collapse
|
39
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Mantikou E, Jonker MJ, Wong KM, van Montfoort APA, de Jong M, Breit TM, Repping S, Mastenbroek S. Factors affecting the gene expression of in vitro cultured human preimplantation embryos. Hum Reprod 2015; 31:298-311. [PMID: 26677958 DOI: 10.1093/humrep/dev306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/20/2015] [Indexed: 01/20/2023] Open
Abstract
STUDY QUESTION What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? SUMMARY ANSWER Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation embryos than the culture medium or oxygen concentration used in in vitro culture. WHAT IS KNOWN ALREADY Studies on mouse and bovine embryos have shown that different conditions in the in vitro culture of embryos can lead to changes in transcriptome profiles. For humans, an effect of developmental stage on the transcriptome profile of embryos has been demonstrated, but studies on the effect of maternal age or culture conditions are lacking. STUDY DESIGN, SIZE, DURATION Donated, good quality, day 4 cryopreserved human preimplantation embryos (N = 89) were randomized to be cultured in one of two culture media (G5 medium or HTF medium) and one of two oxygen concentrations (5% or 20%), with stratification for maternal age. Next to these variables, developmental stage after culture was taken into account in the analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Embryos that developed to morula or blastocyst stage during these 2 days whose amplified mRNA passed our quality control criteria for microarray hybridization were individually examined for genome-wide gene expression (N = 37). MAIN RESULTS AND THE ROLE OF CHANCE Based on the number of differentially expressed genes (DEGs), developmental stage (3519 DEGs) and maternal age (1258 DEGs) had a larger effect on the global gene expression profile of human preimplantation embryos than either tested culture medium (596 DEGs) or oxygen concentration (492 DEGs) used during in vitro culture. Interactions between the factors were found, indicating that culture conditions might have a different effect depending on the developmental stage or the maternal age of the embryos. Affected pathways included metabolism, cell cycle processes and oxidative phosphorylation. LIMITATIONS, REASONS FOR CAUTION Culture of embryos for only 2 days might have limited the effect on global gene expression by the investigated culture conditions. Earlier stages of development (Day 0 until Day 4) were not analyzed and these embryos might respond differently to the experimental conditions. The freezing and thawing procedures might have had an effect on gene expression. RT-PCR validation was not performed due to scarcity of the material. WIDER IMPLICATIONS OF THE FINDINGS Our results show that when studying gene expression in single human preimplantation embryos under various experimental conditions, one should take into account the confounding effect of biological variables, such as developmental stage and maternal age. This makes these experiments different from gene expression experiments where these variables can be tightly controlled, for example when using cell lines. STUDY FUNDING/COMPETING INTERESTS This study received no external funding and there were no competing interests.
Collapse
Affiliation(s)
- E Mantikou
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - M J Jonker
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands Netherlands Bioinformatics Center (NBIC), 6525 GA Nijmegen, The Netherlands
| | - K M Wong
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - A P A van Montfoort
- Department of Obstetrics and Gynaecology, GROW school for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - M de Jong
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands Present address: GenomeScan B.V., Plesmanlaan 1d, 2333BZ Leiden, The Netherlands
| | - T M Breit
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands Netherlands Bioinformatics Center (NBIC), 6525 GA Nijmegen, The Netherlands
| | - S Repping
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - S Mastenbroek
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
41
|
de los Santos MJ, Gámiz P, de los Santos JM, Romero JL, Prados N, Alonso C, Remohí J, Dominguez F. The Metabolomic Profile of Spent Culture Media from Day-3 Human Embryos Cultured under Low Oxygen Tension. PLoS One 2015; 10:e0142724. [PMID: 26562014 PMCID: PMC4643011 DOI: 10.1371/journal.pone.0142724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
Despite efforts made to improve the in vitro embryo culture conditions used during assisted reproduction procedures, human embryos must adapt to different in vitro oxygen concentrations and the new metabolic milieu provided by the diverse culture media used for such protocols. It has been shown that the embryo culture environment can affect not only cellular metabolism, but also gene expression in different species of mammalian embryos. Therefore we wanted to compare the metabolic footprint left by human cleavage-stage embryos under two types of oxygen atmospheric culture conditions (6% and 20% O2). The spent culture media from 39 transferred and implanted embryos from a total of 22 patients undergoing egg donation treatment was analyzed; 23 embryos came from 13 patients in the 6% oxygen concentration group, and 16 embryos from 9 patients were used in the 20% oxygen concentration group. The multivariate statistics we used in our analysis showed that human cleavage-stage embryos grown under both types of oxygen concentration left a similar metabolic fingerprint. We failed to observe any change in the net depletion or release of relevant analytes, such as glucose and especially fatty acids, by human cleavage-stage embryos under either type of culture condition. Therefore it seems that low oxygen tension during embryo culture does not alter the global metabolism of human cleavage-stage embryos.
Collapse
Affiliation(s)
- Maria José de los Santos
- IVI Valencia, Valencia, Spain
- INCLIVA Biomedical Research and Fundación IVI, Valencia, Spain
- * E-mail: (FD); (MJDLS)
| | | | | | | | | | | | - José Remohí
- IVI Valencia, Valencia, Spain
- INCLIVA Biomedical Research and Fundación IVI, Valencia, Spain
| | - Francisco Dominguez
- INCLIVA Biomedical Research and Fundación IVI, Valencia, Spain
- * E-mail: (FD); (MJDLS)
| |
Collapse
|
42
|
Ren L, Wang Z, An L, Zhang Z, Tan K, Miao K, Tao L, Cheng L, Zhang Z, Yang M, Wu Z, Tian J. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum Reprod 2015; 30:2892-911. [PMID: 26385791 DOI: 10.1093/humrep/dev228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does in vitro fertilization (IVF) induce comprehensive and consistent changes in gene expression associated with mitochondrial biogenesis and function in mouse embryos from the pre- to post-implantation stage? SUMMARY ANSWER IVF-induced consistent mitochondrial dysfunction in early mouse embryos by altering the expression of a number of mitochondria-related genes. WHAT IS KNOWN ALREADY Although IVF is generally safe and successful for the treatment of human infertility, there is increasing evidence that those conceived by IVF suffer increased health risks. The mitochondrion is a multifunctional organelle that plays a crucial role in early development. We hypothesized that mitochondrial dysfunction is associated with increased IVF-induced embryonic defects and risks in offspring. STUDY DESIGN, SIZE, DURATION After either IVF and development (IVO groups as control) or IVF and culture (IVF groups), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5, and the expression profiles of mitochondria-related genes from the pre- to post-implantation stage were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR mice (5- to 6-week-old males and 8- to 9-week-old females) were used to generate IVO and IVF blastocysts. Embryo day (E) 3.5 blastocysts were transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5 for generating transcriptome data. Mitochondria-related genes were filtered for dynamic functional profiling. Mitochondrial dysfunctions indicated by bioinformatic analysis were further validated using cytological and molecular detection, morphometric and phenotypic analysis and integrated analysis with other high-throughput data. MAIN RESULTS AND THE ROLE OF CHANCE A total of 806, 795 and 753 mitochondria-related genes were significantly (P < 0.05) dysregulated in IVF embryos at E3.5, E7.5 and E10.5, respectively. Dynamic functional profiling, together with cytological and molecular investigations, indicated that IVF-induced mitochondrial dysfunctions mainly included: (i) inhibited mitochondrial biogenesis and impaired maintenance of DNA methylation of mitochondria-related genes during the post-implantation stage; (ii) dysregulated glutathione/glutathione peroxidase (GSH/Gpx) system and increased mitochondria-mediated apoptosis; (iii) disturbed mitochondrial β-oxidation, oxidative phosphorylation and amino acid metabolism; and (iv) disrupted mitochondrial transmembrane transport and membrane organization. We also demonstrated that some mitochondrial dysfunctions in IVF embryos, including impaired mitochondrial biogenesis, dysregulated GSH homeostasis and reactive oxygen species-induced apoptosis, can be rescued by treatment with melatonin, a mitochondria-targeted antioxidant, during in vitro culture. LIMITATIONS, REASONS FOR CAUTION Findings in mouse embryos and fetuses may not be fully transferable to humans. Further studies are needed to confirm these findings and to determine their clinical significance better. WIDER IMPLICATIONS OF THE FINDINGS The present study provides a new insight in understanding the mechanism of IVF-induced aberrations during embryonic development and the increased health risks in the offspring. In addition, we highlighted the possibility of improving existing IVF systems by modulating mitochondrial functions.
Collapse
Affiliation(s)
- Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhennan Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Linghua Cheng
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenni Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
43
|
Fakruzzaman M, Ghanem N, Bang JI, Ha AN, Lee KL, Sohn SH, Wang Z, Lee DS, Kong IK. Effect of peroxiredoxin II on the quality and mitochondrial activity of pre-implantation bovine embryos. Anim Reprod Sci 2015; 159:172-83. [DOI: 10.1016/j.anireprosci.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 05/26/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
44
|
Yu L, Wu X, Wei J, Liao Q, Xu L, Luo S, Zeng X, Zhao Y, Lv Z, Wu Z. Preliminary expression profile of cytokines in brain tissue of BALB/c mice with Angiostrongylus cantonensis infection. Parasit Vectors 2015; 8:328. [PMID: 26070790 PMCID: PMC4476182 DOI: 10.1186/s13071-015-0939-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/05/2015] [Indexed: 12/05/2022] Open
Abstract
Background Angiostrongylus cantonensis (A. cantonensis) infection can result in increased risk of eosinophilic meningitis. Accumulation of eosinophils and inflammation can result in the A. cantonensis infection playing an important role in brain tissue injury during this pathological process. However, underlying mechanisms regarding the transcriptomic responses during brain tissue injury caused by A. cantonensis infection are yet to be elucidated. This study is aimed at identifying some genomic and transcriptomic factors influencing the accumulation of eosinophils and inflammation in the mouse brain infected with A. cantonensis. Methods An infected mouse model was prepared based on our laboratory experimental process, and then the mouse brain RNA Libraries were constructed for deep Sequencing with Illumina Genome Analyzer. The raw data was processed with a bioinformatics’ pipeline including Refseq genes expression analysis using cufflinks, annotation and classification of RNAs, lncRNA prediction as well as analysis of co-expression network. The analysis of Refseq data provides the measure of the presence and prevalence of transcripts from known and previously unknown genes. Results This study showed that Cys-Cys (CC) type chemokines such as CCL2, CCL8, CCL1, CCL24, CCL11, CCL7, CCL12 and CCL5 were elevated significantly at the late phase of infection. The up-regulation of CCL2 indicated that the worm of A. cantonensis had migrated into the mouse brain at an early infection phase. CCL2 could be induced in the brain injury during migration and CCL2 might play a major role in the neuropathic pain caused by A. cantonensis infection. The up-regulated expression of IL-4, IL-5, IL-10, and IL-13 showed Th2 cell predominance in immunopathological reactions at late infection phase in response to infection by A. cantonensis. These different cytokines can modulate and inhibit each other and function as a network with the specific potential to drive brain eosinophilic inflammation. The increase of ATF-3 expression at 21 dpi suggested the injury of neuronal cells at late phase of infection. 1217 new potential lncRNA were candidates of interest for further research. Conclusions These cytokine networks play an important role in the development of central nervous system inflammation caused by A. cantonensis infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0939-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Yu
- Department of Preventive Medicine, School of Medicine, Three Gorges University, Yichang, China. .,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoying Wu
- Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Jie Wei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Qi Liao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China.
| | - Lian Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Siqi Luo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Xin Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yi Zhao
- Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
45
|
Spate LD, Brown A, Redel BK, Whitworth KM, Prather RS. PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Mol Reprod Dev 2015; 82:315-20. [PMID: 25776657 DOI: 10.1002/mrd.22474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/20/2015] [Indexed: 01/22/2023]
Abstract
The application of embryo-related technology is dependent on in vitro culture systems. Unfortunately, most culture media are suboptimal and result in developmentally compromised embryos. Since embryo development is partially dependent upon Warburg Effect-like metabolism, our goal was to test the response of embryos treated with compounds that are known to stimulate or enhance this Effect. One such compound is 5-(4-chloro-phenyl)-3-phenyl-pent-2-enoic acid (PS48). When added during oocyte maturation, the quality of the resultant embryos was compromised, whereas when added to the culture medium after fertilization, PS48 improved both the percentage of embryos that reach the blastocyst stage and the number of nuclei in those blastocysts. Embryonic PS48 treatment resulted in more phosphorylated v-akt murine thymoma viral oncogene homolog (AKT) in blastocyst-stage embryos as compared to the controls. Further, PS48 could replace bovine serum albumin in embryo culture medium, as demonstrated by high-quality embryos that were developmentally competent. The action of PS48 appears to be via stimulation of phosphoinositide-3 kinase and phosphorylation of AKT, which is consistent with stimulation of the Warburg Effect.
Collapse
Affiliation(s)
- Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
46
|
Sui L, An L, Tan K, Wang Z, Wang S, Miao K, Ren L, Tao L, He S, Yu Y, Nie J, Liu Q, Xing L, Wu Z, Hou Z, Tian J. Dynamic proteomic profiles of in vivo- and in vitro-produced mouse postimplantation extraembryonic tissues and placentas. Biol Reprod 2014; 91:155. [PMID: 25320150 DOI: 10.1095/biolreprod.114.124248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As the interface between the mother and the developing fetus, the placenta is believed to play an important role in assisted reproductive technology (ART)-induced aberrant intrauterine and postnatal development. However, the mechanisms underlying aberrant placentation remain unclear, especially during extraembryonic tissue development and early stages of placental formation. Using a mouse model, this investigation provides the first comparative proteomic analysis of in vivo (IVO) and in vitro-produced (IVP) extraembryonic tissues and placentas after IVO fertilization and development, or in vitro fertilization and culture, respectively. We identified 165 and 178 differentially expressed proteins (DEPs) between IVO and IVP extraembryonic tissues and placentas on Embryonic Day 7.5 (E7.5) and E10.5, respectively. Many DEPs were functionally associated with genetic information processing, such as impaired de novo DNA methylation, as well as posttranscriptional, translational and posttranslational dysregulation. These novel findings were further confirmed by global hypomethylation, and a lower level of correlation was found between the transcriptome and proteome in the IVP groups. In addition, numerous DEPs were involved in energy and amino acid metabolism, cytoskeleton organization and transport, and vasculogenesis and angiogenesis. These disturbed processes and pathways are likely to be associated with embryonic intrauterine growth restriction, an enlarged placenta, and impaired labyrinth morphogenesis. This study provides a direct and comprehensive reference for the further exploration of the placental mechanisms that underlie ART-induced developmental aberrations.
Collapse
Affiliation(s)
- Linlin Sui
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shumin Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shuzhi He
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Yong Yu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jinzhou Nie
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Qian Liu
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Lei Xing
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuocheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
47
|
Denicol AC, Block J, Kelley DE, Pohler KG, Dobbs KB, Mortensen CJ, Ortega MS, Hansen PJ. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J 2014; 28:3975-86. [PMID: 24858280 DOI: 10.1096/fj.14-253112] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023]
Abstract
Successful embryonic development is dependent on factors secreted by the reproductive tract. Dickkopf-1 (DKK1), an antagonist of the wingless-related mouse mammary tumor virus (WNT) signaling pathway, is one endometrial secretory protein potentially involved in maternal-embryo communication. The purpose of this study was to investigate the roles of DKK1 in embryo cell fate decisions and competence to establish pregnancy. Using in vitro-produced bovine embryos, we demonstrate that exposure of embryos to DKK1 during the period of morula to blastocyst transition (between d 5 and 8 of development) promotes the first 2 cell fate decisions leading to increased differentiation of cells toward the trophectoderm and hypoblast lineages compared with that for control embryos treated with vehicle. Moreover, treatment of embryos with DKK1 or colony-stimulating factor 2 (CSF2; an endometrial cytokine known to improve embryo development and pregnancy establishment) between d 5 and 7 of development improves embryo survival after transfer to recipients. Pregnancy success at d 32 of gestation was 27% for cows receiving control embryos treated with vehicle, 41% for cows receiving embryos treated with DKK1, and 39% for cows receiving embryos treated with CSF2. These novel findings represent the first evidence of a role for maternally derived WNT regulators during this period and could lead to improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna C Denicol
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Jeremy Block
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA; Ovatech LLC, Gainesville, Florida, USA; and
| | - Dale E Kelley
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Ky G Pohler
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kyle B Dobbs
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Christopher J Mortensen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - M Sofia Ortega
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
48
|
Prather RS, Redel BK, Whitworth KM, Zhao MT. Genomic profiling to improve embryogenesis in the pig. Anim Reprod Sci 2014; 149:39-45. [PMID: 24878355 DOI: 10.1016/j.anireprosci.2014.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Over the past decade the technology to characterize transcription during embryogenesis has progressed from estimating a single transcript to a reliable description of the entire transcriptome. Northern blots were followed by sequencing ESTs, quantitative real time PCR, cDNA arrays, custom oligo arrays, and more recently, deep sequencing. The amount of information that can be generated is overwhelming. The challenge now is how to glean information from these vast data sets that can be used to understand development and to improve methods for creating and culturing embryos in vitro, and for reducing reproductive loss. The use of ESTs permitted the identification of SPP1 as an oviductal component that could reduce polyspermy. Microarrays identified LDL and NMDA as components to replace BSA in embryo culture media. Deep sequencing implicated arginine, glycine, and folate as components that should be adjusted in our current culture system, and identified a characteristic of embryo metabolism that is similar to cancer and stem cells. Not only will these characterizations aid in improving in vitro production of embryos, but will also be useful for identifying, or creating conditions for donor cells that will be more likely to result in normal development of cloned embryos. The easily found targets have been identified, and now more sophisticated methods are being employed to advance our understanding of embryogenesis. Here the technology to study the global transcriptome is reviewed followed by specific examples of how the technology has been used to understand and improve porcine embryogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, MO, USA.
| | - Bethany K Redel
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | | | - Ming-Tao Zhao
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| |
Collapse
|
49
|
Spate LD, Brown AN, Redel BK, Whitworth KM, Murphy CN, Prather RS. Dickkopf-related protein 1 inhibits the WNT signaling pathway and improves pig oocyte maturation. PLoS One 2014; 9:e95114. [PMID: 24739947 PMCID: PMC3989281 DOI: 10.1371/journal.pone.0095114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/22/2014] [Indexed: 01/30/2023] Open
Abstract
The ability to mature oocytes in vitro provides a tool for creating embryos by parthenogenesis, fertilization, and cloning. Unfortunately the quality of oocytes matured in vitro falls behind that of in vivo matured oocytes. To address this difference, transcriptional profiling by deep sequencing was conducted on pig oocytes that were either matured in vitro or in vivo. Alignment of over 18 million reads identified 1,316 transcripts that were differentially represented. One pathway that was overrepresented in the oocytes matured in vitro was for Wingless-type MMTV integration site (WNT) signaling. In an attempt to inhibit the WNT pathway, Dickkopf-related protein 1 was added to the in vitro maturation medium. Addition of Dickkopf-related protein 1 improved the percentage of oocytes that matured to the metaphase II stage, increased the number of nuclei in the resulting blastocyst stage embryos, and reduced the amount of disheveled segment polarity protein 1 protein in oocytes. It is concluded that transcriptional profiling is a powerful method for detecting differences between in vitro and in vivo matured oocytes, and that the WNT signaling pathway is important for proper oocyte maturation.
Collapse
Affiliation(s)
- Lee D. Spate
- Division of Animal Science, Animal Science Research Center, Columbia, Missouri, United States of America
| | - Alana N. Brown
- Division of Animal Science, Animal Science Research Center, Columbia, Missouri, United States of America
| | - Bethany K. Redel
- Division of Animal Science, Animal Science Research Center, Columbia, Missouri, United States of America
| | - Kristin M. Whitworth
- Division of Animal Science, Animal Science Research Center, Columbia, Missouri, United States of America
| | - Clifton N. Murphy
- Division of Animal Science, Animal Science Research Center, Columbia, Missouri, United States of America
| | - Randall S. Prather
- Division of Animal Science, Animal Science Research Center, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
50
|
Effects of Vitamin K 1on the Developmental and Survival Rate of Porcine In VitroFertilized Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.1.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|