1
|
Davalieva K, Terzikj M, Bozhinovski G, Kiprijanovska S, Kubelka-Sabit K, Plaseska-Karanfilska D. Comparative proteomics analysis of decidua reveals altered RNA processing and impaired ribosome function in recurrent pregnancy loss. Placenta 2024; 154:28-37. [PMID: 38870839 DOI: 10.1016/j.placenta.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Factors contributing to recurrent pregnancy loss (RPL) in more than half of the cases are still unknown. The incidence and societal impact of this condition requires urgent elucidation of the mechanisms behind it, which could aid in significant improvement of clinical management. MATERIALS AND METHODS Using a highly efficient in-solution digestion method and label-free data-independent LC-MS/MS acquisition with ion mobility, we performed comparative proteomics analysis of the decidua tissues from 19 RPL patients and 10 controls. Differentially abundant proteins (DAPs) were compared and correlated with 3 publicly available transcriptomic datasets and the expression of selected biomarkers was tested by qPCR in decidua and chorionic villi from an extended cohort. RESULTS From 1952 proteins identified based on ≥2 peptides, the statistically significant difference in abundance (Anova p ≤ 0.05) and fold change ≥1.2 showed 85 proteins. Pathway analysis using Reactome, KEGG and Wiki pathways identified enrichment of "Signaling by ROBO receptors", "RNA degradation" and "Cytoplasmic Ribosomal Proteins". The correlation between protein and gene expression in decidua revealed that the down-regulated ribosomal proteins in our dataset (RPS15, RPS17, RPL27A, RPL35A and RPL18) showed the same regulation trend at the mRNA level, which was later confirmed for transcripts of RPS15 and RPL18 in our cohort. DISCUSSION Our data suggests that the potential causes of RPL from the maternal side could be associated with impaired RNA processing machinery. Furthermore, the list of DAPs in RPL opens future investigations in terms of screening novel gene variants predisposing to pregnancy failure and developing biomarkers for RPL risk.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000, Skopje, North Macedonia.
| | - Marija Terzikj
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000, Skopje, North Macedonia
| | - Gjorgji Bozhinovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000, Skopje, North Macedonia
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000, Skopje, North Macedonia
| | - Katerina Kubelka-Sabit
- Laboratory for Histopathology, Clinical Hospital "Acibadem Sistina", 1000, Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000, Skopje, North Macedonia
| |
Collapse
|
2
|
Hours CM, Gil S, Gressens P. Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:15139. [PMID: 37894820 PMCID: PMC10606426 DOI: 10.3390/ijms242015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.
Collapse
Affiliation(s)
- Camille M Hours
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Sophie Gil
- INSERM 1144, Therapeutics in Neuropsychopharmacology, Université Paris Cité, 75019 Paris, France
| | - Pierre Gressens
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Neurologie Pédiatrique, APHP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
3
|
Zhu Q, Zhao X, Zhang D, Xia W, Zhang J. Abnormal expression of SLIT3 induces intravillous vascularization dysplasia in ectopic pregnancy. PeerJ 2023; 11:e14850. [PMID: 36793891 PMCID: PMC9924138 DOI: 10.7717/peerj.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
Objective To investigate whether the morphology, capillary number, and transcriptome expression profiles of ectopic pregnancy (EP) villi differ from those of normal pregnancy (NP) villi. Methods Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining for CD31 were conducted to compare differences in morphology and capillary number between EP and NP villi. Differentially expressed (DE) miRNAs and mRNAs were determined from transcriptome sequencing of both types of villi and used to construct a miRNA-mRNA network, from which hub genes were identified. Candidate DE-miRNAs and DE-mRNAs were validated by quantitative reverse transcription (qRT)-PCR. Correlations were identified between the number of capillaries and serum beta human chorionic gonadotropin (β-HCG) levels and between the expression levels of hub genes associated with angiogenesis and β-HCG levels. Results The mean and total cross-sectional areas of placental villi were significantly increased in EP compared with NP villi. Capillary density was greatly reduced in EP villi and was positively correlated with β-HCG levels. A total of 49 DE-miRNAs and 625 DE-mRNAs were identified from the sequencing data. An integrated analysis established a miRNA-mRNA network containing 32 DE-miRNAs and 103 DE-mRNAs. Based on the validation of hub mRNAs and miRNAs in the network, a regulatory pathway involving miR-491-5p-SLIT3 was discovered, which may have a role in the development of villous capillaries. Conclusion Villus morphology, capillary number, and miRNA/mRNA expression profiles in villous tissues were aberrant in EP placentas. Specifically, SLIT3, which is regulated by miR-491-5p, may contribute to the regulation of villous angiogenesis and was established as a putative predictor of chorionic villus development, providing a basis for future research.
Collapse
Affiliation(s)
- Qian Zhu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xiaoya Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Duo Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
4
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
5
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Wang Y, Zhao S, Peng W, Chen Y, Chi J, Che K, Wang Y. The Role of Slit-2 in Gestational Diabetes Mellitus and Its Effect on Pregnancy Outcome. Front Endocrinol (Lausanne) 2022; 13:889505. [PMID: 35813663 PMCID: PMC9261261 DOI: 10.3389/fendo.2022.889505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Slit guidance ligand 2 (Slit-2), as a member of the Slit family, can regulate the inflammatory response and glucose metabolism. The purpose of this study was to explore the expression of Slit-2 in maternal peripheral blood and neonatal cord blood of gestational diabetes mellitus (GDM) patients and its potential importance in disease progression. METHODS This study included 57 healthy pregnant women and 61 GDM patients. The levels of Slit-2, C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), C-peptide (C-P), galectin-3(Gal-3), HbA1c, fasting blood glucose (FBG) and fasting insulin (FINS) in maternal peripheral blood and neonatal cord blood were detected by ELISA. Spearman's rank correlation test was used to assess the association between peripheral Slit-2 and inflammatory indicators, insulin resistance, and pregnancy outcomes. Logistic regression analysis was used to analyze the risk factors of GDM. RESULTS Slit-2 levels in maternal peripheral blood and neonatal cord blood of the GDM patients were higher than those of the HC. Slit-2 levels in maternal peripheral blood and neonatal cord blood of the GDM patients were positively correlated with inflammatory factors CRP and MCP-1 levels. The level of Slit-2 in the maternal peripheral blood of the GDM patients was positively correlated with the level of homeostasis model assessment insulin resistance (HOMA-IR) and HbA1c in maternal peripheral blood, but was negatively correlated with the level of homeostasis model assessment -β (HOMA-β). We also found that the Slit-2 level in the maternal peripheral blood of the GDM patients was negatively correlated with neonatal blood glucose, positively correlated with neonatal weight and independent of neonatal total bilirubin. CONCLUSION Our study suggests that the abnormal increase in Slit-2 in GDM may be related to its pathogenesis, and it was correlated with neonatal blood glucose and weight in patients with GDM, suggesting that Slit-2 may be a potential biomarker of GDM.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihua Zhao
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Chen
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Qingdao Key Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- Qingdao Key Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yangang Wang,
| |
Collapse
|
7
|
Shirakura K, Okada Y. Vascular Leakage Prevention by Roundabout 4 under Pathological Conditions. Biol Pharm Bull 2021; 44:1365-1370. [PMID: 34602544 DOI: 10.1248/bpb.b21-00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular permeability is regulated mainly by the endothelial barrier and controls vascular homeostasis, proper vessel development, and immune cell trafficking. Several molecules are involved in regulating endothelial barrier function. Roundabout 4 (Robo4) is a single-pass transmembrane protein that is specifically expressed in vascular endothelial cells. Robo4 is an important regulator of vascular leakage and angiogenesis, especially under pathological conditions. The role of Robo4 in preventing vascular leakage has been studied in various disease models, including animal models of retinopathy, tumors, diabetes, and endotoxemia. The involvement of Robo4 in vascular endothelial growth factor and inflammation-mediated signaling pathways has been well studied, and recent evidence suggests that Robo4 modulates endothelial barrier function via distinct mechanisms. In this review, we discuss the role of Robo4 in endothelial barrier function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
8
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
9
|
Effect of glycolysis and heat shock proteins on hypoxia adaptation of Tibetan sheep at different altitude. Gene 2021; 803:145893. [PMID: 34384864 DOI: 10.1016/j.gene.2021.145893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022]
Abstract
Glycolysis and heat shock proteins (HSPs) play an important role in mediating the physiological response to hypoxia. The changes of glycolysis and HSPs with altitude would provide important information regarding ways to prevent hypoxia-related sickness in both animals and humans. In this study, the expression pattern of HIF1A, PDK4, HSP27 and HSP60, indexes activity and content of glucose metabolism were detected in heart, lung, brain, and quadriceps femoris taken from Tibetan sheep (Ovis aries) that were raised at different altitudes (2,500 m, 3,500 m and 4,500 m). The expression of HIF1A and PDK4 was increased with increasing altitude in all of the tissues. The lactate dehydrogenase (LDH) activities and adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH (redox state), NAD+), lactic acid (LA), pyruvic acid (PA) contents were all increased with increasing altitude in all of the tissues. The ratio of NADH/NAD+ and LA/PA were higher in sheep at an altitude of 4,500 m than of 3,500 m and 2,500 m in all tissues, except for the NADH/NAD+ ratio in lung and quadriceps femoris. An increase in the protein and mRNA expression of ATP-independent HSP27 during hypoxia condition was detected. The expression of ATP-dependent HSP60 mRNA and protein was increased in all of the tissues at an altitude of 3,500 m than of 2,500 m, but was decreased at an altitude of 4,500 m. These results suggest that glycolysis and HSPs are upregulated to ensure energy supply and proteostasis during hypoxia, but energy conservation may be prioritized over cytoprotective protein chaperoning in Tibetan sheep tissues during extreme hypoxia.
Collapse
|
10
|
Feng C, Cheng L, Jin J, Liu X, Wang F. Long non-coding RNA MALAT1 regulates trophoblast functions through VEGF/VEGFR1 signaling pathway. Arch Gynecol Obstet 2021; 304:873-882. [PMID: 33547935 DOI: 10.1007/s00404-021-05987-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023]
Abstract
Preeclampsia, as one of the most serious pregnancy-specific diseases, manifested by high blood pressure and companied by proteinuria in pregnancy women after 20 gestational weeks. Although the underlying mechanism has been studied for decades, no unambiguous interpretation of this phenomenon was well recognized. Recent researches focused on long non-coding RNAs (lncRNAs) as key regulators of cancer cell proliferation, invasion, migration and angiogenesis. Tumor development and placenta implantation share several common biological behaviors. The expression of lncRNA MALAT1 was downregulated in the placenta of patients with severe preeclampsia. MALAT1 smart silencer significantly inhibited HTR-8/SVneo trophoblast cell proliferation, invasion, migration and tube formation in vitro. Moreover, MALAT1 inhibited the expression of angiogenic factors in umbilical vein endothelial cells co-cultured with trophoblasts. These results indicated that MALAT1 was involved in the pathogenesis of preeclampsia and might be a candidate biomarker as well as a therapeutic target for preeclampsia.
Collapse
Affiliation(s)
- Chun Feng
- Department of Obstetrics and Gynecology, Hubei Maternal and Child Health Hospital, Wuhan, 430070, Hubei, China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jing Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
11
|
Chen CP, Wang LK, Chen CY, Chen CY, Wu YH. Placental multipotent mesenchymal stromal cell-derived Slit2 may regulate macrophage motility during placental infection. Mol Hum Reprod 2020; 27:6020263. [PMID: 33275139 DOI: 10.1093/molehr/gaaa076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Slit proteins have been reported to act as axonal repellents in Drosophila; however, their role in the placental microenvironment has not been explored. In this study, we found that human placental multipotent mesenchymal stromal cells (hPMSCs) constitutively express Slit2. Therefore, we hypothesized that Slit2 expressed by hPMSCs could be involved in macrophage migration during placental inflammation through membrane cognate Roundabout (Robo) receptor signaling. In order to develop a preclinical in vitro mouse model of hPMSCs in treatment of perinatal infection, RAW 264.7 cells were used in this study. Slit2 interacted with Robo4 that was highly expressed in RAW 264.7 macrophages: their interaction increased the adhesive ability of RAW 264.7 cells and inhibited migration. Lipopolysaccharide (LPS)-induced CD11bCD18 expression could be inhibited by Slit2 and by hPMSC-conditioned medium (CM). LPS-induced activation of p38 and Rap1 was also attenuated by Slit2 and by hPMSC-CM. Noticeably, these inhibitory effects of hPMSC-CM decreased after depletion of Slit2 from the CM. Furthermore, we found that p38 siRNA inhibited LPS-induced Rap1 expression in RAW 264.7 cells, indicating that Rap1 functions downstream of p38 signaling. p38 siRNA increased cell adhesion and inhibited migration through reducing LPS-stimulated CD11bCD18 expression in RAW 264.7 cells. Thus, hPMSC-derived Slit2 may inhibit LPS-induced CD11bCD18 expression to decrease cell migration and increase adhesion through modulating the activity and motility of inflammatory macrophages in placenta. This may represent a novel mechanism for LPS-induced placental infection.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Liang-Kai Wang
- Division of High Risk Pregnancy, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Chen
- Division of High Risk Pregnancy, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yu Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hsin Wu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Role of Slit2 upregulation in recurrent miscarriage through regulation of stromal decidualization. Placenta 2020; 103:1-9. [PMID: 33068960 DOI: 10.1016/j.placenta.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Knockout mouse model has shown a relationship between Slit2/Robo1 signalling and altered fertility. Altered expression by endometrial epithelium and trophoblast and is associated with the pathogenesis of pregnancy complications but few studies have investigated the expression of decidual Slit2 in miscarriage. METHODS Expression profiles of Slit2 and Robo1 were measured in human endometrial tissues during the menstrual cycle phases (n = 30), in decidua tissues from recurrent miscarriage (n = 20) and healthy control (n = 20) at 6-8 weeks of gestation. The hormonal regulation of Slit2/Robo1 expression and the role of Slit2/Robo1 signalling in decidualization was investigated in vitro, along with its effects on β-catenin and MET expression. RESULTS In human endometrium, Slit2 and Robo1 protein expression in stromal cells were decreased between the late-proliferative and early-secretory phase. In recurrent miscarriage patients, decidual expression Slit2 was increased and associated with lower expression of E-cadherin and higher level vimentin compared to controls. In vitro, the expression of Slit2 was downregulated by cAMP and progesterone in hESCs. Upregulation of Slit2 resulted in inhibition of cell decidualization and β-catenin translocation to nucleus. DISCUSSION This study indicates a functional role for Slit2 in endometrial stromal cell decidualization and the pathogenesis of recurrent miscarriage. Aberrant Increase in Slit2 expression may impairs decidualization of endometrial stromal cells leading to recurrent in recurrent miscarriage.
Collapse
|
13
|
Chen K, Fan Y, Gu J, Han Z, Zeng H, Mao C, Wang C. <p>In vivo Screening of Natural Products Against Angiogenesis and Mechanisms of Anti-Angiogenic Activity of Deoxysappanone B 7,4ʹ-Dimethyl Ether</p>. Drug Des Devel Ther 2020; 14:3069-3078. [PMID: 32801645 PMCID: PMC7398751 DOI: 10.2147/dddt.s252681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The aim of this study was to screen the leading compounds of natural origin with anti-angiogenic potential and to investigate their anti-angiogenic mechanism preliminarily. Materials and Methods An initial screening of 240 compounds from the Natural Products Collection of MicroSource was performed using the transgenic zebrafish strain Tg [fli1a: enhanced green fluorescent protein (EGFP)]y1. The zebrafish embryos at 24 h post-fertilization were exposed to the natural compounds for an additional 24 h; then, morphological changes in the intersegmental vessels (ISVs) were observed and quantified under a fluorescence microscope. The expression profiles of angiogenesis-related genes in the zebrafish embryos were detected using quantitative real-time PCR. Results Five compounds were identified with potential anti-angiogenic activity on the zebrafish embryogenesis. Among them, deoxysappanone B 7.4ʹ-dimethyl ether (Deox B 7,4) showed anti-angiogenic activity on the formation of ISVs in a dose-dependent manner. The inhibition of ISV formation reached up to 99.64% at 5 μM Deox B 7,4. The expression of delta-like ligand 4 (dll4), hes-related family basic helix-loop-helix transcription factor with YRPW motif 2, ephrin B2, fibroblast growth factor receptor (fgfr) 3, cyclooxygenase-2, protein tyrosine phosphatase, receptor type B (ptp-rb), phosphoinositide-3-kinase regulatory subunit 2, slit guidance ligand (slit) 2, slit3, roundabout guidance receptor (robo) 1, robo2, and robo4 were down-regulated, while vascular endothelial growth factor receptor-2, fgfr 1, and matrix metallopeptidase 9 were up-regulated in the zebrafish embryos treated with Deox B 7,4. Conclusion Deox B 7,4 has a therapeutic potential for the treatment of angiogenesis-dependent diseases and may exert anti-angiogenic activities by suppressing the slit2/robo1/2, slit3/robo4, cox2/ptp-rb/pik3r2, and dll4/hey2/efnb2a signaling pathways as well as activation of vegfr-2/fgfr1/mmp9.
Collapse
Affiliation(s)
- Kan Chen
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
- Correspondence: Changqian Wang Tel +86-21-23271699-5836 Email
| |
Collapse
|
14
|
Wang X, Liu J, Yin W, Abdi F, Pang PD, Fucci QA, Abbott M, Chang SL, Steele G, Patel A, Mori Y, Zhang A, Zhu S, Lu TS, Kibel AS, Wang B, Lim K, Siedlecki AM. miR-218 Expressed in Endothelial Progenitor Cells Contributes to the Development and Repair of the Kidney Microvasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:642-659. [PMID: 31972158 PMCID: PMC7068533 DOI: 10.1016/j.ajpath.2019.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Abstract
Ischemia due to hypoperfusion is one of the most common forms of acute kidney injury. We hypothesized that kidney hypoxia initiates the up-regulation of miR-218 expression in endothelial progenitor cells (EPCs) to guide endocapillary repair. Murine renal artery-derived EPCs (CD34+/CD105-) showed down-regulation of mmu-Mir218-5p/U6 RNA ratio after ischemic injury, while in human renal arteries, MIR218-5p expression was up-regulated after ischemic injury. MIR218 expression was clarified in cell culture experiments in which increases in both SLIT3 and MIR218-2-5p expressions were observed after 5 minutes of hypoxia. ROBO1 transcript, a downstream target of MIR218-2-5p, showed inverse expression to MIR218-2-5p. EPCs transfected with a MIR218-5p inhibitor in three-dimensional normoxic culture showed premature capillary formation. Organized progenitor cell movement was reconstituted when cells were co-transfected with Dicer siRNA and low-dose Mir218-5p mimic. A Mir218-2 knockout was generated to assess the significance of miR-218-2 in a mammalian model. Mir218-2-5p expression was decreased in Mir218-2-/- embryos at E16.5. Mir218-2-/- decreased CD34+ angioblasts in the ureteric bud at E16.5 and were nonviable. Mir218-2+/- decreased peritubular capillary density at postnatal day 14 and increased serum creatinine after ischemia in adult mice. Systemic injection of miR-218-5p decreased serum creatinine after injury. These experiments demonstrate that miR-218 expression can be triggered by hypoxia and modulates EPC migration in the kidney.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jialing Liu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqing Yin
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Farhiya Abdi
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul D Pang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Quynh-Anh Fucci
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Molly Abbott
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven L Chang
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Graeme Steele
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ankit Patel
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yutaro Mori
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aifeng Zhang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shikai Zhu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzong-Shi Lu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adam S Kibel
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bin Wang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth Lim
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew M Siedlecki
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Li Q, Cao J, He Y, Liu X, Mao G, Wei B, Liao S, Zhang Q, Li J, Zheng L, Wang L, Qi C. R5, a neutralizing antibody to Robo1, suppresses breast cancer growth and metastasis by inhibiting angiogenesis via down-regulating filamin A. Exp Cell Res 2020; 387:111756. [PMID: 31811830 DOI: 10.1016/j.yexcr.2019.111756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is one of the most common cancers among women in both developed and developing countries with a rising incidence. Using the MMTV-PyMT transgenic mouse model and xenografted breast cancer model, we found that R5, a neutralizing antibody to Robo1, significantly inhibited BC growth and metastasis. Angiogenesis is involved in the growth and metastasis of BC. Interestingly, R5 significantly decreases microvessel density in BC tissues, and inhibits blood vessel formation and development in in vivo chick embryo chorioallantoic membrane (CAM), yolk sac membrane (YSM) and Matrigel plug models. To investigate whether its anti-breast cancer efficacy is ascribed to its direct antiangiogenic properties, xenografted breast cancer model on CAM was established. Furthermore, R5 significantly reduces the tube formation of the vascular plexus on xenografted breast tumor on CAM. R5 also suppresses the migration and the tubular structure formation of human umbilical vein endothelial cells (HUVECs) by down-regulating the expression of filamin A (FLNA). These findings show that R5 has the potential to be a promising agent for the treatment of BC by suppressing the tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Qianming Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jinghua Cao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yajun He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaohua Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shiyan Liao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qianqian Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Wu S, Zhang H, Liu Y, Wang R, Ye S, Zeng M, Liu Z. [Long non-coding RNAs show different expression profiles and display competing endogenous RNA potential in placenta accreta spectrum disorders]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1253-1259. [PMID: 31801721 DOI: 10.12122/j.issn.1673-4254.2019.10.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expression profile of long non-coding RNAs (lncRNA) and identify potential lncRNA-related competing endogenous RNAs (ceRNA) in placenta accrete spectrum disorders (PAS). METHODS Five tissue specimens of placental implantation and 5 adjacent normal placental tissues were collected from cesarean section deliveries complicated by PAS in our hospital between December, 2017 and June, 2018. Human microarrays were used to identify the lncRNAs that were differentially expressed in PAS, and 5 of the identified lncRNAs were further validated using qRT-PCR. GO and KEGG pathway analyses were performed to indentify the most significant enrichment functions. A ceRNA network was constructed based on ENST00000511361 (RP5-875H18.4), NR_027457 (LINC00221) and NR_126415 (FOXP4-AS1) to pinpoint the potential lncRNAs-related ceRNA. RESULTS A total of 329 lncRNAs and 179 mRNAs were identified to have differential expression in PAS. The results of qRT-PCR were consistent with the human microarrays results. Transforming growth factor-β (TGF-β) signaling pathway was the most significantly enriched pathway. The constructed ceRNA network suggested that RP5-875H18.4--miRNA-218--SLIT2 had a potential ceRNA regulatory mechanism in PAS. CONCLUSIONS The differentially expressed lncRNAs are involved in the occurrence and progression of PAS possibly by regulating the TGF-β signaling pathway. The ceRNA network of RP5-875H18.4--miRNA-218--SLIT2 may play a role in the occurrence of PAS.
Collapse
Affiliation(s)
- Shuzhen Wu
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Huishan Zhang
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China.,Foshan Fetal Medicine Institute, Foshan 528000, China
| | - Yan Liu
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Rui Wang
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Shaoxin Ye
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China.,Foshan Fetal Medicine Institute, Foshan 528000, China
| | - Meng Zeng
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Zhengping Liu
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China.,Foshan Fetal Medicine Institute, Foshan 528000, China
| |
Collapse
|
17
|
Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019; 39:BSR20190513. [PMID: 31160487 PMCID: PMC6620384 DOI: 10.1042/bsr20190513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Roundabout (Robo) family of axon guidance molecules. Robo4 is an endothelial-specific receptor that participates in endothelial cell migration, proliferation, and angiogenesis and the maintenance of vasculature homeostasis. The purpose of this review is to summarize and analyze three main mechanisms related to the expression and function of Robo4 during developmental and pathological angiogenesis. In this review, static shear stress and the binding of transcription factors such as E26 transformation-specific variant 2 (ETV2) and Slit3 induce Robo4 expression and activate Robo4 during tissue and organ development. Robo4 interacts with Slit2 or UNC5B to maintain vascular integrity, while a disturbed flow and the expression of transcription factors in inflammatory or neoplastic environments alter Robo4 expression levels, although these changes have uncertain functions. Based on the mechanisms described above, we discuss the aberrant expression of Robo4 in angiogenesis-related diseases and propose antiangiogenic therapies targeting the Robo4 signaling pathway for the treatment of ocular neovascularization lesions and tumors. Finally, although many problems related to Robo4 signaling pathways remain to be resolved, Robo4 is a promising and potentially valuable therapeutic target for treating pathological angiogenesis and developmental defects in angiogenesis.
Collapse
|
18
|
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 2019; 15:e1008107. [PMID: 31194736 PMCID: PMC6563950 DOI: 10.1371/journal.pgen.1008107] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M. Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K. Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M. Huusko
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Riitta Marttila
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
19
|
Kaneko N, Herranz-Pérez V, Otsuka T, Sano H, Ohno N, Omata T, Nguyen HB, Thai TQ, Nambu A, Kawaguchi Y, García-Verdugo JM, Sawamoto K. New neurons use Slit-Robo signaling to migrate through the glial meshwork and approach a lesion for functional regeneration. SCIENCE ADVANCES 2018; 4:eaav0618. [PMID: 30547091 PMCID: PMC6291311 DOI: 10.1126/sciadv.aav0618] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
After brain injury, neural stem cell-derived neuronal precursors (neuroblasts) in the ventricular-subventricular zone migrate toward the lesion. However, the ability of the mammalian brain to regenerate neuronal circuits for functional recovery is quite limited. Here, using a mouse model for ischemic stroke, we show that neuroblast migration is restricted by reactive astrocytes in and around the lesion. To migrate, the neuroblasts use Slit1-Robo2 signaling to disrupt the actin cytoskeleton in reactive astrocytes at the site of contact. Slit1-overexpressing neuroblasts transplanted into the poststroke brain migrated closer to the lesion than did control neuroblasts. These neuroblasts matured into striatal neurons and efficiently regenerated neuronal circuits, resulting in functional recovery in the poststroke mice. These results suggest that the positioning of new neurons will be critical for functional neuronal regeneration in stem/progenitor cell-based therapies for brain injury.
Collapse
Affiliation(s)
- N. Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - V. Herranz-Pérez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, C/Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Q-6250003-H Av. de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain
| | - T. Otsuka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - H. Sano
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - N. Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - T. Omata
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - H. B. Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh City 700000, Vietnam
| | - T. Q. Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - A. Nambu
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Y. Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - J. M. García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, C/Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
| | - K. Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
20
|
Chen K, Wang C, Fan Y, Gu J, Han Z, Wang Y, Gao L, Zeng H. Identification of mundoserone by zebrafish in vivo screening as a natural product with anti-angiogenic activity. Exp Ther Med 2018; 16:4562-4568. [PMID: 30542405 PMCID: PMC6257818 DOI: 10.3892/etm.2018.6748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to screen natural products with anti-angiogenic potential from the Natural Products Collection of MicroSource. The anti-angiogenic activity of 240 natural products was assessed using the zebrafish line Tg(fli1a: EGFP)y1. At 24 h post-fertilization, the embryos were treated with the library compounds for 24 h and, the morphology of the intersegmental vessels (ISVs) was then assessed using a fluorescence microscope, followed by counting of ISVs and calculation of the inhibition ratio. The expression of angiogenesis-associated genes was determined by quantitative polymerase chain reaction. The results indicated that mundoserone inhibited ISV formation in zebrafish embryos in a dose-dependent manner, with a significant anti-angiogenic activity observed at a concentration of 10 µM, leading to an ISV inhibition ratio of 73.6±1.3%. Mundoserone significantly reduced the expression of slit guidance ligand 3 (SLIT3), roundabout guidance receptor 1 (ROBO1) and -2, fibroblast growth factor receptor (FGFR)2 and -3, as well as protein tyrosine phosphatase, receptor type B (PTP-RB), but increased the expression of NOTCH1A. Accordingly, mundoserone may be an effective angiogenic inhibitor, which acts via downregulation of SLIT/ROBO1 and FGFR/PTP-RB, and upregulation of NOTCH1A signaling.
Collapse
Affiliation(s)
- Kan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
21
|
MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther 2018; 26:2189-2205. [PMID: 30061037 DOI: 10.1016/j.ymthe.2018.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Preeclampsia (PE) is the leading cause of maternal and neonatal morbidity and mortality. Defects in trophoblast invasion, differentiation of endovascular extravillous trophoblasts (enEVTs), and spiral artery remodeling are key factors in PE development. There are no markers clinically available to predict PE, leaving expedited delivery as the only effective therapy. Dysregulation of miRNA in clinical tissues and maternal circulation have opened a new avenue for biomarker discovery. In this study, we investigated the role of miR-218-5p in PE development. miR-218-5p was highly expressed in EVTs and significantly downregulated in PE placentas. Using first-trimester trophoblast cell lines and human placental explants, we found that miR-218-5p overexpression promoted, whereas anti-miR-218-5p suppressed, trophoblast invasion, EVT outgrowth, and enEVT differentiation. Furthermore, miR-218-5p accelerated spiral artery remodeling in a decidua-placenta co-culture. The effect of miR-218-5p was mediated by the suppression of transforming growth factor (TGF)-β2 signaling. Silencing of TGFB2 mimicked, whereas treatment with TGF-β2 partially reversed, the effects of miR-218-5p. Taken together, these findings demonstrate that miR-218-5p promotes trophoblast invasion and enEVT differentiation through a novel miR-218-5p-TGF-β2 pathway. This study elucidates the role of an miRNA in enEVT differentiation and spiral artery remodeling and suggests that downregulation of miR-218-5p contributes to PE development.
Collapse
|
22
|
Li P, Shi Y, Shuai H, Cai Y, Lu W, Wang G, Gao L, Wang L, Fan X, Yang X. Alterted SLIT2/ROBO1 signalling is linked to impaired placentation of missed and threatened miscarriage in early pregnancy. Histopathology 2017; 71:543-552. [PMID: 28485101 DOI: 10.1111/his.13250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
Abstract
AIMS Two-thirds of early pregnancy failures present with reduced trophoblast invasion, and SLIT2/ROBO1 signalling is considered to play an important role in trophoblast function during pregnancy. We investigated SLIT2/ROBO1 signalling associated with missed and threatened miscarriage during early gestation. METHODS AND RESULTS Human placenta samples were collected from women with missed miscarriage (n = 25), threatened miscarriage (n = 22) and termination of pregnancy controls (n = 32). Corresponding decreases in beta human chorionic gonadotrophin (β-hCG) levels and shallow trophoblast invasion were observed in patients with missed and threatened miscarriage, immunohistological staining revealed abnormal Slit2 and Robo1, as well as E-cadherin and activating protein-2 alpha (AP-2α) expression in villi and extravillous trophoblasts, and the expression of these proteins were confirmed in villi and decidua of miscarriage material by Western blotting. Using HTR8/SVneo cells, blocking SLIT2/ROBO1 signalling promoted cell migration, proliferation and suppressed differentiation. Moreover, blocking SLIT2/ROBO1 signalling in HTR8/SVneo cells altered trophoblast differentiation-related and angiogenesis-related gene mRNA expression, which also occurred in the tissues of missed and threatened miscarriage. CONCLUSIONS SLIT2/ROBO1 signalling may regulate trophoblast differentiation and invasion causing restricting β-hCG production, shallow trophoblast invasion and inhibiting placental angiogenesis in missed and threatened miscarriage during the first trimester.
Collapse
MESH Headings
- Abortion, Spontaneous/etiology
- Abortion, Spontaneous/metabolism
- Abortion, Spontaneous/pathology
- Abortion, Threatened/etiology
- Abortion, Threatened/metabolism
- Abortion, Threatened/pathology
- Adult
- Antigens, CD
- Cadherins/genetics
- Cadherins/metabolism
- Cell Movement
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Female
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Placenta/metabolism
- Placenta/pathology
- Placentation
- Pregnancy
- Pregnancy Trimester, First
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Trophoblasts/metabolism
- Trophoblasts/pathology
- Young Adult
- Roundabout Proteins
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
- Department of Nursing Science, Jinan University, Guangzhou, China
| | - Yuxun Shi
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
| | - Hanlin Shuai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanzhen Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenhui Lu
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
| | - Lufen Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lijing Wang
- Institute of Vascular Biological Science, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiujun Fan
- Shenzhen Insititutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Stormo BM, Fox DT. Polyteny: still a giant player in chromosome research. Chromosome Res 2017; 25:201-214. [PMID: 28779272 PMCID: PMC5768140 DOI: 10.1007/s10577-017-9562-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
In this era of high-resolution mapping of chromosome territories, topological interactions, and chromatin states, it is increasingly appreciated that the positioning of chromosomes and their interactions within the nucleus is critical for cellular function. Due to their large size and distinctive structure, polytene chromosomes have contributed a wealth of knowledge regarding chromosome regulation. In this review, we discuss the diversity of polytene chromosomes in nature and in disease, examine the recurring structural features of polytene chromosomes in terms of what they reveal about chromosome biology, and discuss recent advances regarding how polytene chromosomes are assembled and disassembled. After over 130 years of study, these giant chromosomes are still powerful tools to understand chromosome biology.
Collapse
Affiliation(s)
- Benjamin M Stormo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Zadora J, Singh M, Herse F, Przybyl L, Haase N, Golic M, Yung HW, Huppertz B, Cartwright JE, Whitley G, Johnsen GM, Levi G, Isbruch A, Schulz H, Luft FC, Müller DN, Staff AC, Hurst LD, Dechend R, Izsvák Z. Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker. Circulation 2017; 136:1824-1839. [PMID: 28904069 PMCID: PMC5671803 DOI: 10.1161/circulationaha.117.028110] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Preeclampsia is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in preeclampsia. Our study aims to investigate whether disturbed imprinting contributes to preeclampsia. Methods: We first aimed to confirm that preeclampsia is a disease of the placenta by generating and analyzing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from healthy controls and patients with preeclampsia. Next, we identified differentially expressed genes in preeclamptic placentas and intersected them with the list of human imprinted genes. We used bioinformatics/statistical analyses to confirm association between imprinting and preeclampsia and to predict biological processes affected in preeclampsia. Validation included epigenetic and cellular assays. In terms of human specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque, and mouse preimplantation embryogenesis. Results: We found disturbed placental imprinting in preeclampsia and revealed potential candidates, including GATA3 and DLX5, with poorly explored imprinted status and no prior association with preeclampsia. As a result of loss of imprinting, DLX5 was upregulated in 69% of preeclamptic placentas. Levels of DLX5 correlated with classic preeclampsia markers. DLX5 is expressed in human but not in murine trophoblast. The DLX5high phenotype resulted in reduced proliferation, increased metabolism, and endoplasmic reticulum stress-response activation in trophoblasts in vitro. The transcriptional profile of such cells mimics the transcriptome of preeclamptic placentas. Pan-mammalian comparative analysis identified DLX5 as part of the human-specific regulatory network of trophoblast differentiation. Conclusions: Our analysis provides evidence of a true association among disturbed imprinting, gene expression, and preeclampsia. As a result of disturbed imprinting, the upregulated DLX5 affects trophoblast proliferation. Our in vitro model might fill a vital niche in preeclampsia research. Human-specific regulatory circuitry of DLX5 might help explain certain aspects of preeclampsia.
Collapse
Affiliation(s)
- Julianna Zadora
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Manvendra Singh
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Florian Herse
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Lukasz Przybyl
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Nadine Haase
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Michaela Golic
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Hong Wa Yung
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Berthold Huppertz
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Judith E Cartwright
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Guy Whitley
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Guro M Johnsen
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Giovanni Levi
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Annette Isbruch
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Herbert Schulz
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Friedrich C Luft
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Dominik N Müller
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Anne Cathrine Staff
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Laurence D Hurst
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.).
| | - Ralf Dechend
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.).
| | - Zsuzsanna Izsvák
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.).
| |
Collapse
|
25
|
Fang M, Du H, Han B, Xia G, Shi X, Zhang F, Fu Q, Zhang T. Hypoxia-inducible microRNA-218 inhibits trophoblast invasion by targeting LASP1: Implications for preeclampsia development. Int J Biochem Cell Biol 2017; 87:95-103. [PMID: 28412444 DOI: 10.1016/j.biocel.2017.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022]
Abstract
Preeclampsia (PE) is a major contributor to maternal morbidity and mortality. However, the molecular mechanisms underlying PE progression are not well characterized. Here, we investigated the role of miR-218 in PE development. The expression of miR-218 and its host genes SLIT2 and SLIT3 was up-regulated in preeclamptic placentae compared to normal placentae. miR-218 expression was induced by hypoxia and decreased after knockdown of HIF-1α in an extravillous trophoblast cell line (HTR-8/SVneo). Chromatin immunoprecipitation assays showed direct binding of HIF-1α to the promoters of SLIT2 and SLIT3. Bioinformatics analysis identified LASP1 as a direct target of miR-218. Overexpression of miR-218 repressed the expression of LASP1 at both the mRNA and protein level. Meanwhile, miR-218 repressed the activity of a luciferase reporter containing the 3'-untranslated region of the LASP1 gene. Furthermore, expression of LASP1 rescued the inhibitory effect of miR-218 on HTR-8/SVneo cell invasion. Together, these results indicated that miR-218 contributes to PE by targeting LASP1 to inhibit trophoblast invasion.
Collapse
Affiliation(s)
- Min Fang
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Hechun Du
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Bing Han
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Guiyu Xia
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Xiaoliang Shi
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Feng Zhang
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Qiqin Fu
- Genetic Laboratory, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Tao Zhang
- Genetic Laboratory, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
26
|
Sirohi VK, Popli P, Sankhwar P, Kaushal JB, Gupta K, Manohar M, Dwivedi A. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells. J Nutr Biochem 2017; 44:60-70. [PMID: 28402926 DOI: 10.1016/j.jnutbio.2016.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/18/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells.
Collapse
Affiliation(s)
- Vijay Kumar Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India
| | - Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India
| | - Pushplata Sankhwar
- Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow-226001, U.P., India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| |
Collapse
|
27
|
Metzler VM, de Brot S, Robinson RS, Jeyapalan JN, Rakha E, Walton T, Gardner DS, Lund EF, Whitchurch J, Haigh D, Lochray JM, Robinson BD, Allegrucci C, Fray RG, Persson JL, Ødum N, Miftakhova RR, Rizvanov AA, Hughes IA, Tadokoro-Cuccaro R, Heery DM, Rutland CS, Mongan NP. Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development. Placenta 2017; 56:79-85. [PMID: 28238455 DOI: 10.1016/j.placenta.2017.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 11/25/2022]
Abstract
The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models.
Collapse
Affiliation(s)
- Veronika M Metzler
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Robert S Robinson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Jennie N Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Emad Rakha
- School of Medicine and Sciences, University of Nottingham, Nottingham City Hospital, NG5 1PB, UK
| | - Thomas Walton
- Department of Urology, Nottingham University Hospitals NHS Trust, NG5 1PB, UK
| | - David S Gardner
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Emma F Lund
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | | | - Daisy Haigh
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Jack M Lochray
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Brian D Robinson
- Department of Pathology, Weill Cornell Medicine, New York 10065, USA
| | - Cinzia Allegrucci
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Rupert G Fray
- School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Jenny L Persson
- Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Molecular Biology, Umeå University, Sweden
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Regina R Miftakhova
- Department of Molecular Biology, Umeå University, Sweden; Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Albert A Rizvanov
- Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, UK
| | | | - David M Heery
- School of Pharmacy, University of Nottingham, NG7 2TQ, UK
| | - Catrin S Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK.
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK; Department of Pharmacology, Weill Cornell Medicine, New York 10065, USA.
| |
Collapse
|
28
|
Wagner SC, Ichim TE, Ma H, Szymanski J, Perez JA, Lopez J, Bogin V, Patel AN, Marincola FM, Kesari S. Cancer anti-angiogenesis vaccines: Is the tumor vasculature antigenically unique? J Transl Med 2015; 13:340. [PMID: 26510973 PMCID: PMC4625691 DOI: 10.1186/s12967-015-0688-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for the growth and metastasis of solid tumors. The tumor endothelium exists in a state of chronic activation and proliferation, fueled by the tumor milieu where angiogenic mediators are aberrantly over-expressed. Uncontrolled tumor growth, immune evasion, and therapeutic resistance are all driven by the dysregulated and constitutive angiogenesis occurring in the vasculature. Accordingly, great efforts have been dedicated toward identifying molecular signatures of this pathological angiogenesis in order to devise selective tumor endothelium targeting therapies while minimizing potential autoimmunity against physiologically normal endothelium. Vaccination with angiogenic antigens to generate cellular and/or humoral immunity against the tumor endothelium has proven to be a promising strategy for inhibiting or normalizing tumor angiogenesis and reducing cancer growth. Here we review tumor endothelium vaccines developed to date including active immunization strategies using specific tumor endothelium-associated antigens and whole endothelial cell-based vaccines designed to elicit immune responses against diverse target antigens. Among the novel therapeutic options, we describe a placenta-derived endothelial cell vaccine, ValloVax™, a polyvalent vaccine that is antigenically similar to proliferating tumor endothelium and is supported by pre-clinical studies to be safe and efficacious against several tumor types.
Collapse
Affiliation(s)
- Samuel C Wagner
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Thomas E Ichim
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Hong Ma
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Julia Szymanski
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | | | - Javier Lopez
- Pan Am Cancer Treatment Center, Tijuana, Mexico.
| | - Vladimir Bogin
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Amit N Patel
- Department of Surgery, University of Utah, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
29
|
Li Y, Fu S, Chen H, Feng Q, Gao Y, Xue H, Ge Z, Fang J, Xiao S. Inhibition of endothelial Slit2/Robo1 signaling by thalidomide restrains angiogenesis by blocking the PI3K/Akt pathway. Dig Dis Sci 2014; 59:2958-66. [PMID: 25326112 DOI: 10.1007/s10620-014-3257-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 06/16/2014] [Indexed: 12/09/2022]
Abstract
BACKGROUND Thalidomide is effective in the treatment of angiodysplasia. The mechanisms underlying its activity may be associated with inhibition of angiogenic factors. It was recently shown that Slit2/Robo1 signaling plays a role in angiogenesis. PURPOSE The aim of this study was to explore the expression and effects of Robo1 and Slit2 in angiodysplasia and to identify the possible therapeutic mechanisms of thalidomide. METHOD Slit2 and Robo1 expression were analyzed in tissue samples and human umbilical vein endothelial cells (HUVECs) treated with thalidomide using a combination of laboratory assays that were able to detect functional activity. RESULTS Slit2, Robo1 and vascular endothelial growth factor (VEGF) were strongly expressed in five angiodysplasia lesions out of seven cases, while expression was low in one out of seven normal tissues. Exposure of HUVECs to recombinant N-Slit2 resulted in an increase in VEGF levels and stimulated proliferation, migration and tube formation. These effects were blocked by an inhibitor of PI3K and thalidomide. CONCLUSIONS Robo1 and Slit2 may have important roles in the formation of gastrointestinal vascular malformation. High concentrations of Slit2 increased the levels of VEGF in HUVECs via signaling through the PI3K/Akt pathway-an effect that could be inhibited by thalidomide.
Collapse
Affiliation(s)
- Yinan Li
- Shanghai Institution of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Rd. GI Division, Shanghai, 200001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lim R, Lappas M. Slit2 exerts anti-inflammatory actions in human placenta and is decreased with maternal obesity. Am J Reprod Immunol 2014; 73:66-78. [PMID: 25329354 DOI: 10.1111/aji.12334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Obese pregnancies are characterised by increased inflammation. Members of the Slit/Roundabout (Robo) family are key regulators of the inflammatory response. The aim of this study was to determine the effect of (i) pre-existing maternal obesity on Slit-Robo expression in human placenta and (ii) Slit2 knockdown by siRNA in primary trophoblast cells on markers of inflammation. METHOD OF STUDY The expression of Slit-Robo protiens was assessed in human placenta from lean (n = 15) and obese (n = 16) patients by qRT-PCR and Western blotting. Primary trophoblast cells were used to determine the effect of pro-inflammatory mediators on Slit2 expression, and the effect of Slit2 siRNA on pro-inflammatory mediators. RESULTS While there was no change in Slit3, Robo1 or Robo4 expression, Slit2 expression was significantly lower in obese placenta compared to lean placenta. Human primary trophoblast cells treated with pro-inflammatory mediators IL-1β, TNF-α and LPS significantly decreased Slit2 expression. Slit2 silencing by siRNA augmented IL-6 expression and secretion in cells stimulated with TNF-α, LPS and TNF-α; IL-8 gene expression and/or release in cells stimulated with IL-1β and LPS; TNF-α gene expression and secretion in cells stimulated with LPS; and MMP-9 gene expression and pro MMP-9 levels in cells stimulated with TNF-α. CONCLUSION The anti-inflammatory effects of Slit2 in human placenta is a novel finding, and suggests that inflammatory mediators, which are increased with obesity, downregulates Slit2 to enhance placental inflammation. Given the central role of pro-inflammatory cytokines in placental nutrient transport, our findings suggest Slit2 may play a role in fetal growth and development.
Collapse
Affiliation(s)
- Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia
| | | |
Collapse
|
31
|
Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation 2014; 21:15-25. [PMID: 23981199 DOI: 10.1111/micc.12093] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Ample interest has been evoked in using placental angiogenesis as a target for the development of diagnosis tools and potential therapeutics for pregnancy complications based on the knowledge of placental angiogenesis in normal and aberrant pregnancies. Although these goals are still far from reach, one would expect that two complementary processes should be balanced for therapeutic angiogenesis to be successful in restoring a mature and functional vascular network in the placenta in any pregnancy complication: (i) pro-angiogenic stimulation of new vessel growth and (ii) anti-angiogenic inhibition of vessel overgrowth. As the best model of physiological angiogenesis, investigations of placental angiogenesis provide critical insights not only for better understanding of normal placental endothelial biology but also for the development of diagnosis tools for pregnancy complications. Such investigations will potentially identify novel pro-angiogenic factors for therapeutic intervention for tissue damage in various obstetric complications or heart failure or anti-angiogenic factors to target on cancer or vision loss in which circulation needs to be constrained. This review summarizes the genetic and molecular aspects of normal placental angiogenesis as well as the signaling mechanisms by which the dominant angiogenic factor vascular endothelial growth factor regulates placental angiogenesis with a focus on placental endothelial cells.
Collapse
Affiliation(s)
- Dong-Bao Chen
- Department of Obstetrics & Gynecology, University of California, Irvine, California, USA
| | | |
Collapse
|
32
|
Hwang HW, Baxter LL, Loftus SK, Cronin JC, Trivedi NS, Borate B, Pavan WJ. Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A. Pigment Cell Melanoma Res 2014; 27:777-87. [PMID: 24767210 DOI: 10.1111/pcmr.12255] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/24/2014] [Indexed: 01/23/2023]
Abstract
The complex genetic changes underlying metastatic melanoma need to be deciphered to develop new and effective therapeutics. Previously, genome-wide microarray analyses of human melanoma identified two reciprocal gene expression programs, including transcripts regulated by either transforming growth factor, beta 1 (TGFβ1) pathways, or microphthalmia-associated transcription factor (MITF)/SRY-box containing gene 10 (SOX10) pathways. We extended this knowledge by discovering that melanoma cell lines with these two expression programs exhibit distinctive microRNA (miRNA) expression patterns. We also demonstrated that hypoxia-inducible factor 1 alpha (HIF1A) is increased in TGFβ1 pathway-expressing melanoma cells and that HIF1A upregulates miR-210, miR-218, miR-224, and miR-452. Reduced expression of these four miRNAs in TGFβ1 pathway-expressing melanoma cells arrests the cell cycle, while their overexpression in mouse melanoma cells increases the expression of the hypoxic response gene Bnip3. Taken together, these data suggest that HIF1A may regulate some of the gene expression and biological behavior of TGFβ1 pathway-expressing melanoma cells, in part via alterations in these four miRNAs.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Genetic Disease Research Branch, Department of Health and Human Services, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Cross JC. More of a good thing or less of a bad thing: gene copy number variation in polyploid cells of the placenta. PLoS Genet 2014; 10:e1004330. [PMID: 24784435 PMCID: PMC4006710 DOI: 10.1371/journal.pgen.1004330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- James C. Cross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
34
|
Hannibal RL, Chuong EB, Rivera-Mulia JC, Gilbert DM, Valouev A, Baker JC. Copy number variation is a fundamental aspect of the placental genome. PLoS Genet 2014; 10:e1004290. [PMID: 24785991 PMCID: PMC4006706 DOI: 10.1371/journal.pgen.1004290] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication. Generally, every mammalian cell has the same complement of each part of its genome. However, copy number variation (CNV) can occur, where, compared to the rest of its genome, a cell has either more or less of a specific genomic region. It is unknown whether CNVs cause disease, or whether they are a normal aspect of cell biology. We investigated CNVs in polyploid trophoblast giant cells (TGCs) of the mouse placenta, which have up to 1,000 copies of the genome in each cell. We found that there are 47 regions with decreased copy number in TGCs, which we call underrepresented (UR) domains. These domains are marked in the TGC progenitor cells and we suggest that they gradually form during gestation due to slow replication versus fast replication of the rest of the genome. While UR domains contain cell adhesion and neuronal genes, they also contain significantly fewer genes than other genomic regions. Our results demonstrate that CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during pregnancy.
Collapse
Affiliation(s)
- Roberta L. Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edward B. Chuong
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - Anton Valouev
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Julie C. Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Role of ROBO4 signalling in developmental and pathological angiogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:683025. [PMID: 24689049 PMCID: PMC3933320 DOI: 10.1155/2014/683025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
Transmembrane roundabout receptor family members (ROBO1-ROBO4) principally orchestrate the neuronal guidance mechanism of the nervous system. Secreted glycoprotein SLITs are the most appreciated ligands for ROBOs. Recently identified ROBO4 is the key mediator of SLIT-ROBO mediated developmental and pathological angiogenesis. Although SLIT2 has been shown to interact with ROBO4 as ligand, it remains an open question whether this protein is the physiologic partner of ROBO4. The purpose of this review is to summarise how reliable SLIT2 as ligand for ROBO4 is, if not what the other possible mechanisms demonstrated till date for ROBO4 mediated developmental and pathological angiogenesis are. We conclude that ROBO4 is expressed specially in vascular endothelial cells and maintains the vascular integrity via either SLIT2 dependent or SLIT2 independent manner. On the contrary, it promotes the pathological angiogenesis by involving different signalling arm(s)/unknown ligand(s). This review explores the interactions SLIT2/ROBO1, SLIT2/ROBO1-ROBO4, ROBO1/ROBO4, and ROBO4/UNC5B which can be promising and potential therapeutic targets for developmental angiogenesis defects and pathological angiogenesis. Finally we have reviewed the ROBO4 signalling pathways and made an effort to elaborate the insight of this signalling as therapeutic target of pathological angiogenesis.
Collapse
|
36
|
Lim R, Barker G, Lappas M. SLIT3 is increased in supracervical human foetal membranes and in labouring myometrium and regulates pro-inflammatory mediators. Am J Reprod Immunol 2013; 71:297-311. [PMID: 24286238 DOI: 10.1111/aji.12181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Inflammation is associated with preterm birth, a worldwide healthcare issue. SLIT3 has a role in inflammation, and thus, the purpose of this study was to determine the effect of SLIT3 on labour mediators in human gestational tissues. METHOD OF STUDY SLIT3 protein expression was performed using immunohistochemistry in foetal membranes and myometrium with no labour and after labour. Foetal membranes were also obtained from a distal site (DS) and supracervical site (overlying the cervix; SCS). SLIT3 gene silencing was achieved using siRNA in primary amnion and myometrial cells. Pro-inflammatory and pro-labour mediators were evaluated by qRT-PCR, ELISA and gelatin zymography. RESULTS SLIT3 expression was greater in foetal membranes from the SCS compared with DS and in myometrium after term spontaneous labour onset. SLIT3 siRNA in primary amnion and myometrial cells decreased IL-1β-induced pro-inflammatory cytokine gene expression and release (IL-6 and IL-8) and MMP-9 gene expression and release. In amnion cells, SLIT3 siRNA knockdown decreased IL-1β-induced COX-2 expression and prostaglandin PGE2 release. There was no effect of SLIT3 siRNA on IL-1β-induced NF-κB transcriptional activity. CONCLUSION Our results demonstrate that SLIT3 is increased with labour, and both our amnion and our myometrial studies describe a pro-inflammatory effect of SLIT3 in these tissues.
Collapse
Affiliation(s)
- Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia
| | | | | |
Collapse
|
37
|
Lin F, Zeng P, Xu Z, Ye D, Yu X, Wang N, Tang J, Zhou Y, Huang Y. Treatment of Lipoxin A4 and its analogue on low-dose endotoxin induced preeclampsia in rat and possible mechanisms. Reprod Toxicol 2012; 34:677-85. [DOI: 10.1016/j.reprotox.2012.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/06/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
38
|
Effects of low molecular weight heparins and unfractionated heparin on viability of human umbilical vein endothelial cells. Arch Gynecol Obstet 2012; 287:217-22. [DOI: 10.1007/s00404-012-2558-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
|