1
|
Liang Q, Wei C, Guan L, Chen W, Ding S, Wu H. BMAL1 improves assisted reproductive technology outcomes in patients with polycystic ovary syndrome by targeting BMP6 and regulating ovarian granulosa cell apoptosis. J Assist Reprod Genet 2025; 42:937-948. [PMID: 39853686 PMCID: PMC11950584 DOI: 10.1007/s10815-024-03377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
PURPOSE To investigate BMAL1 and BMP6 expressive differences in ovarian granulosa cells (OGCs) of patients with polycystic ovary syndrome (PCOS), explore regulatory relationship, assess their impacts on OGC proliferation and apoptosis, and analyze their correlations with ART outcomes of patients. METHODS A clinical study selected 40 PCOS patients who underwent IVF/ICSI in our hospital from January to October 2022 and 39 controls with male or tubal factor infertility. RT-qPCR and Western blot assessed BMAL1 and BMP6 mRNA/protein levels. The number of oocytes retrieved, 2PN fertilized oocytes, available embryos, and high-quality embryos were compared between groups and analyzed their correlations with BMAL1 and BMP6 expression levels. Cellular experiments were performed by overexpressing or knocking down BMAL1 in KGN cells by plasmid transfection. The dual-luciferase reporter assay was used to identify BMAL1/BMP6 regulatory relationship. CCK-8 and flow cytometry assessed cellular proliferation and apoptosis. RESULTS BMAL1 mRNA/protein expression (P < 0.001) in the PCOS group was significantly lower than that in controls, as was the number of high-quality embryos (P = 0.001). Contrastingly, BMP6 (P < 0.001) was significantly higher in the PCOS group. BMAL1 expression levels were negatively correlated with BMP6 (r = - 0.684, P = 0.002) and positively correlated with the number of 2PN fertilized oocytes, available embryos, and high-quality embryos (r = 0.659, P = 0.003; r = 0.623, P = 0.006; and r = 0.738, P < 0.001). Cellular experiments showed that overexpression of BMAL1 significantly decreased relative luciferase activity (P < 0.01). Overexpression of BMAL1 significantly decreased KGN cell apoptosis (P < 0.01) and enhanced proliferation (P < 0.01). CONCLUSION BMAL1 regulates OGCs proliferation and apoptosis by targeting BMP6, thereby influencing ART outcomes in patients with PCOS. This study might provide molecular factors that indicate ART outcomes and therapeutic targets for PCOS. TRIAL REGISTRATION Registration number: ChiCTR2100052331; registration date: 2021-10-24.
Collapse
Affiliation(s)
- Qihui Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Chaofeng Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Lu Guan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Wen Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Shengyong Ding
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| | - Haicui Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| |
Collapse
|
2
|
Banerjee A, Chauhan V, Anamika, Tripathy M, Rai U. Asprosin-mediated regulation of ovarian functions in mice: An age-dependent study. Peptides 2024; 181:171293. [PMID: 39244091 DOI: 10.1016/j.peptides.2024.171293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Asprosin is a recently discovered adipokine reported to be involved in the modulation of mammalian gonadal functions. Preliminary investigations suggest its role in regulation of ovarian functions in rodents as well as bovids. In addition, increased levels of the adipokine during human ovarian pathophysiologies implicate it in disease progression and severity. The present study evidenced high expression of asprosin in ovaries of juvenile, pubertal and adult mice while expression was significantly low in ageing ovaries. Further, asprosin stimulated expression of markers for ovarian folliculogenesis (Scf, c-Kit, Gdf9, Bmp6, Fshr, Lhr) and steroidogenesis (3β-Hsd) in adult mice. In addition to exploring concentration-dependent effect of asprosin, the study implicates asprosin as an age-dependent modulator of ovarian functions as treatment of ovaries with asprosin led to upregulation of Fshr, c-Kit, Bmp6, and Gdf9 in both adult and juvenile ovaries, Lhr only in adults while that of Scf only in juvenile ovaries. The current study is first to report an age-dependent expression and role of asprosin in murine ovaries.
Collapse
Affiliation(s)
| | | | - Anamika
- Ramjas College, University of Delhi, Delhi 110007, India
| | - Mamta Tripathy
- Department of Zoology, University of Delhi, 110007, India.
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir 180006, India.
| |
Collapse
|
3
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
4
|
Huang J, Fang Z, Wu X, Xia L, Liu Y, Wang J, Su Y, Xu D, Zhang K, Xie Q, Chen J, Liu P, Wu Q, Tan J, Kuang H, Tian L. Transcriptomic responses of cumulus granulosa cells to SARS-CoV-2 infection during controlled ovarian stimulation. Apoptosis 2024; 29:649-662. [PMID: 38409352 DOI: 10.1007/s10495-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Cumulus granulosa cells (CGCs) play a crucial role in follicular development, but so far, no research has explored the impact of SARS-CoV-2 infection on ovarian function from the perspective of CGCs. In the present study, we compared the cycle outcomes between infected and uninfected female patients undergoing controlled ovarian stimulation, performed bulk RNA-sequencing of collected CGCs, and used bioinformatic methods to explore transcriptomic changes. The results showed that women with SARS-CoV-2 infection during stimulation had significantly lower number of oocytes retrieved and follicle-oocyte index, while subsequent fertilization and embryo development were similar. CGCs were not directly infected by SARS-CoV-2, but exhibited dramatic differences in gene expression (156 up-regulated and 65 down-regulated). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses demonstrated a high enrichment in antiviral, immune and inflammatory responses with necroptosis. In addition, the pathways related to telomere organization and double strand break repair were significantly affected by infection in gene set enrichment analysis. Further weighted gene co-expression network analysis identified a key module associated with ovarian response traits, which was mainly enriched as a decrease of leukocyte chemotaxis and migration in CGCs. For the first time, our study describes how SARS-CoV-2 infection indirectly affects CGCs at the transcriptional level, which may impair oocyte-CGC crosstalk and consequently lead to poor ovarian response during fertility treatment.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Leizhen Xia
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Yuxin Liu
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yufang Su
- Department of Oncology, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Dingfei Xu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Ke Zhang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Qiqi Xie
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Jia Chen
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Peipei Liu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Jun Tan
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| | - Haibin Kuang
- Department of Physiology, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, China.
| | - Lifeng Tian
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
5
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
6
|
Li X, Zhang C, Feng C, Zhang Z, Feng N, Sha H, Luo X, Zou G, Liang H. Transcriptome Analysis Elucidates the Potential Key Genes Involved in Rib Development in bmp6-Deficient Silver Carp ( Hypophthalmichthys molitrix). Animals (Basel) 2024; 14:1451. [PMID: 38791669 PMCID: PMC11117292 DOI: 10.3390/ani14101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bone morphogenetic protein 6 (BMP-6) is a constituent of the TGF-β superfamily, known for its ability to stimulate bone and cartilage formation. The investigation of bmp6's involvement in the formation of intermuscular bones in fish has garnered significant attention in recent years. The rib cage is an important skeletal structure that plays a protective function for internal organs in fish. However, there has been limited research conducted on the effects of the bmp6 gene on rib development. Silver carp is one of four major fish in China, favoured for its affordability and tender muscle. Nevertheless, the presence of numerous intermuscular bones in silver carp significantly hinders the advancement of its palatability and suitability for processing. This study showcases the effective utilisation of CRISPR/Cas9 technology for the purpose of disrupting the bmp6 gene in silver carp, leading to the creation of chimeras in the P0 generation, marking the first instance of such an achievement. The chimeras exhibited complete viability, normal appearance, and partial intermuscular bones loss, with approximately 30% of them displaying rib bifurcation or bending. Subsequently, a transcriptome analysis on ribs of P0 chimeras and wild-type silver carp was conducted, leading to the identification of 934 genes exhibiting differential expression, of which 483 were found to be up-regulated and 451 were found to be down-regulated. The results of the KEGG analysis revealed that the "NF-kappa B signalling pathway", "Hippo signalling pathway", "osteoclast differentiation", and "haematopoietic cell lineage" exhibited enrichment and displayed a significant correlation with bone development. The up-regulated genes such as tnfα, fos, and ctgf in pathways may facilitate the proliferation and differentiation of osteoclasts, whereas the down-regulation of genes such as tgfb2 and tgfbr1 in pathways may hinder the formation and specialisation of osteoblasts, ultimately resulting in rib abnormalities. This study presents novel findings on the impact of bmp6 gene deletion on the rib development of silver carp, while simultaneously investigating the previously unexplored molecular mechanisms underlying rib defects in fish.
Collapse
Affiliation(s)
- Xiaohui Li
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Chunyan Zhang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Cui Feng
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Zewen Zhang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Nannan Feng
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hang Sha
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Salilew-Wondim D, Tholen E, Held-Hoelker E, Shellander K, Blaschka C, Drillich M, Iwersen M, Suess D, Gebremedhn S, Tesfaye D, Parys C, Helmbrecht A, Guyader J, Miskel D, Trakooljul N, Wimmers K, Hoelker M. Endometrial DNA methylation signatures during the time of breeding in relation to the pregnancy outcome in postpartum dairy cows fed a control diet or supplemented with rumen-protected methionine. Front Genet 2024; 14:1267053. [PMID: 38327702 PMCID: PMC10847534 DOI: 10.3389/fgene.2023.1267053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Post calving metabolic stress reduces the fertility of high producing dairy cows possibly by altering the expression of genes in the maternal environment via epigenetic modifications. Therefore, this study was conducted to identify endometrial DNA methylation marks that can be associated with pregnancy outcomes in postpartum cows at the time of breeding. For this, twelve days post-calving, cows were either offered a control diet or supplemented daily with rumen-protected methionine. Cows showing heat 50-64 days postpartum were artificially inseminated. Endometrial cytobrush samples were collected 4-8 h after artificial insemination and classified based on the pregnancy out comes as those derived from cows that resulted in pregnancy or resulted in no pregnancy. The DNAs isolated from endometrial samples were then subject to reduced representative bisulfite sequencing for DNA methylation analysis. Results showed that in the control diet group, 1,958 differentially methylated CpG sites (DMCGs) were identified between cows that resulted in pregnancy and those that resulted in no pregnancy of which 890 DMCGs were located on chr 27: 6217254-6225600 bp. A total of 537 DMCGs were overlapped with 313 annotated genes that were involved in various pathways including signal transduction, signalling by GPCR, aldosterone synthesis and secretion. Likewise, in methionine supplemented group, 3,430 CpG sites were differentially methylated between the two cow groups of which 18.7% were located on Chr27: 6217254-6225600 bp. A total of 1,781 DMCGS were overlapped with 890 genes which involved in developmental and signalling related pathways including WNT-signalling, focal adhesion and ECM receptor interaction. Interestingly, 149 genes involved in signal transduction, axon guidance and non-integrin membrane-ECM interactions were differentially methylated between the two cow groups irrespective of their feeding regime, while 453 genes involved in axon guidance, notch signalling and collagen formation were differentially methylated between cows that received rumen protected methionine and control diet irrespective of their fertility status. Overall, this study indicated that postpartum cows that could potentially become pregnant could be distinguishable based on their endometrial DNA methylation patterns at the time of breeding.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Karl Shellander
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
| | - Carina Blaschka
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
| | - Marc Drillich
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Iwersen
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Suess
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Samuel Gebremedhn
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, United States
| | | | | | | | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Wang L, Wang Y, Li B, Zhang Y, Song S, Ding W, Xu D, Zhao Z. BMP6 regulates AMH expression via SMAD1/5/8 in goat ovarian granulosa cells. Theriogenology 2023; 197:167-176. [PMID: 36525856 DOI: 10.1016/j.theriogenology.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Anti-Müllerian hormone (AMH) is produced by ovarian granulosa cells (GCs)and plays a major role in inhibiting the recruitment of primordial follicles and reducing the sensitivity of growing follicles to follicle-stimulating hormone (FSH). Bone morphogenetic protein 6 (BMP6) has similar spatiotemporal expression to AMH during follicular development, suggesting that BMP6 may regulate AMH expression. However, the specific mechanism by which BMP6 regulates AMH expression remains unclear. The objectives of this study were to examine the molecular pathway by which BMP6 regulates AMH expression. The results showed that BMP6 promoted the secretion and expression of AMH in goat ovarian GCs. Mechanistically, BMP6 upregulated the expression of sex-determining region Y-box 9 (SOX9) and GATA-binding factor 4 (GATA4), which was associated with the transcriptional initiation of AMH. AMH expression was significantly decreased by GATA4 knockdown. Moreover, BMP6 treatment promoted the phosphorylation of SMAD1/5/8, whereas inhibiting the SMAD1/5/8 signaling pathway significantly abolished BMP6-induced upregulation of AMH and GATA4 expression. Interestingly, the activation of SMAD1/5/8 alone did not affect the expression of AMH or GATA4. The results suggested that BMP6 upregulated GATA4 through the SMAD1/5/8 signaling pathway, which in turn promoted AMH expression.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yukun Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Bijun Li
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yiyu Zhang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Shuaifei Song
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Wenfei Ding
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Dejun Xu
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
9
|
Song YS, Zaitoun IS, Wang S, Darjatmoko SR, Sorenson CM, Sheibani N. Cytochrome P450 1B1 Expression Regulates Intracellular Iron Levels and Oxidative Stress in the Retinal Endothelium. Int J Mol Sci 2023; 24:2420. [PMID: 36768740 PMCID: PMC9916835 DOI: 10.3390/ijms24032420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (CYP) 1B1 is a heme-containing monooxygenase found mainly in extrahepatic tissues, including the retina. CYP1B1 substrates include exogenous aromatic hydrocarbons, such as dioxins, and endogenous bioactive compounds, including 17β-estradiol (E2) and arachidonic acid. The endogenous compounds and their metabolites are mediators of various cellular and physiological processes, suggesting that CYP1B1 activity is likely important in maintaining proper cellular and tissue functions. We previously demonstrated that lack of CYP1B1 expression and activity are associated with increased levels of reactive oxygen species and oxidative stress in the retinal vasculature and vascular cells, including retinal endothelial cells (ECs). However, the detailed mechanism(s) of how CYP1B1 activity modulates redox homeostasis remained unknown. We hypothesized that CYP1B1 metabolism of E2 affects bone morphogenic protein 6 (BMP6)-hepcidin-mediated iron homeostasis and lipid peroxidation impacting cellular redox state. Here, we demonstrate retinal EC prepared from Cyp1b1-deficient (Cyp1b1-/-) mice exhibits increased estrogen receptor-α (ERα) activity and expresses higher levels of BMP6. BMP6 is an inducer of the iron-regulatory hormone hepcidin in the endothelium. Increased hepcidin expression in Cyp1b1-/- retinal EC resulted in decreased levels of the iron exporter protein ferroportin and, as a result, increased intracellular iron accumulation. Removal of excess iron or antagonism of ERα in Cyp1b1-/- retinal EC was sufficient to mitigate increased lipid peroxidation and reduce oxidative stress. Suppression of lipid peroxidation and antagonism of ERα also restored ischemia-mediated retinal neovascularization in Cyp1b1-/- mice. Thus, CYP1B1 expression in retinal EC is important in the regulation of intracellular iron levels, with a significant impact on ocular redox homeostasis and oxidative stress through modulation of the ERα/BMP6/hepcidin axis.
Collapse
Affiliation(s)
- Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ismail S. Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Soesiawati R. Darjatmoko
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
10
|
Liu W, Chen Z, Li R, Zheng M, Pang X, Wen A, Yang B, Wang S. High and low dose of luzindole or 4-phenyl-2-propionamidotetralin (4-P-PDOT) reverse bovine granulosa cell response to melatonin. PeerJ 2023; 11:e14612. [PMID: 36684672 PMCID: PMC9851050 DOI: 10.7717/peerj.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Communication between oocytes and granulosa cells ultimately dictate follicle development or atresia. Melatonin is also involved in follicle development. This study aimed to investigate the effects of melatonin and its receptor antagonists on hormone secretion, as well as gene expression related to hormone synthesis, TGF-β superfamily, and follicle development in bovine granulosa cells, and assess the effects of melatonin in the presence of 4-P-PDOT and luzindole. Methods Bovine ovaries were collected from a local abattoir and follicular fluid (follicle diameter 5-8 mm) was collected for granulosa cell isolation and culture. Granulosa cells and culture medium were collected 48 h after treatment with melatonin at high dose concentrations (10-5 M) and low dose concentrations (10-9 M) in the absence/presence of 4-P-PDOT and luzindole (10-5 M or 10-9 M). Furthermore, the expression level of genes related to hormonal synthesis (CYP11A1, CYP19A1, StAR, and RUNX2), TGF-β superfamily (BMP6, INHA, INHBA, INHBB, and TGFBR3), and development (EGFR, DNMT1A, and FSHR) were detected in each experimental group by real-time quantitative PCR. In addition, the level of hormones in culture medium were detected using ELISA. Results Both 10-5 M and 10-9 M melatonin doses promoted the secretion of inhibin A and progesterone without affecting the production of inhibin B and estradiol. In addition, both promoted the gene expression of INHA, StAR, RUNX2, TGFBR3, EGFR, and DNMT1A, and inhibited the expression of BMP6, INHBB, CYP11A1, CYP19A1, and FSHR. When combined with different doses of 4-P-PDOT and luzindole, they exhibited different effects on the secretion of inhibin B, estradiol, inhibin A, and progesterone, and the expression of CYP19A1, RUNX2, BMP6, INHBB, EGFR, and DNMT1A induced by melatonin. Conclusion High and low dose melatonin receptor antagonists exhibited different effects in regulating hormone secretion and the expression of various genes in response to melatonin. Therefore, concentration effects must be considered when using luzindole or 4-P-PDOT.
Collapse
Affiliation(s)
- Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Rui Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Menghao Zheng
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| |
Collapse
|
11
|
Sugiura K, Maruyama N, Akimoto Y, Matsushita K, Endo T. Paracrine regulation of granulosa cell development in the antral follicles in mammals. Reprod Med Biol 2023; 22:e12538. [PMID: 37638351 PMCID: PMC10457553 DOI: 10.1002/rmb2.12538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background Development of ovarian follicles is regulated by a complex interaction of intra- and extra-follicular signals. Oocyte-derived paracrine factors (ODPFs) play a central role in this process in cooperation with other signals. Methods This review provides an overview of the recent advances in our understanding of the paracrine regulation of antral follicle development in mammals. It specifically focuses on the regulation of granulosa cell development by ODPFs, along with other intrafollicular signals. Main Findings Bi-directional communication between oocytes and surrounding cumulus cells is a fundamental mechanism that determines cumulus cell differentiation. Along with estrogen, ODPFs promote the expression of forkhead box L2, a critical transcription factor required for mural granulosa cells. Follicle-stimulating hormone (FSH) facilitates these processes by stimulating estrogen production in mural granulosa cells. Conclusion Cooperative interactions among ODPFs, FSH, and estrogen are critical in determining the fate of cumulus and mural granulosa cells, as well as the development of oocytes.
Collapse
Affiliation(s)
- Koji Sugiura
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Natsumi Maruyama
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yuki Akimoto
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kodai Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Tsutomu Endo
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
12
|
Ito H, Emori C, Kobayashi M, Maruyama N, Fujii W, Naito K, Sugiura K. Cooperative effects of oocytes and estrogen on the forkhead box L2 expression in mural granulosa cells in mice. Sci Rep 2022; 12:20158. [PMID: 36424497 PMCID: PMC9691737 DOI: 10.1038/s41598-022-24680-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Forkhead box L2 (FOXL2) plays a critical role in the development and function of mammalian ovaries. In fact, the causative effects of FOXL2 misregulations have been identified in many ovarian diseases, such as primary ovarian insufficiency and granulosa cell tumor; however, the mechanism by which FOXL2 expression is regulated is not well studied. Here, we showed that FOXL2 expression in ovarian mural granulosa cells (MGCs) requires stimulation by both oocyte-derived signals and estrogen in mice. In the absence of oocytes or estrogen, expression of FOXL2 and its transcriptional targets, Cyp19a1 and Fst mRNA, in MGCs were significantly decreased. Moreover, expression levels of Sox9 mRNA, but not SOX9 protein, were significantly increased in the FOXL2-reduced MGCs. FOXL2 expression in MGCs was maintained with either oocytes or recombinant proteins of oocyte-derived paracrine factors, BMP15 and GDF9, together with estrogen, and this oocyte effect was abrogated with an ALK5 inhibitor, SB431542. In addition, the FOXL2 level was significantly decreased in MGCs isolated from Bmp15-/- /Gdf9+/- mice. Therefore, oocyte, probably with estrogen, plays a critical role in the regulation of FOXL2 expression in mural granulosa cells in mice.
Collapse
Affiliation(s)
- Haruka Ito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Emori
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Present Address: Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mei Kobayashi
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
BMP6 Promotes the Secretion of 17 Beta-Estradiol and Progesterone in Goat Ovarian Granulosa Cells. Animals (Basel) 2022; 12:ani12162132. [PMID: 36009721 PMCID: PMC9404746 DOI: 10.3390/ani12162132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant effect on the mRNA and protein expression levels of the proliferation-related gene PCNA (p > 0.05). Meanwhile, BMP6 had no significant effect on the cycle phase distribution of GCs but increased the mRNA expression of CDK4 (p < 0.05) and CCND1 (p < 0.01) and decreased the mRNA expression of CCNE1 (p < 0.01). Moreover, BMP6 had no significant effect on the apoptosis rate of GCs and did not affect the mRNA expression levels of apoptosis-related genes BAX, BCL2, and Caspase3 (p > 0.05). Importantly, BMP6 upregulated the secretion of 17 beta-estradiol (E2) and progesterone (P4) in ovarian GCs (p < 0.01). Further studies found that BMP6 inhibited the mRNA expression of 3β-HSD and steroid synthesis acute regulator (StAR) but significantly promoted the mRNA expression of the E2 synthesis rate-limiting enzyme CYP19A1 and the P4 synthesis rate-limiting enzyme CYP11A1 (p < 0.01). Taken together, these results showed that the exogenous addition of BMP6 did not affect the proliferation, cell cycle, and apoptosis of goat ovarian GCs but promoted the secretion of E2 and progesterone P4 in ovarian GCs by upregulating the mRNA expressions of CYP19A1 and CYP11A1.
Collapse
|
14
|
Iranzo-Tatay C, Hervas-Marin D, Rojo-Bofill LM, Garcia D, Vaz-Leal FJ, Calabria I, Beato-Fernandez L, Oltra S, Sandoval J, Rojo-Moreno L. Genome-wide DNA methylation profiling in anorexia nervosa discordant identical twins. Transl Psychiatry 2022; 12:15. [PMID: 35013117 PMCID: PMC8748827 DOI: 10.1038/s41398-021-01776-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Up until now, no study has looked specifically at epigenomic landscapes throughout twin samples, discordant for Anorexia nervosa (AN). Our goal was to find evidence to confirm the hypothesis that epigenetic variations play a key role in the aetiology of AN. In this study, we quantified genome-wide patterns of DNA methylation using the Infinium Human DNA Methylation EPIC BeadChip array ("850 K") in DNA samples isolated from whole blood collected from a group of 7 monozygotic twin pairs discordant for AN. Results were then validated performing a genome-wide DNA methylation profiling using DNA extracted from whole blood of a group of non-family-related AN patients and a group of healthy controls. Our first analysis using the twin sample revealed 9 CpGs associated to a gene. The validation analysis showed two statistically significant CpGs with the rank regression method related to two genes associated to metabolic traits, PPP2R2C and CHST1. When doing beta regression, 6 of them showed statistically significant differences, including 3 CpGs associated to genes JAM3, UBAP2L and SYNJ2. Finally, the overall pattern of results shows genetic links to phenotypes which the literature has constantly related to AN, including metabolic and psychological traits. The genes PPP2R2C and CHST1 have both been linked to the metabolic traits type 2 diabetes through GWAS studies. The genes UBAP2L and SYNJ2 have been related to other psychiatric comorbidity.
Collapse
Affiliation(s)
- C Iranzo-Tatay
- Psychiatry Service, Hospital la Fe, Valencia, Spain
- Department of Psychiatry, Medicine School, University of Valencia, Valencia, Spain
| | - D Hervas-Marin
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | | | - D Garcia
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - F J Vaz-Leal
- Department of Psychiatry, Medicine School, University of Extremadura, Badajoz, Spain
| | - I Calabria
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - L Beato-Fernandez
- Eating Disorders and Children's Psychiatry Department, Hospital General, Ciudad Real, Spain
| | - S Oltra
- Genetics and Prenatal Diagnosis Unit, Hospital La fe, Valencia, Spain
| | - J Sandoval
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
- Biomarkers and Precision Medicine Unit (UByMP), Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - L Rojo-Moreno
- Psychiatry Service, Hospital la Fe, Valencia, Spain
- Department of Psychiatry, Medicine School, University of Valencia, Valencia, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
15
|
Abstract
The reproductive lifespan of female mammals is limited and ultimately depends on the production of a sufficient number of high quality oocytes from a pool of non-growing primordial follicles that are set aside during embryonic and perinatal development. Recent studies show multiple signaling pathways are responsible for maintaining primordial follicle arrest and regulation of activation. Identification of these pathways and their regulatory mechanisms is essential for developing novel treatments for female infertility, improving existing in vitro fertilization techniques, and more recently, restoring the function of cryopreserved ovarian tissue. This review focuses on recent developments in transforming growth factor beta (TGFβ) family signaling in ovarian follicle development and its potential application to therapeutic design. Mouse models have been an essential tool for discovering genes critical for fertility, and recent advancements in human organ culture have additionally allowed for the translation of murine discoveries into human research and clinical settings.
Collapse
|
16
|
Li Z, He X, Zhang X, Zhang J, Guo X, Sun W, Chu M. Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2021; 11:ani11102826. [PMID: 34679847 PMCID: PMC8532869 DOI: 10.3390/ani11102826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K-Akt signaling pathway and neuroactive ligand-receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP-PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.
Collapse
Affiliation(s)
- Zhifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
17
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
18
|
Asghari R, Shokri-Asl V, Rezaei H, Tavallaie M, Khafaei M, Abdolmaleki A, Majdi Seghinsara A. Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerate-induced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism. Clin Exp Reprod Med 2021; 48:245-254. [PMID: 34370943 PMCID: PMC8421654 DOI: 10.5653/cerm.2020.04112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Objective In humans, polycystic ovary syndrome (PCOS) is an androgen-dependent ovarian disorder. Aberrant gene expression in folliculogenesis can arrest the transition of preantral to antral follicles, leading to PCOS. We explored the possible role of altered gene expression in preantral follicles of estradiol valerate (EV) induced polycystic ovaries (PCO) in a mouse model. Methods Twenty female balb/c mice (8 weeks, 20.0±1.5 g) were grouped into control and PCO groups. PCO was induced by intramuscular EV injection. After 8 weeks, the animals were killed by cervical dislocation. Blood serum (for hormonal assessments using the enzyme-linked immunosorbent assay technique) was aspirated, and ovaries (the right ovary for histological examinations and the left for quantitative real-time polymerase) were dissected. Results Compared to the control group, the PCO group showed significantly lower values for the mean body weight, number of preantral and antral follicles, serum levels of estradiol, luteinizing hormone, testosterone, and follicle-stimulating hormone, and gene expression of TGFB1, GDF9 and BMPR2 (p<0.05). Serum progesterone levels were significantly higher in the PCO animals than in the control group (p<0.05). No significant between-group differences (p>0.05) were found in BMP6 or BMP15 expression. Conclusion In animals with EV-induced PCO, the preantral follicles did not develop into antral follicles. In this mouse model, the gene expression of TGFB1, GDF9, and BMPR2 was lower in preantral follicles, which is probably related to the pathologic conditions of PCO. Hypoandrogenism was also detected in this EV-induced murine PCO model.
Collapse
Affiliation(s)
- Reza Asghari
- Department of Anatomical Sciences and Histology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shokri-Asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Rezaei
- Member of Research Committee, Medical School, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences and Histology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
20
|
Matsuno Y, Maruyama N, Fujii W, Naito K, Sugiura K. Effects of oocyte-derived paracrine factors on release of extracellular vesicles by murine mural granulosa cells in vitro. Anim Sci J 2020; 91:e13385. [PMID: 32515535 PMCID: PMC7378952 DOI: 10.1111/asj.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Both oocytes and extracellular vesicles (EV) have emerged as critical regulators of mammalian follicular development; however, the possible interaction between the oocyte‐derived paracrine factor (ODPF) and EV signals has never been examined. Therefore, to explore the possibility of an interaction between oocyte and EV signals, the effects of ODPFs on the biogenesis of EVs as well as the expression levels of transcripts related to EV biogenesis in mural granulosa cells (MGCs) were examined using mice. The results showed that, while oocyte coculture has some effects on the expression levels of transcripts related to EV biogenesis, the number of EV particles present in the conditioned medium were not significantly different between ODPF‐treated and non‐treated MGCs. Therefore, oocytes have no effects on the EV biogenesis by MGCs, at least with respect to the numbers of EV particles.
Collapse
Affiliation(s)
- Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Liu S, Chang HM, Yi Y, Yao YQ, Leung PCK. SMAD-dependent signaling mediates morphogenetic protein 6-induced stimulation of connective tissue growth factor in luteinized human granulosa cells†. Biol Reprod 2020; 101:445-456. [PMID: 31210269 DOI: 10.1093/biolre/ioz108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 11/15/2022] Open
Abstract
Connective tissue growth factor (also known as CTGF or CCN2) is a secreted matricellular protein that belongs to the CCN family. With wide-ranging biological activities and tissue expression patterns, CTGF plays a critical role in regulating various cellular functions. In the female reproductive system, CTGF is highly expressed in granulosa cells in growing ovarian follicles and is involved in the regulation of follicular development, ovulation, and luteal function. In the mammalian ovary, bone morphogenetic protein 6 (BMP6) is an important intraovarian modulator of follicular development. In this study, we demonstrated that BMP6 treatment significantly increased the expression of CTGF in both primary and immortalized human granulosa cells. Using both pharmacological inhibitors and Small interfering RNA-mediated knockdown approaches, we showed that ALK2 and ALK3 type I receptors are required for BMP6-induced cellular activities. Furthermore, this effect is most likely mediated by a Sma- and Mad-related protein (SMAD)-dependent pathway. Our studies provide novel insight into the molecular mechanisms by which an intraovarian growth factor affects the production of another factor via a paracrine effect in human granulosa cells.
Collapse
Affiliation(s)
- Shuang Liu
- Reproductive Medicine Centre, Air Force General Hospital, Beijing, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuan-Qing Yao
- Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Dapas M, Lin FTJ, Nadkarni GN, Sisk R, Legro RS, Urbanek M, Hayes MG, Dunaif A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med 2020; 17:e1003132. [PMID: 32574161 PMCID: PMC7310679 DOI: 10.1371/journal.pmed.1003132] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common, complex genetic disorder affecting up to 15% of reproductive-age women worldwide, depending on the diagnostic criteria applied. These diagnostic criteria are based on expert opinion and have been the subject of considerable controversy. The phenotypic variation observed in PCOS is suggestive of an underlying genetic heterogeneity, but a recent meta-analysis of European ancestry PCOS cases found that the genetic architecture of PCOS defined by different diagnostic criteria was generally similar, suggesting that the criteria do not identify biologically distinct disease subtypes. We performed this study to test the hypothesis that there are biologically relevant subtypes of PCOS. METHODS AND FINDINGS Using biochemical and genotype data from a previously published PCOS genome-wide association study (GWAS), we investigated whether there were reproducible phenotypic subtypes of PCOS with subtype-specific genetic associations. Unsupervised hierarchical cluster analysis was performed on quantitative anthropometric, reproductive, and metabolic traits in a genotyped cohort of 893 PCOS cases (median and interquartile range [IQR]: age = 28 [25-32], body mass index [BMI] = 35.4 [28.2-41.5]). The clusters were replicated in an independent, ungenotyped cohort of 263 PCOS cases (median and IQR: age = 28 [24-33], BMI = 35.7 [28.4-42.3]). The clustering revealed 2 distinct PCOS subtypes: a "reproductive" group (21%-23%), characterized by higher luteinizing hormone (LH) and sex hormone binding globulin (SHBG) levels with relatively low BMI and insulin levels, and a "metabolic" group (37%-39%), characterized by higher BMI, glucose, and insulin levels with lower SHBG and LH levels. We performed a GWAS on the genotyped cohort, limiting the cases to either the reproductive or metabolic subtypes. We identified alleles in 4 loci that were associated with the reproductive subtype at genome-wide significance (PRDM2/KAZN, P = 2.2 × 10-10; IQCA1, P = 2.8 × 10-9; BMPR1B/UNC5C, P = 9.7 × 10-9; CDH10, P = 1.2 × 10-8) and one locus that was significantly associated with the metabolic subtype (KCNH7/FIGN, P = 1.0 × 10-8). We developed a predictive model to classify a separate, family-based cohort of 73 women with PCOS (median and IQR: age = 28 [25-33], BMI = 34.3 [27.8-42.3]) and found that the subtypes tended to cluster in families and that carriers of previously reported rare variants in DENND1A, a gene that regulates androgen biosynthesis, were significantly more likely to have the reproductive subtype of PCOS. Limitations of our study were that only PCOS cases of European ancestry diagnosed by National Institutes of Health (NIH) criteria were included, the sample sizes for the subtype GWAS were small, and the GWAS findings were not replicated. CONCLUSIONS In conclusion, we have found reproducible reproductive and metabolic subtypes of PCOS. Furthermore, these subtypes were associated with novel, to our knowledge, susceptibility loci. Our results suggest that these subtypes are biologically relevant because they appear to have distinct genetic architecture. This study demonstrates how phenotypic subtyping can be used to gain additional insights from GWAS data.
Collapse
Affiliation(s)
- Matthew Dapas
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Frederick T. J. Lin
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Girish N. Nadkarni
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ryan Sisk
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Richard S. Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Margrit Urbanek
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - M. Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Anthropology, Northwestern University, Evanston, Illinois, United States of America
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rong K, Xia Q, Wu X, Zhou Z, Li X, Fei T, Chen J, Huang Z, Li J, Liu J, Yin X. Articular Cartilage Stem Cells Influence the Postoperative Repair of Hip Replacement by Regulating Endoplasmic Reticulum Stress in Chondrocytes via PERK Pathway. Orthop Surg 2020; 12:609-616. [PMID: 32147967 PMCID: PMC7189057 DOI: 10.1111/os.12644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Endoplasmic reticulum stress (ERS) is present in chondrocytes of osteoarthritis, and the intensity of ERS is related to the degree of cartilage degeneration. In vitro intervention strategies can change the status of ERS and induce the inhibition of ERS-related pathway. Therefore, this study is designed to explore the role and molecular mechanism of cartilage stem cells (ACSCs) of ERS in chondrocytes after hip replacement. METHODS Human cartilage cell lines C28/I2 were cultured as the control group. The ERS inducer was added into C28/I2 as ERS group. The third ERS + stem cells group was formed by adding cartilage stem cells into ERS group, and further transfection of si-PERK was defined as si-PERK + ERS + stem cells group. Cell cycle and apoptosis in the four groups were determined by flow cytometry. The protein expression of GRP78, PERK, ATF4, TMEM119, CDK4, Cyclin D, and BMP6 in chondrocytes in the four groups were investigated by western blot, and the distribution of PERK, TMEM119, and BMP6 in chondrocytes were observed by immunofluorescence assay. In addition, the transcriptional levels of Bcl2, Bax, and Caspase 3 were also determined by RT-PCR. RESULTS In cell cycle assay, ERS increased the accumulation of cells in G0 /G1 and G2 /M, while cartilage stem cells weakened the effects. The apoptosis rates in control group, ERS, ERS + stem cells, si-PERK + ERS + stem cells were 0%, 21.3%, 18.9%, and 15.9%, respectively, and the difference of apoptosis rate between the latter three groups and control group was statistically significant (P < 0.01). Stem cells could weaken the ERS-induced cell apoptosis, especially reducing the number of cells in the late stage of apoptosis from 5.4% to 1.1%. The protein level of GRP78, PERK, ATF4, TMEM119, and BMP6 in the group of ERS, ERS + stem cells, and si-PERK + ERS + stem cells were all significantly higher than those in control group, and the group of ERS + stem cells was the highest, all of the differences were significant (P < 0.01). However, the protein level of CDK4 and Cyclin D presented an absolutely opposite trend and the difference was still significant (P < 0.05). The group of si-PERK + ERS + stem cell was lower than those in the group of ERS + stem cell but higher than those in the group of ERS (P < 0.05). The level of Caspase 3 in the latter three groups was significantly higher than those in the control group, and the group of ERS was the highest (P < 0.01). Besides, the relative level of Bcl-2/Bax in control group was 1, but the group of ERS was about 0.5, and there was significant difference (P < 0.01). The ratio of Bcl-2/Bax in the group of ERS + stem cells was more than 2 and significantly higher than those of other groups. CONCLUSION ACSCs could reduce ERS-induced chondrocyte apoptosis by PERK and Bax/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Ke Rong
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Qing‐quan Xia
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Xu‐hua Wu
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Zhen‐yu Zhou
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Xu‐jun Li
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Teng Fei
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Jiong Chen
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Zhongyue Huang
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Jiang Li
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Jiang‐yi Liu
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| | - Xiao‐fan Yin
- Department of OrthopaedicsMinhang Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
24
|
Wu HC, Chang HM, Yi Y, Sun ZG, Lin YM, Lian F, Leung PCK. Bone morphogenetic protein 6 affects cell-cell communication by altering the expression of Connexin43 in human granulosa-lutein cells. Mol Cell Endocrinol 2019; 498:110548. [PMID: 31434001 DOI: 10.1016/j.mce.2019.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/06/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022]
Abstract
Connexin 43 (Cx43)-coupled gap junctions in granulosa cells play an important role in follicular development, oocyte maturation, and corpus luteum maintenance. Bone morphogenetic protein 6 (BMP6) is highly expressed in human oocytes and granulosa cells and is involved in the regulation of female reproduction. Currently, whether oocyte- and granulosa cell-derived BMP6 affects the expression of Cx43 and its related gap junction intercellular communication (GJIC) activity in human granulosa cells remains unknown. In this study, we demonstrate that BMP6 treatment significantly suppressed the expression of Cx43 in both primary and immortalized (SVOG) human granulosa-lutein cells. Using both pharmacological inhibitors and small interfering RNA-mediated knockdown approaches, we demonstrate that ALK2 and ALK3 BMP type I receptors are involved in BMP6-induced suppressive effects on Cx43 expression and GJIC activity in SVOG cells. Furthermore, these cellular activities are most likely mediated by the SMAD1/SMAD5-SMAD4-dependent signaling pathway. Notably, the ChIP analyses demonstrated that phosphorylated SMADs could bind to human Cx43 promoter. Our findings provide new insight into the molecular mechanisms by which an intrafollicular growth factor regulates cell-cell communication in human granulosa cells.
Collapse
Affiliation(s)
- Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Yung-Ming Lin
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China.
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada.
| |
Collapse
|
25
|
Liu Y, Chen M, Zhao X, Ren X, Shao S, Zou M, Zhang L. Bone morphogenetic protein 6 expression in cumulus cells is negatively associated with oocyte maturation. HUM FERTIL 2019; 24:290-297. [PMID: 31495245 DOI: 10.1080/14647273.2019.1660003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bone morphogenetic protein 6 (BMP6) is a regulatory peptide secreted by oocytes and granulosa cells that locally regulates folliculogenesis and follicular development. To determine BMP6 location, we studied BMP6 expression in human follicles using immunohistochemistry, real-time polymerase chain reaction (RT-PCR) and western blot analysis. RT-PCR was performed on 354 individual cumulus cell (CC) masses from 48 women to investigate the relationship between BMP6 mRNA expression in CCs and oocyte developmental potential. Results showed that BMP6 protein was mainly located in oocytes from preantral follicles and in granulosa cells from antral follicles. BMP6 mRNA expression was much higher in oocytes than in CCs and mural granulosa cells (mGCs) from preovulatory follicles (p < 0.01), and BMP6 protein level was higher in CCs than in mGCs (p < 0.05). BMP6 mRNA expression was higher in CCs from immature oocytes than in those from mature oocytes (p < 0.05). However, BMP6 mRNA expression in CCs was not associated with oocyte fertilization, embryo morphological grading, or implantation. In conclusion, BMP6 was mainly expressed in oocytes at all human follicular developmental stages and BMP6 mRNA expression in CCs may be negatively correlated with oocyte maturation. BMP6 expression could therefore be used as a biomarker of oocyte maturation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mei Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xue Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shumin Shao
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Min Zou
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
26
|
Garcia-Guerra A, Kamalludin MH, Kirkpatrick BW, Wiltbank MC. Trio a novel bovine high-fecundity allele: II. Hormonal profile and follicular dynamics underlying the high ovulation rate. Biol Reprod 2019; 98:335-349. [PMID: 29425274 DOI: 10.1093/biolre/iox156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 02/05/2018] [Indexed: 12/23/2022] Open
Abstract
The newly discovered Trio high-fecundity allele produces multiple ovulations in cattle. This study evaluated (1) size and growth rates of follicles in Trio carriers during a synchronized follicular wave, induced by follicle aspiration; (2) follicle-stimulating hormone (FSH) patterns associated with the follicular wave; (3) size of corpora lutea (CL) and circulating progesterone; and (4) intrafollicular estradiol concentrations prior to normal deviation. Trio carriers had mean dominant follicles that were significantly smaller in diameter and volume than noncarriers. Onset of diameter deviation occurred at ∼3 days after the last follicle aspiration in both genotypes despite Trio carriers having much smaller individual follicles. Follicles of Trio carriers grew at a slower rate than noncarrier follicles (∼65% in mm/day or ∼30% in mm3/day) resulting in much smaller individual dominant follicles (∼25% volume). However, total dominant follicle volume, calculated as the sum of all dominant follicles in each animal, was similar in carriers and noncarriers of Trio throughout the entire follicular wave. Circulating FSH was greater in Trio carriers during the 24 h encompassing deviation. Trio carriers had significantly more ovulations than noncarriers, and individual CL volume was smaller, although total luteal tissue volume and circulating P4 were not different. Thus, increased ovulation rate in Trio carriers relates to smaller individual follicles (one-third the volume) near the time of deviation due to slower follicle growth rate, although time of deviation is similar, with increased circulating FSH near deviation leading to selection of multiple dominant follicles in Trio carriers with similar total follicle volume.
Collapse
Affiliation(s)
- Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Mamat H Kamalludin
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department Animal Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Brian W Kirkpatrick
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
BMP6 increases TGF-β1 production by up-regulating furin expression in human granulosa-lutein cells. Cell Signal 2019; 55:109-118. [DOI: 10.1016/j.cellsig.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
|
28
|
Li X, Ye J, Han X, Qiao R, Li X, Lv G, Wang K. Whole-genome sequencing identifies potential candidate genes for reproductive traits in pigs. Genomics 2019; 112:199-206. [PMID: 30707936 DOI: 10.1016/j.ygeno.2019.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 11/24/2022]
Abstract
Reproductive performance is a complex quantitative trait, that is determined by multiple genes, regulatory pathways and environmental factors. A list of major genes with large effect have been detected, although multiple QTLs are identified. To identify candidate genes for pig prolificacy, whole genome variants from five high- and five low-prolificacy Yorkshire sows were collected using whole-genome resequencing. A total of 13,955,609 SNPs and 2,666,366 indels were detected across the genome. Common differential SNPs and indels were identified between the two groups of sows. Genes encoding components of the TGF-beta signaling pathway were enriched with the variations, including BMP5, BMP6, BMP7, ACVR1, INHBA, ZFYVE9, TGFBR2, DCN, ID4, BAMBI, and ACVR2A. Several differential variants within these genes related to reproductive traits were identified to be associated with litter size. A comparison of selective regions and published QTL data suggests that NEDD9, SLC39A11, SNCA, and UNC5D are candidate genes for reproduction traits.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Jianwei Ye
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xuelei Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Ruimin Qiao
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xiuling Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Gang Lv
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Kejun Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
29
|
Zhang XY, Chang HM, Taylor EL, Liu RZ, Leung PCK. BMP6 Downregulates GDNF Expression Through SMAD1/5 and ERK1/2 Signaling Pathways in Human Granulosa-Lutein Cells. Endocrinology 2018; 159:2926-2938. [PMID: 29750278 DOI: 10.1210/en.2018-00189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) 6 is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line‒derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein (hGL) cells as in vitro cell models. Our results showed that BMP6 significantly downregulated the expression of GDNF in both SVOG and primary hGL cells. With dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both activin receptor kinase-like (ALK) 2 and ALK3 are involved in BMP6-induced downregulation of GDNF. In addition, BMP6 induced the phosphorylation of Sma- and Mad-related protein (SMAD)1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced downregulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced downregulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through paracrine interactions in human granulosa cells.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth L Taylor
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui-Zhi Liu
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Huang BB, Liu XC, Qin XY, Chen J, Ren PG, Deng WF, Zhang J. Effect of High-Fat Diet on Immature Female Mice and Messenger and Noncoding RNA Expression Profiling in Ovary and White Adipose Tissue. Reprod Sci 2018; 26:1360-1372. [DOI: 10.1177/1933719118765966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Obesity is a chronic multifactorial disease prevalent in many areas of the world and is a major cause of morbidity and mortality. In women, obesity increases the risks of both metabolic and reproductive diseases, such as diabetes and infertility. The mechanisms underlying these effects, especially in young women, are largely unknown. To explore these mechanisms, we established a high-fat diet (HFD) model of obesity in immature female mice. Microarray analysis of gene expression in ovaries and white adipose tissue identified a large number of differentially expressed genes (>1.3-fold change) in both tissues. In ovaries of the HFD group, there were 208 differentially expressed messenger RNAs (mRNAs), including 98 upregulated and 110 downregulated, and 295 differentially expressed lncRNAs (long non coding RNAs), including 63 upregulated and 232 downregulated. In white adipose tissue, there were 625 differentially expressed mRNAs, including 220 upregulated and 605 downregulated in the HFD group, and 1595 differentially expressed lncRNAs, including 1320 and 275 downregulated in the HFD group. Our results reveal significant differences between the transcriptomes of the HFD and control groups in both ovaries and white adipose tissue that provide clues to the molecular mechanisms of diet-induced female reproductive dysfunction and metabolic disorders, as well as biomarkers of risk for these disorders.
Collapse
Affiliation(s)
- Bin-bin Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Xiao-yun Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-gen Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei-Fen Deng
- Shenzhen IVF Gynaecologic Hospital, Shenzhen, China
| | - Jian Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
31
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
32
|
Cui C, Ye F, Li Y, Yin H, Ye M, He L, Zhao X, Xu H, Li D, Qiu M, Zhu Q, Wang Y. Detection of SNPs in the BMP6 Gene and Their Association with Carcass and Bone Traits in Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2017-0555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C Cui
- Sichuan Agricultural University, China
| | - F Ye
- Sichuan Agricultural University, China
| | - Y Li
- Sichuan Agricultural University, China
| | - H Yin
- Sichuan Agricultural University, China
| | - M Ye
- Sichuan Agricultural University, China
| | - L He
- Sichuan Agricultural University, China
| | - X Zhao
- Sichuan Agricultural University, China
| | - H Xu
- Sichuan Agricultural University, China
| | - D Li
- Sichuan Agricultural University, China
| | - M Qiu
- Sichuan Agricultural University, China
| | - Q Zhu
- Sichuan Agricultural University, China
| | - Y Wang
- Sichuan Agricultural University, China
| |
Collapse
|
33
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
34
|
Fathi R, Rezazadeh Valojerdi M, Ebrahimi B, Eivazkhani F, Akbarpour M, Tahaei LS, Abtahi NS. Fertility Preservation in Cancer Patients: In Vivo and In Vitro Options. CELL JOURNAL 2017; 19:173-183. [PMID: 28670510 PMCID: PMC5412777 DOI: 10.22074/cellj.2016.4880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 07/25/2016] [Indexed: 12/29/2022]
Abstract
Oocyte, embryo and ovarian tissue cryopreservation are being increasingly proposed for fertility preservation among cancer patients undergoing therapy to enable them to have babies after the cancer is cured. Embryo cryopreservation is not appropriate for single girls without any sperm partner and also because oocyte retrieval is an extended procedure, it is impossible in cases requiring immediate cancer cure. Thus ovarian tissue cryopreservation has been suggested for fertility preservation especial in cancer patients. The main goal of ovarian cryopreservation is re-implanting the tissue into the body to restore fertility and the hormonal cycle. Different cryopreservation protocols have been examined and established for vitrification of biological samples. We have used Cryopin to plunge ovarian tissue into the liquid nitrogen and promising results have been observed. Ovarian tissue re-implantation after cancer cure has one problem- the possibility of recurrence of malignancy in the reimplanted tissue is high. Xenografting-implantation of the preserved tissue in another species- also has its drawbacks such as molecular signaling from the recipient. In vitro follicle culturing is a safer method to obtain mature oocytes for fertilization and the various studies that have been carried out in this area are reviewed in this paper.
Collapse
Affiliation(s)
- Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahzad Akbarpour
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, USA
| | - Leila Sadat Tahaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
35
|
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev Biol 2017; 427:258-269. [DOI: 10.1016/j.ydbio.2017.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
|
36
|
Ma Q, Feng W, Zhuang Z, Liu S. Cloning, expression profiling and promoter functional analysis of Bone morphogenetic protein 6 and 7 in tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:435-454. [PMID: 28013423 DOI: 10.1007/s10695-016-0298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in vertebrate developmental process and are associated with the mechanisms which drive early skeletal development. As a first approach to elucidating the role of BMPs in regulating fish bone formation and growth, we describe the cloning, expression profiling and promoter functional analysis of bmp6 and bmp7 in tongue sole (Cynoglossus semilaevis). The full length of bmp6 and bmp7 cDNA sequences is 1939 and 1836 bp, which encodes a protein of 428 and 427 amino acids, respectively. Tissue expression distribution of bmp6 and bmp7 was examined in 14 tissues of mature individuals by quantitative real-time PCR (qRT-PCR). The results revealed that bmp6 was predominantly expressed in the gonad, and bmp7 exhibited the highest expression level in the dorsal fin. Further comparison of bmp6 expression levels between female and male gonads showed that the expression in the ovary was significantly higher than in the testis. Moreover, bmp6 and bmp7 expression levels were detected at 15 sampling time points of early developmental stages (egg, larva, juvenile and fingerling stages). The highest expression level of bmp6 was observed in the egg stage (multi-cell and gastrula stage); while bmp7 exhibited the highest expression in the larva stage (1-4 days old). The high expression levels of BMP6 in the ovary as well as at early embryonic stages indicated that the maternally stored transcripts of bmp6 might play a role in early embryonic development. Whole-mount in situ hybridization showed that bmp6 and bmp7 exhibited similar spatial expression patterns. Both bmp6 and bmp7 signals were first detected in the head and anterior regions in newly hatched larvae, and then, the mRNAs appeared in the crown-like larval fin, jaw, operculum and fins (pectoral, dorsal, pelvic and anal) along with early development. Subsequently, we characterized the 5'-flanking regions of bmp6 and bmp7 by testing the promoter activity by luciferase reporter assays. Positive regulatory regions were, respectively, detected at the location of -272 to +28 and -740 to -396 in bmp6 and bmp7 gene. The predicted transcription factor binding sites (CREB, AP1 and methyl-CpG-binding protein) in the regions might participate in the transcriptional regulation of these two genes.
Collapse
Affiliation(s)
- Qian Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Wenrong Feng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
37
|
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1-18. [PMID: 27797914 PMCID: PMC5155571 DOI: 10.1093/humupd/dmw039] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Initially identified for their capability to induce heterotopic bone formation,
bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong
to the transforming growth factor β superfamily. Using cellular and
molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as
potent regulators of ovarian follicular function. The bi-directional communication
of oocytes and the surrounding somatic cells is mandatory for normal follicle
development and oocyte maturation. This review summarizes the current knowledge on
the physiological role and molecular determinants of these ovarian regulatory
factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because,
while the fundamental process of follicular development and oocyte maturation is
highly similar across species, most information on the regulation of ovarian
function is obtained from studies using rodent models. Thus, this review focuses
on the studies that used human biological materials to gain knowledge about human
ovarian biology and disorders and to develop strategies for preventing, diagnosing
and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth
differentiation factors (GDFs) in human ovarian biology and phenotypes were
comprehensively searched using PubMed and the Google Scholar database. The
publications included those published since the initial identification of BMPs in
the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs,
GDFs and their putative receptors as well as their molecular signaling in the
fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells)
of the ovarian follicles throughout follicle development. With the availability of
recombinant human BMPs/GDFs and the development of immortalized human cell lines,
functional studies have demonstrated the physiological role of intra-ovarian
BMPs/GDFs in all aspects of ovarian functions, from follicle development to
steroidogenesis, cell–cell communication, oocyte maturation, ovulation and
luteal function. Furthermore, there is crosstalk between these potent ovarian
regulators and the endocrine signaling system. Dysregulation or naturally
occurring mutations within the BMP system may lead to several female reproductive
diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors,
gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a
potential therapeutic target in certain human fertility disorders; however,
further clinical trials are needed. Recent studies have indicated that GDF8 is an
intra-ovarian factor that may play a novel role in regulating ovarian functions in
the human ovary. WIDER IMPLICATIONS Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human
ovarian functions. Any dysregulation or variations in these ligands or their
receptors may affect the related intracellular signaling and influence ovarian
functions, which accounts for several reproductive pathologies and infertility.
Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs,
especially as related to GC functions and follicular fluid levels, will inform
innovative approaches to fertility regulation and improve the diagnosis and
treatment of ovarian disorders.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China.,Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jie Qiao
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
38
|
Pan Y, He H, Cui Y, Baloch AR, Li Q, Fan J, He J, Yu S. Recombinant Human Bone Morphogenetic Protein 6 Enhances Oocyte Reprogramming Potential and Subsequent Development of the Cloned Yak Embryos. Cell Reprogram 2016; 17:484-93. [PMID: 26655079 DOI: 10.1089/cell.2015.0049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effects of bone morphogenetic protein 6 (BMP6) supplementation in the medium during in vitro maturation (IVM) on the developmental potential of oocytes and in the subsequent development of cloned yak embryos. Cumulus-oocyte complexes (COCs) were aspirated from the antral follicles of yak ovaries and cultured with different concentrations of recombinant human BMP6 in oocyte maturation medium. Following maturation, the metaphase II (MII) oocytes were used for somatic cell nuclear transfer (SCNT), and these were cultured in vitro. The development of blastocysts and cell numbers were detected on day 8. The apoptosis and histone modifications of yak cloned blastocysts were evaluated by detecting the expression of relevant genes and proteins (Bax, Bcl-2, H3K9ac, H3K18ac, and H3K9me3) using relative quantitative RT-PCR or immunofluorescence. The presence of 100 ng/mL BMP6 significantly enhanced the oocyte maturation ratios (66.12 ± 2.04% vs. 73.11 ± 1.38%), cleavage rates (69.40 ± 1.03% vs. 78.16 ± 0.93%), and blastocyst formation rates (20.63 ± 1.32% vs. 28.16 ± 1.67%) of cloned yak embryos. The total blastocysts (85.24 ± 3.12 vs. 103.36 ± 5.28), inner cell mass (ICM) cell numbers (19.59 ± 2.17 vs. 32.20 ± 2.61), and ratio of ICM to trophectoderm (TE) (22.93 ± 1.43% vs. 31.21 ± 1.62%) were also enhanced (p < 0.05). The ratio of the Bax to the Bcl-2 gene was lowest in the SCNT + BMP6 groups (p < 0.05). The H3K9ac and H3K18ac levels were increased in SCNT + BMP6 groups (p < 0.05), whereas the H3K9me3 level was decreased; the differences in blastocysts were not significant (p > 0.05). These study results demonstrate that addition of oocyte maturation medium with recombinant BMP6 enhances yak oocyte developmental potential and the subsequent developmental competence of SCNT embryos, and provides evidence that BMP6 is an important determinant of mammalian oocyte developmental reprogramming.
Collapse
Affiliation(s)
- Yangyang Pan
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| | - Honghong He
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| | - Yan Cui
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| | - Abdul Rasheed Baloch
- 2 University of South Bohemia in České Budějovice , Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Qin Li
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| | - Jiangfeng Fan
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| | - Junfeng He
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| | - Sijiu Yu
- 1 Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University , Lanzhou, China
| |
Collapse
|
39
|
Zhang H, Tian S, Klausen C, Zhu H, Liu R, Leung PCK. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells. Mol Cell Endocrinol 2016; 428:17-27. [PMID: 26992562 DOI: 10.1016/j.mce.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023]
Abstract
Successful fertilization depends upon proper cumulus-oocyte complex (COC) expansion. Synthesized by hyaluronan synthases (HASs), hyaluronan forms the backbone of the COC matrix and plays a critical role in COC expansion. This study investigated the effects and mechanisms of ovarian BMPs on HAS expression and hyaluronan production in human granulosa cells. Treatment with BMP4, BMP6, BMP7 or BMP15 induced differing levels of noncanonical SMAD2/3, but equal levels of canonical SMAD1/5/8, phosphorylation which were mirrored by differing levels of HAS2 up-regulation and hyaluronan production. The effects of BMP4 and BMP15 on HAS2 mRNA were partially reversed by knockdown of SMAD3, and blocked by knockdown of SMAD2+SMAD3 or SMAD4. BMP4-induced SMAD2/3 phosphorylation and HAS2 mRNA up-regulation were mediated by both BMP and activin/transforming growth factor-β type I receptors. Our results suggest differential activation of noncanonical SMAD2/SMAD3 signaling by BMPs causes disproportionate induction of HAS2 expression and hyaluronan production in immortalized human granulosa cells.
Collapse
Affiliation(s)
- Han Zhang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Center for Reproductive Medicine, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Shen Tian
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Reproductive Medicine, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Ruizhi Liu
- Center for Reproductive Medicine, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
40
|
Sumitomo JI, Emori C, Matsuno Y, Ueno M, Kawasaki K, Endo TA, Shiroguchi K, Fujii W, Naito K, Sugiura K. Mouse oocytes suppress miR-322-5p expression in ovarian granulosa cells. J Reprod Dev 2016; 62:393-9. [PMID: 27180925 PMCID: PMC5005186 DOI: 10.1262/jrd.2015-161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs)
regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p
(miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the
Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or
MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of
SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte
complexes (COCs). Moreover, the cumulus cells but not the MGCs in
Bmp15–/–/Gdf9+/– (double-mutant) mice
exhibited higher miR-322 expression than those of wild-type mice. Taken together,
these results show that ODPFs suppress the expression of miR-322 in cumulus cells.
Gene ontology analysis of putative miR-322 targets whose expression was detected in
MGCs with RNA-sequencing suggested that multiple biological processes are affected by
miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in
granulosa cells and that this regulation may participate in the differential control
of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of
cumulus cells takes place at both transcriptional and post-transcriptional
levels.
Collapse
Affiliation(s)
- Jun-Ichi Sumitomo
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Meng C, Liu W, Huang H, Wang Y, Chen B, Freeman GJ, Schneyer A, Lin HY, Xia Y. Repulsive Guidance Molecule b (RGMb) Is Dispensable for Normal Gonadal Function in Mice. Biol Reprod 2016; 94:78. [PMID: 26911425 DOI: 10.1095/biolreprod.115.135921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays an important role in spermatogenesis and follicle development. Our previous studies have shown that repulsive guidance molecule b (RGMb, also known as Dragon) is a coreceptor that enhances BMP2 and BMP4 signaling in several cell types and that RGMb is expressed in spermatocytes and spermatids in the testis and in oocytes of the secondary follicles in the ovary. Here, we demonstrated that specific deletion of Rgmb in germ cells in the testis and ovary did not alter Smad1/5/8 phosphorylation, gonadal structures, and fertility. In addition, ovaries from postnatal global Rgmb knockout mice showed similar structures to the wild-type ovaries. Our results suggest that RGMb is not essential for normal gonadal function.
Collapse
Affiliation(s)
- Chenling Meng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjing Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huihui Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Binbin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan Schneyer
- Pioneer Valley Life Science Institute and Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Herbert Y Lin
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin Xia
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
42
|
Sadr SZ, Ebrahimi B, Shahhoseini M, Fatehi R, Favaedi R. Mouse preantral follicle development in two-dimensional and three-dimensional culture systems after ovarian tissue vitrification. Eur J Obstet Gynecol Reprod Biol 2015; 194:206-11. [DOI: 10.1016/j.ejogrb.2015.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
|
43
|
Characterization of transforming growth factor beta superfamily, growth factors, transcriptional factors, and lipopolysaccharide in bovine cystic ovarian follicles. Theriogenology 2015; 84:1043-52. [PMID: 26166168 DOI: 10.1016/j.theriogenology.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022]
Abstract
The process of transformation of growing bovine follicles into cysts is still a mystery. Local expression of proteins or factors, including transforming growth factor β, growth factors, and transcription factors, plays a central role in mammals. Therefore, in abattoir-derived cystic ovarian follicles and follicular fluid, the role of some transforming growth factor β superfamily proteins, insulinlike growth factor-1 (IGF-1) and GATA-4 and GATA-6, were investigated. The relationship between intrafollicular lipopolysaccharide (LPS) and etiopathogenesis of ovarian cysts was also assessed. Data on the preovulatory follicle and the largest follicle (F1) were compared. The number of intrafollicular LPS-positive samples and LPS concentrations were higher in cysts. Immunohistochemical staining was mildly positive for IGF-1, inhibin alpha, and GATA-4 in thecal cells. Staining for anti-Müllerian hormone (AMH), growth differentiation factor-9, bone morphogenetic protein-6 (BMP-6), and GATA-6 was insufficient for their quantitation, and oocytes could not be stained for any of the proteins tested in the cystic follicles. Expression of BMP-6, inhibin alpha, and IGF-1 was moderately higher in granulosa cells of F1 follicles, and all the proteins were moderately expressed in granulosa cells in preovulatory follicles. However, loss of GATA-6 staining was significant in F1 follicles. Intrafollicular progesterone, IGF-1, and AMH concentrations in cysts and F1 follicles were significantly higher than those in preovulatory follicles. Western blot analyses revealed that follicular fluid inhibin-α was strongly expressed, whereas expression of growth differentiation factor-9, BMP-6, GATA-4 and GATA-6 was lower in cysts than in preovulatory follicles. Also, high intrafollicular AMH concentration and low BMP-6 expression were closely associated with cystic degeneration and atresia. In conclusion, immunohistochemical loss of BMP-6 and GATA-6 in the granulosa cells together with high intrafollicular LPS levels may play important roles in disruption of the ovulatory mechanism and steroidogenic reactions in type 2 cyst. Also, high intrafollicular AMH concentration along with low BMP-6 expression may be used as indicators of the bovine degenarative ovarian follicles.
Collapse
|
44
|
Wang X, Su L, Pan X, Yao J, Li Z, Wang X, Xu B. Effect of BMP-6 on development and maturation of mouse preantral follicles in vitro. BIOTECHNOL BIOTEC EQ 2015; 29:336-344. [PMID: 26019649 PMCID: PMC4434072 DOI: 10.1080/13102818.2014.996605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the effect and mechanism of bone morphogenetic protein-6 (BMP-6) on the growth and maturation of mouse follicles in vitro. Preantral follicles isolated from mice were incubated with recombinant human BMP-6 (rhBMP-6) before analysis. BMP-6 expression was detected by immunofluorescence and western blot. Maturation of oocytes was observed microscopically. Estradiol (E2) and progesterone (P4) levels were measured by enzyme-linked immunosorbent assay. Expression of steroidogenesis-related genes was detected by reverse transcription quantitative polymerase chain reaction. There was a marked increase in the preantral follicles maturation in cells incubated with 50 ng/mL of rhBMP-6 for eight days, compared with the control. The levels of E2, P4 and steroidogenesis-related genes were also significantly increased in granulosa cells and theca cells cultured for 6, 10 and 11 days, respectively. Conversely, the preantral follicle maturing rate was remarkably decreased in cells incubated with 50 ng/mL of rhBMP-6 for day 11, accompanied with reduction in E2, P4 levels and steroidogenesis-related genes levels. Meanwhile, compared with the control, the maturing rate was not significantly different in cells incubated with 100 ng/mL of rhBMP-6 for day 8 or day 11. However, the E2 levels and its relevant regulation gene expression all increased significantly, while the P4 content and its relevant regulation gene expression decreased. The results indicate that BMP-6 can promote the maturation of preantral follicles in vitro in a concentration and time-dependent manner and may play a role in the regulation of steroid hormone synthesis and/or secretion.
Collapse
Affiliation(s)
- Xiyan Wang
- Department of Histology and Embryology, Medical College, Nantong University , Nantong , P.R. China
| | - Li Su
- Department of Neurology, Second Clinical Hospital, Jilin University , Changchun , P.R. China
| | - Xiaoyan Pan
- Department of Histology and Embryology, Medical College, Jilin Medical University , Jilin , P.R. China
| | - Jian Yao
- Department of Histology and Embryology, Medical College, Nantong University , Nantong , P.R. China
| | - Zhixin Li
- Department of Histology and Embryology, Medical College, Jilin Medical University , Jilin , P.R. China
| | - Xuenan Wang
- Department of Reproduction, Reproductive Medicine Center of the Affiliated Hospital of Jining Medical College , Jining , P.R. China
| | - Bangsheng Xu
- Department of Histology and Embryology, Medical College, Nantong University , Nantong , P.R. China
| |
Collapse
|
45
|
Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 2014; 92:23. [PMID: 25376232 DOI: 10.1095/biolreprod.114.121756] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) have functionally distinct roles in antral follicles, and comparison of their transcriptomes at a global and systems level can propel future studies on mechanisms underlying their functional diversity. These cells were isolated from small and large antral follicles before and after stimulation of immature mice with gonadotropins, respectively. Both cell types underwent dramatic transcriptomic changes, and differences between them increased with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene ontology analysis revealed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes, while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Contrast of cumulus cells versus MGCs revealed that cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation. In vitro and in vivo models were used to test the hypothesis that higher levels of transcripts in cumulus cells versus MGCs is the result of stimulation by oocyte-derived paracrine factors (ODPFs). Surprisingly ∼48% of transcripts higher in cumulus cells than MGCs were not stimulated by ODPFs. Those stimulated by ODPFs were mainly associated with cell division, mRNA processing, or the catalytic pathways of metabolism, while those not stimulated by ODPFs were associated with regulatory processes such as signaling, transcription, phosphorylation, or the regulation of metabolism.
Collapse
Affiliation(s)
| | - Kyung-Bon Lee
- Department of Biology Education, College of Education, Chonnam National University, Buk-gu, Gwangju, Korea
| | - Chihiro Emori
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
46
|
Ling YH, Xiang H, Li YS, Liu Y, Zhang YH, Zhang ZJ, Ding JP, Zhang XR. Exploring differentially expressed genes in the ovaries of uniparous and multiparous goats using the RNA-Seq (Quantification) method. Gene 2014; 550:148-53. [DOI: 10.1016/j.gene.2014.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
|
47
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 725] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Emori C, Sugiura K. Role of oocyte-derived paracrine factors in follicular development. Anim Sci J 2014; 85:627-33. [PMID: 24717179 PMCID: PMC4271669 DOI: 10.1111/asj.12200] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
Abstract
Mammalian oocytes secrete transforming growth factor β (TGF-β) superfamily proteins, such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 6 (BMP6) and BMP15, and fibroblast growth factors (FGFs). These oocyte-derived paracrine factors (ODPFs) play essential roles in regulating the differentiation and function of somatic granulosa cells as well as the development of ovarian follicles. In addition to the importance of individual ODPFs, emerging evidence suggests that the interaction of ODPF signals with other intra-follicular signals, such as estrogen, is critical for folliculogenesis. In this review, we will discuss the current understanding of the role of ODPFs in follicular development with an emphasis on their interaction with estrogen signaling in regulation of the differentiation and function of granulosa cells.
Collapse
Affiliation(s)
- Chihiro Emori
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
49
|
Akiyama I, Yoshino O, Osuga Y, Shi J, Takamura M, Harada M, Koga K, Hirota Y, Hirata T, Fujii T, Saito S, Kozuma S. The role of bone morphogenetic protein 6 in accumulation and regulation of neutrophils in the human ovary. Reprod Sci 2014; 21:772-7. [PMID: 24406789 DOI: 10.1177/1933719113518988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic protein (BMP) cytokine is known to regulate ovulation, as BMP-6 null mice exhibit a decrease in the number of ovulatory follicles without effect on either the morphology or the dynamics of follicular development. In the present study, the role of BMP-6 in ovulatory process was investigated using human granulosa-lutein cells (GCs). Granulosa-lutein cells, obtained from in vitro fertilization patients, were cultured with BMP-6 followed by RNA extraction. The neutrophil-chemotactic activity of the supernatant of cultured GC was investigated. Bone morphogenetic protein 6 significantly increased growth-regulated oncogene α (GRO-α) messenger RNA (mRNA) and protein expression in GC. In the neutrophil-chemotaxis assay, the GC supernatant cultured with BMP-6 attracted more neutrophils than control samples, which was negated with anti-GRO-α neutralizing antibody. Bone morphogenetic protein 6 also suppressed the relative expression of the protease inhibitors, secretory leukocyte peptidase inhibitor, and whey acid protein 14 mRNA in GC. Bone morphogenetic protein 6 might play a role in ovulation by increasing the accumulation of neutrophils in the ovulatory follicle and suppressing the effect of protease inhibitors.
Collapse
Affiliation(s)
- Ikumi Akiyama
- 1Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev 2013; 81:284-314. [DOI: 10.1002/mrd.22285] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah L Field
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Tathagata Dasgupta
- Department of Systems Biology; Harvard Medical School; 200 Longwood Avenue Boston Massachusetts
| | - Michele Cummings
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Nicolas M. Orsi
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| |
Collapse
|