1
|
Siemieniuch-Tartanus M. The early pregnancy in mares - What do we still not know? Vet Anim Sci 2025; 28:100441. [PMID: 40129505 PMCID: PMC11930719 DOI: 10.1016/j.vas.2025.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Equine conceptus development is a critical study area due to its significant implications for the equine breeding industry. Following a high fertilization success rate of 71-96 % (Ball, 1988), it is concerning that 30-40 % of developing embryos may not survive beyond the crucial initial two weeks of gestation, coinciding with the onset of gastrulation (Ball, 1988). The pregnancy in mares lasts 330-345 days. The underlying molecular mechanisms of the embryonic period are not fully explained in mares. During early pregnancy in mares, the following takes place: the descent of the blastocyst from the oviduct to the uterus around 5-6 days post-fertilization; migration of the spherical conceptus, surrounded by a glycoprotein capsule in the uterine lumen; fixation of the vesicle near the base of the uterine horn around 16-17 days post-fertilization; implantation; development of endometrial cups that produce chorionic gonadotropin, as well as an additional corpus luteum that produces progesterone. In mares, there is no clear determination of what constitutes the early signal of pregnancy recognition. The results of previous research indicate that mechanical stimuli, i.e. the movement of the conceptus in the uterine lumen, trigger a cascade of molecular events in the endometrium responsible for the luteostasis and the maintenance of early pregnancy in mares. This study aims to provide a synthetic summary of the knowledge we have gained so far about early pregnancy and to attempt to answer the question of what molecular mechanisms underlie maternal recognition of pregnancy in mares.
Collapse
Affiliation(s)
- Marta Siemieniuch-Tartanus
- Department of Large Animals Diseases with the Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-787 Warsaw, Poland
| |
Collapse
|
2
|
Perera TRW, Bromfield EG, Gibb Z, Nixon B, Sheridan AR, Rupasinghe T, Skerrett-Byrne DA, Swegen A. Plasma Lipidomics Reveals Lipid Signatures of Early Pregnancy in Mares. Int J Mol Sci 2024; 25:11073. [PMID: 39456856 PMCID: PMC11508387 DOI: 10.3390/ijms252011073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the systemic biochemistry of early pregnancy in the mare is essential for developing new diagnostics and identifying causes for pregnancy loss. This study aimed to elucidate the dynamic lipidomic changes occurring during the initial stages of equine pregnancy, with a specific focus on days 7 and 14 post-ovulation. By analysing and comparing the plasma lipid profiles of pregnant and non-pregnant mares, the objective of this study was to identify potential biomarkers for pregnancy and gain insights into the biochemical adaptations essential for supporting maternal recognition of pregnancy and early embryonic development. Employing discovery lipidomics, we analysed plasma samples from pregnant and non-pregnant mares on days 7 and 14 post-conception using the SCIEX ZenoTOF 7600 system. This high-resolution mass spectrometry approach enabled us to comprehensively profile and compare the lipidomes across these critical early gestational timepoints. Our analysis revealed significant lipidomic alterations between pregnant and non-pregnant mares and between days 7 and 14 of pregnancy. Key findings include the upregulation of bile acids, sphingomyelins, phosphatidylinositols, and triglycerides in pregnant mares. These changes suggest enhanced lipid synthesis and mobilization, likely associated with the embryo's nutritional requirements and the establishment of embryo-maternal interactions. There were significant differences in lipid metabolism between pregnant and non-pregnant mares, with a notable increase in the sterol lipid BA 24:1;O5 in pregnant mares as early as day 7 of gestation, suggesting it as a sensitive biomarker for early pregnancy detection. Notably, the transition from day 7 to day 14 in pregnant mares is characterized by a shift towards lipids indicative of membrane biosynthesis, signalling activity, and preparation for implantation. The study demonstrates the profound lipidomic shifts that occur in early equine pregnancy, highlighting the critical role of lipid metabolism in supporting embryonic development. These findings provide valuable insights into the metabolic adaptations during these period and potential biomarkers for early pregnancy detection in mares.
Collapse
Affiliation(s)
- Tharangani R. W. Perera
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Elizabeth G. Bromfield
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville 3052, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Alecia R. Sheridan
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | | | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
3
|
Lawson EF, Pickford R, Aitken RJ, Gibb Z, Grupen CG, Swegen A. Mapping the lipidomic secretome of the early equine embryo. Front Vet Sci 2024; 11:1439550. [PMID: 39430383 PMCID: PMC11486720 DOI: 10.3389/fvets.2024.1439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
The lipidomic secretions of embryos provide a unique opportunity to examine the cellular processes of the early conceptus. In this study we profiled lipids released by the early equine conceptus, using high-resolution mass spectrometry to detect individual lipid species. This study examined the lipidomic profile in embryo-conditioned media from in vivo-produced, 8-9 day-old equine embryos (n = 3) cultured in vitro for 36 h, analyzed over 3 timepoints. A total of 1,077 lipid IDs were recorded across all samples, containing predominantly glycerolipids. Seventy-nine of these were significantly altered in embryo conditioned-media versus media only control (p < 0.05, fold-change >2 or < 0.5). Fifty-five lipids were found to be released into the embryo-conditioned media, of which 54.5% were triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also identified and secreted in significant amounts as embryos developed. Further, 24 lipids were found to be depleted from the media during culture, of which 70.8% were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As lipid-free media contained consistently detectable lipid peaks, a further profile analysis of the various components of non-embryo-conditioned media consistently showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media increased in response to incubation under mineral oil, and contained ceramides, diacylglycerols and triacylglycerols. These results emphasize the importance of a defined embryo culture medium and a need to identify the lipid requirements of the embryo precisely. This study sheds light on early embryo lipid metabolism and the transfer of lipids during in vitro culture.
Collapse
Affiliation(s)
- Edwina F. Lawson
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Haslin E, Pettigrew EJ, Hickson RE, Kenyon PR, Gedye KR, Lopez-Villalobos N, Jayawardana JMDR, Morris ST, Blair HT. Genome-Wide Association Studies of Live Weight at First Breeding at Eight Months of Age and Pregnancy Status of Ewe Lambs. Genes (Basel) 2023; 14:genes14040805. [PMID: 37107563 PMCID: PMC10137859 DOI: 10.3390/genes14040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study estimated genetic parameters and identified candidate genes associated with live weight, and the occurrence of pregnancy in 1327 Romney ewe lambs using genome-wide association studies. Phenotypic traits considered were the occurrence of pregnancy in ewe lambs and live weight at eight months of age. Genetic parameters were estimated, and genomic variation was assessed using 13,500 single-nucleotide polymorphic markers (SNPs). Ewe lamb live weight had medium genomic heritability and was positively genetically correlated with occurrence of pregnancy. This suggests that selection for heavier ewe lambs is possible and would likely improve the occurrence of pregnancy in ewe lambs. No SNPs were associated with the occurrence of pregnancy; however, three candidate genes were associated with ewe lamb live weight. Tenascin C (TNC), TNF superfamily member 8 (TNFSF8) and Collagen type XXVIII alpha 1 chain (COL28A1) are involved in extracellular matrix organization and regulation of cell fate in the immune system. TNC may be involved in ewe lamb growth, and therefore, could be of interest for selection of ewe lamb replacements. The association between ewe lamb live weight and TNFSF8 and COL28A1 is unclear. Further research is needed using a larger population to determine whether the genes identified can be used for genomic selection of replacement ewe lambs.
Collapse
Affiliation(s)
- Emmanuelle Haslin
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
- Correspondence:
| | | | | | - Paul R. Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - Kristene R. Gedye
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand;
| | - Nicolas Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - J. M. D. R. Jayawardana
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Stephen T. Morris
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - Hugh T. Blair
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| |
Collapse
|
5
|
Vegas AR, Podico G, Canisso IF, Bollwein H, Fröhlich T, Bauersachs S, Almiñana C. Dynamic regulation of the transcriptome and proteome of the equine embryo during maternal recognition of pregnancy. FASEB Bioadv 2022; 4:775-797. [PMID: 36479207 PMCID: PMC9721094 DOI: 10.1096/fba.2022-00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/26/2024] Open
Abstract
During initial maternal recognition of pregnancy (MRP), the equine embryo displays a series of unique events characterized by rapid blastocyst expansion, secretion of a diverse array of molecules, and transuterine migration to interact with the uterine surface. Up to date, the intricate transcriptome and proteome changes of the embryo underlying these events have not been critically studied in horses. Thus, the objective of this study was to perform an integrative transcriptomic (including mRNA, miRNAs, and other small non-coding RNAs) and proteomic analysis of embryos collected from days 10 to 13 of gestation. The results revealed dynamic transcriptome profiles with a total of 1311 differentially expressed genes, including 18 microRNAs (miRNAs). Two main profiles for mRNAs and miRNAs were identified, one with higher expression in embryos ≤5 mm and the second with higher expression in embryos ≥7 mm. At the protein level, similar results were obtained, with 259 differentially abundant proteins between small and large embryos. Overall, the findings demonstrated fine-tuned transcriptomic and proteomic regulations in the developing embryo associated with embryo growth. The identification of specific regulation of mRNAs, proteins, and miRNAs on days 12 and 13 of gestation suggested these molecules as pivotal for embryo development and as involved in MRP, and in establishment of pregnancy in general. In addition, the results revealed new insights into prostaglandin synthesis by the equine embryo, miRNAs and genes potentially involved in modulation of the maternal immune response, regulation of endometrial receptivity and of late implantation in the mare.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse‐FacultyUniversity of ZurichZurichSwitzerland
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome AnalysisMunichGermany
| | - Stefan Bauersachs
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| | - Carmen Almiñana
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| |
Collapse
|
6
|
Rudolf Vegas A, Hamdi M, Podico G, Bollwein H, Fröhlich T, Canisso IF, Bauersachs S, Almiñana C. Uterine extracellular vesicles as multi-signal messengers during maternal recognition of pregnancy in the mare. Sci Rep 2022; 12:15616. [PMID: 36114358 PMCID: PMC9481549 DOI: 10.1038/s41598-022-19958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
In contrast to other domestic mammals, the embryo-derived signal(s) leading to maternal recognition of pregnancy (MRP) are still unknow in the mare. We hypothesize that these embryonic signals could be packed into uterine extracellular vesicles (uEVs), acting as multi-signal messengers between the conceptus and the maternal tract, and contributing to MRP. To unveil these signals, the RNA and protein cargos of uEVs isolated from uterine lavages collected from pregnant mares (P; day 10, 11, 12 and 13 after ovulation) and cyclic control mares (C; day 10 and 13 after ovulation) were analyzed. Our results showed a fine-tuned regulation of the uEV cargo (RNAs and proteins), by the day of pregnancy, the estrous cycle, and even the size of the embryo. A particular RNA pattern was identified with specific increase on P12 related to immune system and hormonal response. Besides, a set of proteins as well as RNAs was highly enriched in EVs on P12 and P13. Differential abundance of miRNAs was also identified in P13-derived uEVs. Their target genes were linked to down- or upregulated genes in the embryo and the endometrium, exposing their potential origin. Our study identified for first time specific molecules packed in uEVs, which were previously associated to MRP in the mare, and thus bringing added value to the current knowledge. Further integrative and functional analyses will help to confirm the role of these molecules in uEVs during MRP in the mare.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Meriem Hamdi
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Stefan Bauersachs
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Carmen Almiñana
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland.
| |
Collapse
|
7
|
Gibson C, de Ruijter-Villani M, Stout TAE. Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy. Front Vet Sci 2022; 9:912721. [PMID: 36176700 PMCID: PMC9513317 DOI: 10.3389/fvets.2022.912721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
In many species, the insulin-like growth factors (IGF1 and IGF2), their receptors and IGF binding proteins play important roles in preparing the endometrium for implantation, and regulating conceptus growth and development. To determine whether the IGF system may contribute to conceptus-maternal interaction during equine pre-implantation development, we evaluated mRNA expression for IGF system components in conceptuses, and endometrium recovered from pregnant and cycling mares, on days 7, 14, 21 and 28 after ovulation. We also investigated expression of IGF1, IGF2 and their receptors 6 and 11 days after transfer of day 8 embryos to synchronous (day 8) or asynchronous (day 3) recipient mares. Expression of IGF1 and IGF2, IGF1R, IGF2R, INSR and IGFBPs 1, 2, 4 and 5 was evident in endometrium and conceptus membranes during days 7–28. Endometrial IGF2, INSR, IGFBP1 and IGFBP2 expression increased between days 7 and 28 of pregnancy. In conceptus membranes, expression of all IGF system components increased with developmental stage. Immunohistochemistry revealed strong expression of IGF1, IGF2 and IGF1R in both endometrium and conceptus membranes, whereas INSR was highly expressed in endometrium but barely detectable in the conceptus. Finally, a negatively asynchronous uterine environment retarded IGF1, IGF2 and INSR expression in the conceptus, whereas in the endometrium only INSR expression was altered by asynchrony. The presence of IGFs, their receptors and IGFBPs in the endometrium and conceptus during early equine pregnancy, and down-regulation in the conceptus following asynchronous embryo transfer, suggest a role in conceptus-maternal communication during the preparation for implantation.
Collapse
|
8
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
9
|
Shen Y, Ren H, Davshilt T, Tian S, Wang X, Yi M, Ulaangerel T, Li B, Dugarjav M, Bou G. The transcriptome landscapes of allantochorion and vitelline-chorion in equine day 30 conceptus. Front Cell Dev Biol 2022; 10:958205. [PMID: 35990610 PMCID: PMC9386053 DOI: 10.3389/fcell.2022.958205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
During equine early gestation, trophectoderm forms chorion tissue, which is composed of two parts that one is covering allantoin, called allantochorion (AC) and another is covering yolk sac, which here we call vitelline-chorion (VC). Given that little is known about the equine trophoblast-derived chorion differentiation at an early stage, we first compared the transcriptome of AC and VC of day 30 equine conceptus based on RNA-sequencing. As a result, we found that compared to VC, there are 484 DEGs, including 305 up- and 179 down-regulated genes in AC. GO and KEGG analysis indicated that up-regulated genes in AC are mainly cell proliferation and cell adhesion-related genes, participating in allantois expansion and allantochorionic-placenta formation; dominant genes in VC are extracellular exosome and other cell adhesion-related genes implicated in direct and indirect conceptus-maternal communication. Additionally, as for the progenitor chorion tissue of equine chorionic gonadotropin secreting endometrium cup-the chorionic girdle (CG), which locates at the junction of the dilating AC and regressing VC, we revealed its unique gene expression pattern and the gene regulation during its further differentiation in vitro. Collectively, this study sheds light on the molecular events regarding the trophoblast differentiation and function at an early stage of the equine preimplantation conceptus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manglai Dugarjav
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Wilsher S, Newcombe JR, Ismer A, Duarte L, Kovacsy S, (Twink) Allen W. The effect of embryo reduction and transfer on luteostasis in the mare. Anim Reprod Sci 2022; 242:107002. [DOI: 10.1016/j.anireprosci.2022.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
|
11
|
Deng L, Li Z, Tang C, Han Y, Zhang L, Liao Q. Quantitative analysis of the serum proteome during early pregnancy in mares. Anim Sci J 2022; 93:e13727. [PMID: 35476278 DOI: 10.1111/asj.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Equine pregnancy is currently diagnosed by rectal palpation, ultrasonographic examination, or by measuring changes in hormones in the blood. In the present study, we identified proteins that are differentially expressed in the sera of early pregnant and non-pregnant mares in order to develop a novel method for diagnosing equine pregnancy. Serum samples were obtained from 18 adult mares, pregnancy at day 32 after ovulation (n = 9) and in diestrus (n = 9). Proteomic analysis of the samples was conducted using liquid chromatography-electrospray ionization-tandem mass spectrometry. We identified 467 proteins from a total of 3514 peptides. Thirty-two proteins (15 upregulated and 17 downregulated) were significantly differentially expressed between the two groups. The Gene Ontology enrichment analysis revealed that they are related to extracellular matrix assembly, blood coagulation, and hemostasis, and the prominent molecular functions were integrin binding, cell adhesion molecule binding, and glycine C-acetyltransferase activity. The pathway analysis of Kyoto Encyclopaedia of Genes and Genomes showed that the top three pathways identified were glycine, serine, and threonine metabolism; cysteine and methionine metabolism; and ether lipid metabolism. The selected five serum proteins were newly potential candidates for pregnancy diagnosis in mares.
Collapse
Affiliation(s)
- Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zheng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chi Tang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Yuwei Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Linxi Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Rivera del Alamo MM, Reilas T, Lukasik K, Galvão AM, Yeste M, Katila T. Inflammatory Markers in Uterine Lavage Fluids of Pregnant, Non-Pregnant, and Intrauterine Device Implanted Mares on Days 10 and 15 Post Ovulation. Animals (Basel) 2021; 11:ani11123493. [PMID: 34944269 PMCID: PMC8697965 DOI: 10.3390/ani11123493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary While intrauterine devices (IUDs) are used to prevent disturbing oestrous behaviour in sport mares, their mechanism of action has not been elucidated. The presence of an embryo or an IUD prevents cyclooxygenase-2 (COX-2) and subsequently prostaglandin (PG) release and luteolysis. It has been suggested that a plastic sphere would mimic the embryo by mechanotransduction. However, there is some evidence that IUDs also cause endometrial inflammation, which might contribute to luteostasis. The aim of this study was to investigate the presence and time course of possible inflammation by evaluating changes in uterine fluid composition. On Day 10 after ovulation, events leading to COX-2 and prostaglandin F2α (PGF2α) inhibition start, whereas either luteolysis occurs or the corpus luteum is maintained on Day 15. Therefore, uterine lavage fluid was evaluated at two time points in inseminated mares, either pregnant or not, and in mares inserted with an IUD. On Day 10, PGF2α concentration in the fluid was significantly lower in the IUD group than in the pregnant mare one but did not differ from the non-pregnant mare group. On Day 15, the IUD group had significantly higher levels of the modulatory cytokine IL-10 and inhibin A, which could indicate previous inflammation and resolution stage. Abstract Intrauterine devices (IUDs) are used in mares to suppress oestrous behaviour, but the underlying mechanism is yet to be elucidated. The presence of an embryo or an IUD prevents cyclooxygenase-2 (COX-2) and, subsequently, prostaglandin (PG) release and luteolysis. However, inflammation may also be involved. Endometrial inflammatory markers in uterine lavage fluid were measured on Day 10 (EXP 1, n = 25) and Day 15 (EXP 2, n = 27) after ovulation in inseminated mares, non-pregnant or pregnant, and in mares in which a small plastic sphere had been inserted into the uterus 4 (EXP 1) or 3 days (EXP 2) after ovulation. Uterine lavage fluid samples were analysed for nitric oxide (NO), prostaglandin E2 (PGE2) (only EXP 1), prostaglandin F2α (PGF2α), inhibin A and cytokines, and blood samples for progesterone and oestradiol. On Day 10, the concentration of PGF2α was lower (p < 0.05) in the IUD group than in pregnant mares. The concentration of the modulatory cytokine IL-10 was significantly higher in the IUD group in comparison to non-pregnant mares, and inhibin A was significantly higher in IUD mares than in the pregnant counterparts on Day 15. The results suggest that the presence of IUD causes endometrial inflammation which is at a resolution stage on Day 15.
Collapse
Affiliation(s)
- Maria Montserrat Rivera del Alamo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Correspondence: ; Tel.: +34-93-581-1045
| | - Tiina Reilas
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland;
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, PAS, 10-748 Olsztyn, Poland; (K.L.); (A.M.G.)
| | - Antonio M. Galvão
- Institute of Animal Reproduction and Food Research, PAS, 10-748 Olsztyn, Poland; (K.L.); (A.M.G.)
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain;
| | - Terttu Katila
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 59511 Saari, Finland;
| |
Collapse
|
13
|
Klein C, Bruce P, Hammermueller J, Hayes T, Lillie B, Betteridge K. Transcriptional profiling of equine endometrium before, during and after capsule disintegration during normal pregnancy and after oxytocin-induced luteostasis in non-pregnant mares. PLoS One 2021; 16:e0257161. [PMID: 34614002 PMCID: PMC8494348 DOI: 10.1371/journal.pone.0257161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The current study used RNA sequencing to determine transcriptional profiles of equine endometrium collected 14, 22, and 28 days after ovulation from pregnant mares. In addition, the transcriptomes of endometrial samples obtained 20 days after ovulation from pregnant mares, and from non-pregnant mares which displayed and failed to display extended luteal function following the administration of oxytocin, were determined and compared in order to delineate genes whose expressions depend on the presence of the conceptus as opposed to elevated progesterone alone. A mere fifty-five transcripts were differentially expressed between samples collected from mares at Day 22 and Day 28 of pregnancy. This likely reflects the longer-term exposure to a relatively constant, progesterone-dominated environment with little change in factors secreted by the conceptus that would affect endometrial gene expression. The complement system was amongst the canonical pathways significantly enriched in transcripts differentially expressed between Day 14 and Day 22/28 of pregnancy. The expression of complement components 7 and 8 was confirmed using in situ hybridization. The expression of SERPING1, an inhibitor of the complement system, was confirmed by immunohistochemistry. In line with the resumed capacity of the endometrium to produce prostaglandin, prostaglandin G/H synthase 1 was expressed at higher levels at Days 22 and 28 than at Day 14 of pregnancy. Our data suggest that this up-regulation is enhanced by the presence of the conceptus; samples obtained from mares at Day 20 of pregnancy had significantly higher levels of prostaglandin G/H synthase 1 transcript than mares with extended luteal function.
Collapse
Affiliation(s)
- Claudia Klein
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Mariensee, Germany
| | - Phoebe Bruce
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jutta Hammermueller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Tony Hayes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brandon Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Keith Betteridge
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Grant DM, Macedo A, Toms D, Klein C. Fibrinogen in equine pregnancy as a mediator of cell adhesion, an epigenetic and functional investigation. Biol Reprod 2021; 102:170-184. [PMID: 31403677 DOI: 10.1093/biolre/ioz157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 11/12/2022] Open
Abstract
Preimplantation equine embryos synthesize and secrete fibrinogen, which is a peculiar finding as fibrinogen synthesis almost exclusively occurs in the liver. This study investigated the hypothesis that conceptus-derived fibrinogen mediates cell adhesion during fixation. On day 21 of pregnancy, five integrin subunits, including ITGA5, ITGB1, ITGAV, and ITGB1, displayed significantly higher transcript abundance than on day 16 of pregnancy. Endometrial epithelial cells adhered to fibrinogen in an integrin-dependent manner in an in vitro cell adhesion assay. Bilaminar trophoblast and allantochorion expressed fibrinogen transcript, indicating that fibrinogen expression persists past fixation. Preimplantation-phase endometrium, conceptuses, and microcotyledonary tissue expressed components of the clotting cascade regulating fibrin homeostasis, leaving open the possibility that fibrinogen is converted to fibrin. Fibrinogen is likely to have functions beyond mediating cell adhesion, such trapping growth factors and triggering signaling cascades, and has remarkable parallels to the expression of fibrinogen by some tumors. The deposition of fibrinogen within tumor stroma is characteristic of breast carcinoma, and tumor-derived fibrinogen has been implicated in the metastatic potential of circulating tumor cells. DNA methylation of the fibrinogen locus in equine conceptuses was examined in comparison to liver and endometrium, and across the full gene cluster, was significantly higher for endometrium than liver and conceptus. DNA methylation of regulatory regions did not differ between liver and conceptus, and was significantly lower than in endometrium. These results, therefore, support the hypothesis of DNA methylation being a regulator of fibrinogen expression in the conceptus.
Collapse
Affiliation(s)
- Danielle M Grant
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Alysson Macedo
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Derek Toms
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Claudia Klein
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Swegen A. Maternal recognition of pregnancy in the mare: does it exist and why do we care? Reproduction 2021; 161:R139-R155. [PMID: 33957605 PMCID: PMC8183633 DOI: 10.1530/rep-20-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Maternal recognition of pregnancy (MRP) is a process by which an early conceptus signals its presence to the maternal system and prevents the lysis of the corpus luteum, thus ensuring a maternal milieu supportive of pregnancy continuation. It is a fundamental aspect of reproductive biology, yet in the horse, the mechanism underlying MRP remains unknown. This review seeks to address some of the controversies surrounding the evidence and theories of MRP in the equine species, such as the idea that the horse does not conform to the MRP paradigm established in other species or that equine MRP involves a mechanical, rather than chemical, signal. The review examines the challenges of studying this particularly clandestine phenomenon along with the new tools in scientific research that will drive this quest forward in coming years, and discusses the value of knowledge gleaned along this path in the context of clinical applications for improving breeding outcomes in the horse industry.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
16
|
Diel de Amorim M, Khan FA, Chenier TS, Scholtz EL, Hayes MA. Analysis of the uterine flush fluid proteome of healthy mares and mares with endometritis or fibrotic endometrial degeneration. Reprod Fertil Dev 2021; 32:572-581. [PMID: 31987068 DOI: 10.1071/rd19085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to evaluate the differences in the uterine flush fluid proteome between healthy mares and mares with endometritis or fibrotic endometrial degeneration (FED). Uterine flush fluid samples were collected from healthy mares (n=8; oestrus n=5 and dioestrus n=3) and mares with endometritis (n=23; oestrus n=14 and dioestrus n=9) or FED (n=7; oestrus n=6 and dioestrus n=1). Proteomic analysis was performed using label-free liquid chromatography-tandem mass spectrometry. Of 216 proteins identified during oestrus, 127 were common to all three groups, one protein was exclusively detected in healthy mares, 47 proteins were exclusively detected in mares with endometritis and four proteins were exclusively detected in mares with FED. Of 188 proteins identified during dioestrus, 113 proteins were common between healthy mares and mares with endometritis, eight proteins were exclusively detected in healthy mares and 67 proteins were exclusively detected in mares with endometritis. Quantitative analysis revealed a subset of proteins differing in abundance between the three groups during oestrus and between healthy mares and mares with endometritis during dioestrus. These results provide a springboard for evaluation of specific proteins as biomarkers of uterine health and disease and for investigation of their roles in the establishment and maintenance of pregnancy.
Collapse
Affiliation(s)
- Mariana Diel de Amorim
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada; and Present address: Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA; and Corresponding authors. Emails: ;
| | - Firdous A Khan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada; and Department of Large Animal Medicine and Surgery, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada; and Present address: Department of Large Animal Medicine and Surgery, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada; and Corresponding authors. Emails: ;
| | - Tracey S Chenier
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| | - Elizabeth L Scholtz
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| | - M Anthony Hayes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
17
|
Endometrial Status in Queens Evaluated by Histopathology Findings and Two Cytological Techniques: Low-Volume Uterine Lavage and Uterine Swabbing. Animals (Basel) 2021; 11:ani11010088. [PMID: 33466439 PMCID: PMC7824869 DOI: 10.3390/ani11010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The endometrium health of feline queens can be difficult to assess due to the reduced size of the uterus, which hinders representative biopsy sampling. This may result in limitations in diagnosing endometritis, and consequently in detecting infertility problems. Although histology is considered the most reliable technique for diagnosing endometritis in many species, cytology is also gaining importance and may be an alternative tool for evaluating the endometrium in small species. Two different common cytological techniques (uterine lavage and uterine swabbing) were compared to determine the reliability of cytology for evaluating the endometrium status in queens. Histopathological and bacteriological information was used for the control methods. Our results demonstrated that cytology may be a useful diagnostic tool for assessing the endometrial status. In addition, when comparing cytological techniques, the uterine lavage method was more representative than uterine swabbing. Abstract Endometritis is associated with fertility problems in many species, with endometrial biopsy being the main diagnostic tool. In feline queens, the reduced size of the uterus may make it difficult to obtain representative diagnostic samples. Endometrial cytology may represent a valuable diagnostic tool for evaluating the health status of the endometrium in queens. Fifty domestic shorthair queens were included and divided into two cytological diagnostic technique groups, the uterine lavage (UL; n = 28) and uterine swabbing (US; n = 22) groups. Cytological results were compared with histopathological and bacteriological information. Changes in the histopathological patterns were also evaluated and compared with progesterone levels to confirm previous published data. Furthermore, the results from both cytological sampling methods were compared to evaluate the utility of each method. Endometritis was ruled out in all queens by means of histology and microbiology. Leukocyte counts and red blood cell/endometrial cell ratios were significantly higher in US than UL samples. Additionally, UL sampling is less affected by blood contamination and cells are better preserved. The combination of endometrial cytology and uterine culture might be useful for evaluating the endometrial characteristics in queens. The UL evaluation method is more representative of the actual endometrial status than the US technique.
Collapse
|
18
|
Kalpokas I, Martínez MN, Cavestany D, Perdigón F, Mattos RC, Meikle A. Equine early pregnancy endocrine profiles and ipsilateral endometrial immune cell, gene expression and protein localisation response. Reprod Fertil Dev 2021; 33:410-426. [PMID: 33752795 DOI: 10.1071/rd21001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated the early effects of the equine embryo on maternal serum concentrations of insulin-like growth factor 1 (IGF1), leptin and adiponectin, uterine immune cells and genes and proteins related to embryo development and the maintenance of pregnancy. Ipsilateral endometrial expression was assessed on Days 7 and 13 after ovulation for the following transcripts: oestrogen receptor ERα (ESR1), progesterone receptor (PGR), progestin and adipoQ receptor family member 5 (PAQR5), oxytocin receptor (OXTR), prostaglandin-endoperoxide synthase 2 (PTGS2), raf-1 proto-oncogene serine/threonine kinase (RAF1), p21-activated kinase 6 (PAK6), fibroblast growth factor family member 9 (FGF9), IGF1 and its receptor (IGF1R), mucin 1 (MUC1), osteopontin (OPN), leptin receptor (LEPR) and adiponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2). Ipsilateral endometrial immunological cell infiltration and immunohistochemical protein localisation were evaluated on Days 7, 10 and 13 after ovulation for ERα, PGR, OXTR, PTGS2, IGF1, IGF1R, IGF2 and MUC1. Serum hormone concentrations were not affected by reproductive status. Pregnancy downregulated ESR1 and PGR mRNA levels, upregulated the expression of all other genes and affected the expression of all genes, except PGR, on Day 7 (compared with eight genes affected at Day 13). Proteins were affected by pregnancy or by its interaction with other variables (day of extraction and endometrial compartment). Pregnant mares had a higher lymphocyte count, which decreased towards Day 13. The effect of pregnancy on leucocytes and proteins was more evident in superficial endometrial compartments. The results of this study suggest that the equine embryo exerts prompt paracrine regulation of critical biological processes.
Collapse
Affiliation(s)
- Irene Kalpokas
- Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay; and Corresponding author.
| | - María Noel Martínez
- Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay
| | - Daniel Cavestany
- Department of Reproduction, Veterinary Faculty, Montevideo, Uruguay
| | | | | | - Ana Meikle
- Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay
| |
Collapse
|
19
|
Camacho CA, Santos GDO, Caballeros JE, Cazales N, Ramirez CJ, Vidigal PMP, Ramos HJDO, Barros E, Mattos RC. Uterine infusion of conceptus fragments changes the protein profile from cyclic mares. Anim Reprod 2020; 17:e20200552. [PMID: 33791032 PMCID: PMC7995263 DOI: 10.1590/1984-3143-ar2020-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022] Open
Abstract
This experiment aimed to compare at day seven after ovulation, the protein profile of uterine fluid in cyclic mares with mares infused two days before with Day 13 conceptus fragments. Experimental animals were ten healthy cyclic mares, examined daily to detect ovulation (Day 0) as soon as estrus was confirmed. On day seven, after ovulation, uterine fluid was collected, constituting the Cyclic group (n = 10). The same mares were examined in the second cycle until ovulation was detected. On day five, after ovulation, fragments from a previously collected concepti were infused into each mare's uterus. Two days after infusion, uterine fluid was collected, constituting the Fragment group (n = 10). Two-dimensional electrophoresis technique processed uterine fluid samples. A total of 373 spots were detected. MALDI-TOF/TOF and NanoUHPLC-QTOF mass spectrometry identified twenty spots with differences in abundance between the Cyclic and Fragment group. Thirteen proteins were identified, with different abundance between groups. Identified proteins may be related to embryo-maternal communication, which involves adhesion, nutrition, endothelial cell proliferation, transport, and immunological tolerance. In conclusion, conceptus fragments signalized changes in the protein profile of uterine fluid seven days after ovulation in comparison to the observed at Day 7 in the same cyclic mares.
Collapse
Affiliation(s)
- Cesar Augusto Camacho
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Gabriel de Oliveira Santos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Jorge Emilio Caballeros
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nicolas Cazales
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Facultad de Veterinária, Universidad de la República - UDELAR, Montevideo, Uruguay
| | - Camilo José Ramirez
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rodrigo Costa Mattos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
20
|
Camacho CA, Estradé MJ, Cazales N, Caballeros JE, Fiala-Rechsteiner SM, Neves AP, Mattos RC. Histomorphometric and vascular changes in equine endometrium after the infusion of conceptus fragments. Anim Reprod 2020; 17:e20200006. [PMID: 32714458 PMCID: PMC7375867 DOI: 10.1590/1984-3143-ar2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This experiment aimed to verify if the proteins present in a 13th day conceptus induce changes in the equine endometrial ultra-structure, histology, and vascularization, two days after its infusion. Ten healthy cyclic mares were used. Once estrus was confirmed, mares were examined daily to detect ovulation (day 0). After ovulation, mares were examined daily until day seven by transrectal palpation and B-mode and Doppler ultrasonography. In this first cycle, intrauterine biopsies were collected at day seven after ovulation, constituting the Cyclic group (n = 10). In the second cycle, the same mares daily were examined until ovulation was detected. After ovulation, mares were examined daily by transrectal palpation and B-mode and Doppler ultrasonography until day 7. On day 5, after ovulation, fragments from previously collected 13-day-old concepti were infused into the uterus of each mare. Intrauterine biopsies were collected at day 7 in all mares (n = 10), constituting the Fragment group. The percentage of ciliated and flattened cells decreased in the Fragment group. Protruded cells, superficial and intraglandular secretion, glandular lumen and diameter, blood vessel diameter, endometrial vascularization, and immune cells were higher in the Fragment group than in the Cyclic group. In summary, proteins of 13th day equine conceptus fragments infused at day five after ovulation signaled histological and vascular changes in the endometrium at the 7th day after ovulation.
Collapse
Affiliation(s)
- Cesar Augusto Camacho
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Maria José Estradé
- Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Cazales
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Jorge Emilio Caballeros
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | - Rodrigo Costa Mattos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
21
|
Jones CJP, Aplin JD, Allen WRT, Wilsher S. The influences of cycle stage and pregnancy upon cell glycosylation in the endometrium of the mare. Theriogenology 2020; 154:92-99. [PMID: 32535395 DOI: 10.1016/j.theriogenology.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
From Day 6.5-7 post-conception until its loss around Day 22, the equine embryo is enclosed in a mucinous capsule that prevents direct intercellular interaction between the trophectoderm and uterine epithelium. The embryo is, however, bathed in glycoprotein-rich secretions. In this study, lectin histochemistry was used to characterise the distribution and glycan composition of uterine glycoproteins destined for secretion, and to ascertain the local effect of an embryo on glycosylation in the endometrium. Endometrial biopsies were taken from mares in estrus, on Days 5, 8, 12 and 15 of diestrus, and on Days 12 and 15 of pregnancy and processed for lectin histochemistry. During estrus, lumenal epithelial cells were as truncated pyramids and mainly non-ciliated with glycosylated granules in the cytoplasm. Occasional ciliated cells contained few granules. Five days post-ovulation, non-ciliated cells of the lumenal epithelium were taller, and had accumulated many highly glycosylated apical granules. By Days 12 and 15 post-ovulation these cells were more cuboidal and some showed fewer secretory granules. In marked contrast, by Days 12 and 15 of pregnancy, the ciliated cells were distended, with numerous granules but non-ciliated cells had only a few in the apical cytoplasm. Glycosylation changed dramatically in pregnancy in the luminal and superficial gland epithelium, with fewer fucosylated termini, more N-acetyl galactosamine residues, together with an overall reduction in sialic acid and several other sugar structures. Glycosylation in ciliated cells on Days 12 and 15 of pregnancy showed a striking similarity to that of the blastocyst capsule. The data strongly suggests that glycoprotein production by luminal epithelial cells is influenced by the presence of a conceptus. We speculate that, as well as providing nourishment for the developing embryo, epithelial secretory glycoproteins may contribute components to the capsule, which develops only partially in embryos cultured in vitro.
Collapse
Affiliation(s)
- Carolyn J P Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - W R Twink Allen
- Sharjah Equine Hospital, Bridge No 6, Al Daid Road, Al Atain Area, Sharjah, United Arab Emirates.
| | - Sandra Wilsher
- Sharjah Equine Hospital, Bridge No 6, Al Daid Road, Al Atain Area, Sharjah, United Arab Emirates.
| |
Collapse
|
22
|
Gibson C, de Ruijter-Villani M, Bauersachs S, Stout TA. Asynchronous Embryo Transfer Followed by Comparative Transcriptomic Analysis of Conceptus Membranes and Endometrium Identifies Processes Important to the Establishment of Equine Pregnancy. Int J Mol Sci 2020; 21:E2562. [PMID: 32272720 PMCID: PMC7177982 DOI: 10.3390/ijms21072562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Preimplantation horse conceptuses require nutrients and signals from histotroph, the composition of which is regulated by luteal progesterone and conceptus-secreted factors. To distinguish progesterone and conceptus effects we shortened the period of endometrial progesterone-priming by asynchronous embryo transfer. Day 8 embryos were transferred to synchronous (day 8) or asynchronous (day 3) recipients, and RNA sequencing was performed on endometrium and conceptuses recovered 6 and 11 days later (embryo days 14 and 19). Asynchrony resulted in many more differentially expressed genes (DEGs) in conceptus membranes (3473) than endometrium (715). Gene ontology analysis identified upregulation in biological processes related to organogenesis and preventing apoptosis in synchronous conceptuses on day 14, and in cell adhesion and migration on day 19. Asynchrony also resulted in large numbers of DEGs related to 'extracellular exosome'. In endometrium, genes involved in immunity, the inflammatory response, and apoptosis regulation were upregulated during synchronous pregnancy and, again, many genes related to extracellular exosome were differentially expressed. Interestingly, only 14 genes were differentially expressed in endometrium recovered 6 days after synchronous versus 11 days after asynchronous transfer (day 14 recipient in both). Among these, KNG1 and IGFBP3 were consistently upregulated in synchronous endometrium. Furthermore bradykinin, an active peptide cleaved from KNG1, stimulated prostaglandin release by cultured trophectoderm cells. The horse conceptus thus responds to a negatively asynchronous uterus by extensively adjusting its transcriptome, whereas the endometrial transcriptome is modified only subtly by a more advanced conceptus.
Collapse
Affiliation(s)
- Charlotte Gibson
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
| | - Tom A.E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| |
Collapse
|
23
|
Embryo survival in the oviduct not significantly influenced by major histocompatibility complex social signaling in the horse. Sci Rep 2020; 10:1056. [PMID: 31974438 PMCID: PMC6978320 DOI: 10.1038/s41598-020-58056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/31/2019] [Indexed: 11/08/2022] Open
Abstract
The major histocompatibility complex (MHC) influences sexual selection in various vertebrates. Recently, MHC-linked social signaling was also shown to influence female fertility in horses (Equus caballus) diagnosed 17 days after fertilization. However, it remained unclear at which stage the pregnancy was terminated. Here we test if MHC-linked cryptic female choice in horses happens during the first days of pregnancy, i.e., until shortly after embryonic entrance into the uterus and before fixation in the endometrium. We exposed estrous mares to one of several unrelated stallions, instrumentally inseminated them with semen of another stallion, and flushed the uterus 8 days later to test for the presence of embryos. In total 68 embryos could be collected from 97 experimental trials. This success rate of 70.1% was significantly different from the mean pregnancy rate of 45.7% observed 17 days after fertilization using the same experimental protocol but without embryo flushing. Embryo recovery rate was not significantly dependent on whether the mares had been socially exposed to an MHC-dissimilar or an MHC-similar stallion. These observations suggest that MHC-linked maternal strategies affect embryo survival mainly (or only) during the time of fixation in the uterus.
Collapse
|
24
|
Nieto-Olmedo P, Martín-Cano FE, Gaitskell-Phillips G, Ortiz-Rodríguez JM, Peña FJ, Ortega-Ferrusola C. Power Doppler can detect the presence of 7-8 day conceptuses prior to flushing in an equine embryo transfer program. Theriogenology 2020; 145:1-9. [PMID: 31972496 DOI: 10.1016/j.theriogenology.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
In order to determine whether differences in uterine blood flow between pregnant and non-pregnant mares can be used to predict the presence of the equine embryo prior to flushing in an embryo transfer program, power Doppler ultrasonography was used on a total of 52 mares on days 7 or 8 post-ovulation. Computer analysis of Doppler images was subsequently performed using ImageJ v1.48 software. Vascular perfusion of the endometrium was analyzed using spot meter techniques, measuring mean pixel intensity and area of blood flow. Mares with positive flushings presented a higher uterine blood flow area (one embryo: 54.01 ± 2.27 mm2 or two embryos: 61.01 ± 6.73 mm2) prior to embryo recovery compared to barren mares (21.77 ± 2.22 mm2) (p≤0.05). However, significant differences in vascular perfusion were not detected between single or twin pregnancies. Blood flow area appears to be a good predictor for differentiation between pregnant and non-pregnant mares with an AUC: 0.869; p≤0.001 and an optimal cut-off value of 37.21 mm2. Both the mare's age and day of embryo recovery caused effects on uterine vascular perfusion. According to Youden's J statistics the uterine blood flow area of young pregnant mares was greater than 25.4 mm2 on day 7 (with a sensitivity of 75% and a specificity of 87.5%) and greater than 21.02 mm2 on day 8 post-ovulation (with a sensitivity of 93.8% and a specificity of 100%). The uterine blood flow area in adult pregnant mares was greater than 41.4 mm2 on day 7 (with a sensitivity of 80% and a specificity of 85.5%) and greater than 35.55 mm2 on day 8 after ovulation (with a sensitivity of 97.2% and a specificity of 85.7%). Evaluation on day 8 is therefore considered to be more reliable. Older and middle aged pregnant mares (5-18 years old) had increased uterine vascularization compared to young pregnant mares (2-5 years old) (p≤0.001). Conversely, older barren mares showed higher endometrial vascularity (35.06 ± 2.56 mm2) than young (17.21 ± 1.26 mm2) and middle aged non-pregnant mares (23.84 ± 1.50 mm2) (p≤0.05). We hypothesized that the higher blood flow area seen in older barren mares may be a consequence of a subclinical endometritis due to repeated flushing for embryo recovery. The results of the present study indicate that power Doppler ultrasound combined with computer assisted analysis of images are reliable techniques to detect early pregnancy prior to embryo recovery.
Collapse
Affiliation(s)
- P Nieto-Olmedo
- CEFIVA-Centro de Fertilización In vitro de Asturias, Spain.
| | - F E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - G Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - J M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - F J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
25
|
Smits K, Gansemans Y, Tilleman L, Van Nieuwerburgh F, Van De Velde M, Gerits I, Ververs C, Roels K, Govaere J, Peelman L, Deforce D, Van Soom A. Maternal Recognition of Pregnancy in the Horse: Are MicroRNAs the Secret Messengers? Int J Mol Sci 2020; 21:ijms21020419. [PMID: 31936511 PMCID: PMC7014256 DOI: 10.3390/ijms21020419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023] Open
Abstract
The signal for maternal recognition of pregnancy (MRP) has still not been identified in the horse. High-throughput molecular biology at the embryo-maternal interface has substantially contributed to the knowledge on pathways affected during MRP, but an integrated study in which proteomics, transcriptomics and miRNA expression can be linked directly is currently lacking. The aim of this study was to provide such analysis. Endometrial biopsies, uterine fluid, embryonic tissues, and yolk sac fluid were collected 13 days after ovulation during pregnant and control cycles from the same mares. Micro-RNA-Sequencing was performed on all collected samples, mRNA-Sequencing on the same tissue samples and mass spectrometry was conducted previously on the same fluid samples. Differential expression of miRNA, mRNA and proteins showed high conformity with literature and confirmed involvement in pregnancy establishment, embryo quality, steroid synthesis and prostaglandin regulation, but the link between differential miRNAs and their targets was limited and did not indicate the identity of an unequivocal signal for MRP in the horse. Differential expression at the embryo-maternal interface was prominent, highlighting a potential role of miRNAs in embryo-maternal communication during early pregnancy in the horse. These data provide a strong basis for future targeted studies.
Collapse
Affiliation(s)
- Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Correspondence:
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Margot Van De Velde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ilse Gerits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Cyrillus Ververs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Roels
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luc Peelman
- Animal Genetics Lab, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
26
|
Leisinger C, Klein C, Markle M, Premanandan C, Sones J, Pinto C, Paccamonti D. Altered gene expression in embryos and endometrium collected on day 8 of induced aluteal cycles in mares. Theriogenology 2019; 128:81-90. [DOI: 10.1016/j.theriogenology.2019.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
27
|
Proteomic profile of histotroph during early embryo development in mares. Theriogenology 2019; 125:224-235. [DOI: 10.1016/j.theriogenology.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/16/2023]
|
28
|
Read JE, Cabrera-Sharp V, Offord V, Mirczuk SM, Allen SP, Fowkes RC, de Mestre AM. Dynamic changes in gene expression and signalling during trophoblast development in the horse. Reproduction 2018; 156:313-330. [PMID: 30306765 PMCID: PMC6170800 DOI: 10.1530/rep-18-0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Equine chorionic girdle trophoblast cells play important endocrine and immune functions critical in supporting pregnancy. Very little is known about the genes and pathways that regulate chorionic girdle trophoblast development. Our aim was to identify genes and signalling pathways active in vivo in equine chorionic girdle trophoblast within a critical 7-days window. We exploited the late implantation of the equine conceptus to obtain trophoblast tissue. An Agilent equine 44K microarray was performed using RNA extracted from chorionic girdle and chorion (control) from equine pregnancy days 27, 30, 31 and 34 (n = 5), corresponding to the initiation of chorionic girdle trophoblast proliferation, differentiation and migration. Data were analysed using R packages limma and maSigPro, Ingenuity Pathway Analysis and DAVID and verified using qRT-PCR, promoter analysis, western blotting and migration assays. Microarray analysis showed gene expression (absolute log FC >2, FDR-adjusted P < 0.05) was rapidly and specifically induced in the chorionic girdle between days 27 and 34 (compared to day 27, day 30 = 116, day 31 = 317, day 34 = 781 genes). Pathway analysis identified 35 pathways modulated during chorionic girdle development (e.g. FGF, integrin, Rho GTPases, MAPK) including pathways that have limited description in mammalian trophoblast (e.g. IL-9, CD40 and CD28 signalling). Rho A and ERK/MAPK activity was confirmed as was a role for transcription factor ELF5 in regulation of the CGB promoter. The purity and accessibility of chorionic girdle trophoblast proved to be a powerful resource to identify candidate genes and pathways involved in early equine placental development.
Collapse
Affiliation(s)
- Jordan E Read
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Cabrera-Sharp
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Offord
- Research Support OfficeThe Royal Veterinary College, London, UK
| | - Samantha M Mirczuk
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Steve P Allen
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Robert C Fowkes
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| |
Collapse
|
29
|
Camozzato GC, Martinez MN, Bastos HBA, Fiala-Rechsteiner S, Meikle A, Jobim MIM, Gregory RM, Mattos RC. Ultrastructural and histological characteristics of the endometrium during early embryo development in mares. Theriogenology 2018; 123:1-10. [PMID: 30253251 DOI: 10.1016/j.theriogenology.2018.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate ultrastructural and histological changes in the endometrium on days 7, 10 and 13 post-ovulation in pregnant and cyclic mares. Mares were routinely examined by transrectal palpation and ultrasonographic examination of the reproductive tract until estrus was detected. In the first cycle, endometrial biopsies from 30 cyclic mares (Cyclic group) were collected on days 7, 10 and 13 post-ovulation. In the second cycle, the same mares were bred by a fertile stallion. At days 7, 10 and 13 post-ovulation intrauterine biopsies were collected. Immediately after sample collection, the mare's uteri were flushed, and those mares with embryo recovery were assigned to the Pregnant group. From ovulation detection until day of uterine biopsy, blood samples to measure Progesterone concentrations were collected daily in cyclic and pregnant mares. A larger blood vessel caliber was observed in pregnant mares than in cyclic from day 7-13. On the 7th day of pregnancy a large loss of ciliated cells was evident in the group of pregnant mares in comparison with the Cyclic group and the superficial cells of the endometrium were more protruded, and a small amount of histotrophic material between the folds was observed. On the 10th day of pregnancy, the glandular histotrophic secretion and the secretion of luminal epithelium became more intense than the secretion of cyclic mares. On the 13th day of pregnancy, a very large amount of histotroph was observed within large glandular openings surrounded by ciliated cells. The concentrations of P4 were affected by day (P < 0.001), but were not affected by group. Changes occurred in the uterine environment thereupon the entry of the embryo into the uterus. In the stroma and in the lumen, these modifications may aid to provide the necessary nutrition for the initial development of the embryo and to promote changes at cellular structures that will interact in the embryonic signaling and future fixation, implantation and placentation.
Collapse
Affiliation(s)
- G C Camozzato
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil.
| | - M N Martinez
- Facultad de Veterinaria, UDELAR, Montevideo, Uruguay
| | - H B A Bastos
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | | | - A Meikle
- Facultad de Veterinaria, UDELAR, Montevideo, Uruguay
| | - M I M Jobim
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | - R M Gregory
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | - R C Mattos
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Proteins involved in embryo-maternal interaction around the signalling of maternal recognition of pregnancy in the horse. Sci Rep 2018; 8:5249. [PMID: 29588480 PMCID: PMC5869742 DOI: 10.1038/s41598-018-23537-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/14/2018] [Indexed: 02/08/2023] Open
Abstract
During maternal recognition of pregnancy (MRP), a conceptus-derived signal leads to the persistence of the corpus luteum and the maintenance of gestation. In the horse, the nature of this signal remains to be elucidated. Several studies have focused on the changes in gene expression during MRP, but little information exists at the protein level. The aim of this study was to identify the proteins at the embryo-maternal interface around signalling of MRP in the horse (day 13) by means of mass spectrometry. A distinct influence of pregnancy was established, with 119 proteins differentially expressed in the uterine fluid of pregnant mares compared to cyclic mares and with upregulation of several inhibitors of the prostaglandin synthesis during pregnancy. By creating an overview of the proteins at the embryo-maternal interface in the horse, this study provides a solid foundation for further targeted studies of proteins potentially involved in embryo-maternal interactions, MRP and pregnancy loss in the horse.
Collapse
|
31
|
Swegen A, Grupen CG, Gibb Z, Baker MA, Ruijter‐Villani M, Smith ND, Stout TAE, Aitken RJ. From Peptide Masses to Pregnancy Maintenance: A Comprehensive Proteomic Analysis of The Early Equine Embryo Secretome, Blastocoel Fluid, and Capsule. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/19/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Aleona Swegen
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Christopher G. Grupen
- Faculty of Veterinary Science School of Life and Environmental Sciences University of Sydney Camden NSW Australia
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Marta Ruijter‐Villani
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - Nathan D. Smith
- Analytical and Biomolecular Research Facility University of Newcastle Callaghan NSW Australia
| | - Tom A. E. Stout
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - R. John Aitken
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| |
Collapse
|
32
|
Reinholt BM, Bradley JS, Jacobs RD, Ealy AD, Johnson SE. Tissue organization alters gene expression in equine induced trophectoderm cells. Gen Comp Endocrinol 2017; 247:174-182. [PMID: 28161437 DOI: 10.1016/j.ygcen.2017.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 12/29/2022]
Abstract
Rapid morphological and gene expression changes occur during the early formation of a mammalian blastocyst. Critical to successful retention of the blastocyst and pregnancy is a functional trophectoderm (TE) that supplies the developing embryo with paracrine factors and hormones. The contribution of TE conformational changes to gene expression was examined in equine induced trophoblast (iTr) cells. Equine iTr cells were cultured as monolayers or in suspension to form spheres. The spheres are hollow and structurally reminiscent of native equine blastocysts. Total RNA was isolated from iTr monolayers and spheres and analyzed by RNA sequencing. An average of 32.2 and 31million aligned reads were analyzed for the spheres and monolayers, respectively. Forty-four genes were unique to monolayers and 45 genes were expressed only in spheres. Conformation did not affect expression of CDX2, POU5F1, TEAD4, ETS2, ELF3, GATA2 or TFAP2A, the core gene network of native TE. Bioinformatic analysis was used to identify classes of genes differentially expressed in response to changes in tissue shape. In both iTr spheres and monolayers, the majority of the differentially expressed genes were associated with binding activity in cellular, developmental and metabolic processes. Inherent to protein:protein interactions, several receptor-ligand families were identified in iTr cells with enrichment of genes coding for PI3-kinase and MAPK signaling intermediates. Our results provide evidence for ligand initiated kinase signaling pathways that underlie early trophectoderm structural changes.
Collapse
Affiliation(s)
- Brad M Reinholt
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer S Bradley
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Robert D Jacobs
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
33
|
Smits K, Nelis H, Van Steendam K, Govaere J, Roels K, Ververs C, Leemans B, Wydooghe E, Deforce D, Van Soom A. Proteome of equine oviducal fluid: effects of ovulation and pregnancy. Reprod Fertil Dev 2017; 29:1085-1095. [DOI: 10.1071/rd15481] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/25/2016] [Indexed: 11/23/2022] Open
Abstract
The equine oviduct plays a pivotal role in providing the optimal microenvironment for early embryonic development, but little is known about the protein composition of the oviducal fluid in the horse. The aim of the present study was to provide a large-scale identification of proteins in equine oviducal fluid and to determine the effects of ovulation and pregnancy. Four days after ovulation, the oviducts ipsilateral and contralateral to the ovulation side were collected from five pregnant and five non-pregnant mares. Identification and relative quantification of proteins in the oviducal fluid of the four groups was achieved by isobaric tags for relative and absolute quantification (iTRAQ) labelling and HPLC–tandem mass spectrometry. The presence of an embryo in the ipsilateral oviducal fluid of pregnant mares induced upregulation of 11 and downregulation of two proteins compared with the contralateral side, and upregulation of 19 proteins compared with the ipsilateral side of non-pregnant mares. Several of these upregulated proteins are related to early pregnancy in other species. The present study represents the first high-throughput identification of proteins in the oviducal fluid of the mare. The results support the hypothesis that the equine embryo interacts with the oviduct, affecting the maternal secretion pattern of proteins involved in pregnancy-related pathways.
Collapse
|
34
|
Klohonatz KM, Hess AM, Hansen TR, Squires EL, Bouma GJ, Bruemmer JE. Equine endometrial gene expression changes during and after maternal recognition of pregnancy. J Anim Sci 2016; 93:3364-76. [PMID: 26440005 DOI: 10.2527/jas.2014-8826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanism for maternal recognition of pregnancy (MRP) in horses is unknown. To maintain a pregnancy, a mobile conceptus must be recognized by the uterus before d 14 postovulation (PO). This recognition prevents endometrial secretion of PGF2α on d14 through 16, which would otherwise initiate luteolysis. The objective of this study was to evaluate gene expression in the endometrium of pregnant and nonpregnant mares during and after MRP to identify possible genes involved during this time. Twelve normally cycling mares were used in a crossover design and randomly assigned to a specific collection day. Endometrial samples were collected from a pregnant and nonpregnant (nonmated) mare on cycle d 12, 14, 16, and 18 (n = 3/d) PO. Microarray analysis comparing the endometrial gene expression in pregnant and nonpregnant mares revealed no differences at d 12. Ten genes were identified to have consistently higher or lower expression levels in the endometrium from pregnant versus nonpregnant mares on d 14, 16, and 18 (P < 0.001). The expression of these 10 genes was further analyzed with real-time PCR. d 14, 16, and 18 gene expression patterns were consistent with the microarray analysis, but on d 12, 4 of the 10 were identified as differentially expressed. Endometrial samples were then collected on d 13 PO (n = 3) and processed for western blot and immunohistochemical analysis of 2 proteins due to their reproductive significance. SPLA2 and DKK1 antibody specificity were confirmed via western blot analysis but were not different in samples from pregnant and nonpregnant mares (P = 0.114 and P = 0.514, respectively) and cellular localization was examined by immunohistochemical analysis. This is the first study to describe gene expression and cellular localization in the endometrium at the time of MRP for these genes and suggests that the uterus does not prepare to support a pregnancy until d 14. The function of these genes may be critical in the process of MRP.
Collapse
|
35
|
Klein C. Early pregnancy in the mare: old concepts revisited. Domest Anim Endocrinol 2016; 56 Suppl:S212-7. [PMID: 27345319 DOI: 10.1016/j.domaniend.2016.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 11/22/2022]
Abstract
"Maternal recognition of pregnancy" (MRP) is commonly used to describe the ongoing embryo-maternal communication during early pregnancy that culminates in prevention of luteolysis and ensures ongoing progestin support. The conceptus-derived pregnancy recognition signal has not yet been identified in the mare. Although equine conceptuses produce substantial amounts of estrogens, there is a lack of evidence that estrogens are the pregnancy recognition signal in mares. Conceptus mobility is integral to MRP and is driven by conceptus-derived prostaglandin production. Cessation of conceptus mobility, referred to as fixation, is caused by increases in conceptus size and uterine tone and reduction in sialic acid content of the embryonic capsule. Gene expression profiling of equine preimplantation conceptuses revealed expression of neuraminidase 2 (NEU2), an enzyme that cleaves sialic acid from polysaccharide chains. Furthermore, secretion of NEU2 by conceptuses in vitro was functionally active; it appears therefore, that the conceptus itself regulates sialic acid content through expression of NEU2. Based on gene expression profiling, equine conceptuses express increasing amounts of fibrinogen during early development. Western blot analysis confirmed secretion of fibrinogen into culture medium when conceptuses were cultured in vitro and with immunohistochemistry, the acellular glycoprotein capsule of the conceptus had particularly intense staining for fibrinogen. Therefore, we hypothesize that conceptus-derived fibrinogen interacts with endometrial integrins to promote cessation of conceptus mobility and fixation. Indeed, next generation sequencing analysis of conceptus and endometrial samples 16 d after ovulation revealed that the integrin signaling pathway is significantly enriched in both sample types. Real-time reverse transcription polymerase chain reaction (RT-PCR) confirmed ITGAVB1 as the most abundant integrin receptor in endometrium; fibrinogen has the highest affinity for ITGAVB1 among integrins receptors to which it binds. Finally, the equine conceptus expresses increasing quantities of relaxin during preimplantation development, with the endometrium expressing relaxin receptors. In the pig, mouse, and human, relaxin is produced by the corpus luteum and is known to promote angiogenesis during early pregnancy. In summary, substantial advances in understanding MRP in the horse are underway.
Collapse
Affiliation(s)
- C Klein
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
36
|
|
37
|
Klein C. The role of relaxin in mare reproductive physiology: A comparative review with other species. Theriogenology 2016; 86:451-6. [PMID: 27158127 DOI: 10.1016/j.theriogenology.2016.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/23/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Relaxin is a peptide hormone best known for its action during the latter half of pregnancy, in particular for its softening effect on pelvic ligaments that aids in preparation of the birth canal for the impending delivery of the fetus. The source of relaxin during early pregnancy varies across species, with the CL being the main source in a number of species. The main source of relaxin during late equine pregnancy is the placenta. In mares with impaired placental function, circulating relaxin levels decline before abortion. During early pregnancy, relaxin promotes endometrial angiogenesis through upregulating endometrial expression of vascular endothelial growth factor. The horse is unique in that the equine conceptus expresses relaxin messenger RNA as early as 8 days after ovulation, with levels increasing as conceptus development proceeds. Although secretion of functional relaxin has not been verified, it is likely, given that the embryo also expresses transcripts coding for enzymes processing the prohormone to yield the mature hormone. Furin, an enzyme which belongs to the subtilisin-like proprotein convertase family known to process preprorelaxin, appears to be the foremost convertase expressed by equine conceptuses. Conceptus-derived relaxin could drive endometrial angiogenesis and also act in an autocrine fashion to promote the embryo's own development. Relaxin is also expressed by ovarian structures during the nonpregnant estrous cycle. In the mare, follicular expression of relaxin is comparable among follicles of varying size and has been localized to granulosa and theca cells. In women and pigs, relaxin appears to promote follicular development. In the rat, multiple lines of evidence indicate that relaxin is involved in the ovulatory process. In the mare, relaxin might play a similar role in the ovulatory process, as in equine ovarian stromal cells relaxin promotes the secretion of gelatinases and tissue inhibitors of metalloproteinases; local proteolysis of the follicular wall is integral to the ovulatory process. However, functional studies addressing the role of relaxin in the ovulatory process are missing in the mare.
Collapse
Affiliation(s)
- Claudia Klein
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
38
|
Embryo-maternal communication during the first 4 weeks of equine pregnancy. Theriogenology 2016; 86:349-54. [PMID: 27156682 DOI: 10.1016/j.theriogenology.2016.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
Abstract
The first month of equine pregnancy covers a period of rapid growth and development, during which the single-cell zygote metamorphoses into an embryo with a functional circulation and precursors of many important organs, enclosed within extraembryonic membranes responsible for nutrient uptake and gaseous exchange. After exiting the oviduct, the conceptus must influence uterine physiology to ensure adequate nutrition and preparation for implantation, while continued development results in the chorioallantois superseding the yolk sac as the primary interface for maternal interaction and exchange. Throughout the first month, pregnancy maintenance depends absolutely on progesterone secreted by the primary corpus luteum. However, although extension of luteal life span via maternal recognition of pregnancy is clearly essential, it is still not known how the horse conceptus signals its presence. On the other hand, our understanding of how luteolytic prostaglandin F2α release from the endometrium is averted has improved, and we are increasingly aware of the biological and practical significance of various events characteristic of early horse pregnancy, such as selective oviductal transport, the formation and dissolution of the blastocyst capsule, and prolonged intrauterine conceptus migration. It is also increasingly clear that embryo-maternal dialog during the first month is essential not only to conceptus survival but also has more profound and long-lasting implications. In this latter respect, it is now accepted that the maternal environment (e.g., metabolic or health status) may epigenetically alter gene expression capacity of the developing embryo and thereby permanently influence the health of the resulting foal right through adulthood.
Collapse
|
39
|
Smits K, De Coninck DIM, Van Nieuwerburgh F, Govaere J, Van Poucke M, Peelman L, Deforce D, Van Soom A. The Equine Embryo Influences Immune-Related Gene Expression in the Oviduct. Biol Reprod 2016; 94:36. [PMID: 26740593 DOI: 10.1095/biolreprod.115.136432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
Although the equine oviduct clearly affects early embryo development and the selective transport of equine embryos through the oviduct indicates a reciprocal interaction, the influence of the embryo on gene expression in the oviduct remains to be determined in the horse. The aim of this study was to examine this by means of RNA sequencing. Four days after ovulation, epithelial cells ipsilateral and contralateral to the ovulation side from five cyclic and five pregnant mares were collected from the oviduct. RNA was extracted, samples were sequenced, and data analysis was performed to determine differentially expressed genes (DEGs) (P value ≤0.05 and absolute fold change ≥2) and to provide functional interpretation. A total of 10 743 transcripts were identified and 253 genes were found to be upregulated and 108 to be downregulated in the pregnant ipsilateral oviduct when compared to the cyclic ipsilateral oviduct. Comparison of the ipsilateral and the contralateral oviduct indicated 164 DEGs in pregnant mares and 77 DEGs in cyclic mares. Enriched functional categories were detected only in the comparison of pregnant and cyclic ipsilateral oviducts and showed that the equine embryo affects the expression of immune response-related genes in the oviduct, with marked upregulation of interferon-associated genes. This research represents the foundation for further assessment of the role of specific genes in the early embryo-maternal dialogue of the horse.
Collapse
Affiliation(s)
- Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter I M De Coninck
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
40
|
Aurich C, Budik S. Early pregnancy in the horse revisited - does exception prove the rule? J Anim Sci Biotechnol 2015; 6:50. [PMID: 26635959 PMCID: PMC4668677 DOI: 10.1186/s40104-015-0048-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
Early equine pregnancy shares many features with that of more intensively assessed domestic animals species, but there are also characteristic differences. Some of those are poorly understood. Descent of the equine conceptus into the uterine lumen occurs at day 5 to 6 after ovulation but is only possible when the embryo secretes prostaglandin E2. Although maintenance of equine pregnancy probably involves secretion of a conceptus derived anti-luteolytic factor, this agent has not been identified. Rapid growth, conceptus mobility and presence of an acellular capsule at the time of maternal recognition of pregnancy, i.e. between days 12 and 14, are prerequisites to avoid pregnancy loss. Progesterone together with 5α-pregnanes is secreted by the corpus luteum and induces the production of endometrial histotroph which is responsible for conceptus nutrition until placention. A stable contact between the outer trophoblast layer of the allantochorion and the luminal epithelium of the endometrium is not established before days 40 to 42 of pregnancy.
Collapse
Affiliation(s)
- Christine Aurich
- Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sven Budik
- Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
41
|
Stout TA.E, Troedsson MHT. Report of the Havemeyer Foundation Workshop on Equine Implantation: Is early pregnancy loss the only important potential consequence of disturbed preimplantation development? Equine Vet J 2015; 47:381-3. [DOI: 10.1111/evj.12382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T. A .E. Stout
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
- Section of Reproduction; Faculty of Veterinary Science; University of Pretoria; Onderstepoort South Africa
| | - M. H. T. Troedsson
- Gluck Equine Research Center; Department of Veterinary Science; University of Kentucky; Lexington USA
| |
Collapse
|
42
|
Klein C. Novel equine conceptus?endometrial interactions on Day 16 of pregnancy based on RNA sequencing. Reprod Fertil Dev 2015; 28:RD14489. [PMID: 25940503 DOI: 10.1071/rd14489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/01/2015] [Indexed: 12/14/2022] Open
Abstract
Maintenance of pregnancy is dependent on the exchange of signals between the conceptus and the endometrium. The objective of this study was to use next-generation sequencing to determine transcriptome blueprints of the conceptus and endometrium 16 days after ovulation in the horse. There were 7760 and 10 182 genes expressed in the conceptus and endometrium, respectively, of which 7029 were present in both. Genes related to developmental processes were enriched among conceptus-specific transcripts, whereas many endometrium-specific genes had known roles in cell communication, cell adhesion and response to stimuli. The integrin signalling pathway was overrepresented in both transcriptomes. In that regard, it was hypothesised that integrins ITGA5B1 and ITGAVB3 interact with conceptus-derived fibrinogen, potentially contributing to cessation of conceptus mobility. That several growth factors and their corresponding receptors (e.g. HDGF, NOV, CYR61, CTGF, HBEGF) were expressed by conceptus and endometrium were attributed to cross-talk. In addition, Cytoscape interaction analysis revealed a plethora of interactions between genes expressed by the conceptus and endometrium, during a period when the former had substantial movement within the uterus. This is the first report of concurrent transcriptome analysis of conceptus and endometrium in the mare, with numerous findings to provide rationale for further investigation.
Collapse
|
43
|
Klein C. Pregnancy Recognition and Implantation of the Conceptus in the Mare. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2015; 216:165-88. [PMID: 26450499 DOI: 10.1007/978-3-319-15856-3_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Few, if any, biological processes are as diverse among domestic species as establishment of early pregnancy, in particular maternal recognition of pregnancy. Following fertilization and initial development in the mare oviduct, selective transport of the embryo through the uterotubal junction driven by embryo-derived PGE2 occurs. Upon arrival in the uterus, an acellular glycoprotein capsule is formed that covers the embryo, blastocyst, and conceptus (embryo and associated extraembryonic membranes) between the second and third weeks of pregnancy. Between Days 9 and 15/16 of pregnancy, the conceptus undergoes an extended phase of mobility. Conceptus mobility is driven by conceptus-derived PGF2α and PGE2 that stimulate uterine contractions which in turn propel migration of the conceptus within the uterine lumen. Cessation of conceptus mobility is referred to as fixation and appears to be attributable to increasing size of the conceptus, preferential thickening of the endometrium near the mesometrial attachment referred to as encroachment, and a reduction in sialic acid content of the capsule. During maternal recognition of pregnancy, endometrial PGF2α release is attenuated, a consequence of reduced expression of key enzymes involved in prostaglandin production. Oxytocin responsiveness is altered during early pregnancy, and reduced expression of the oxytocin receptor appears to be regulated at the posttranscriptional level rather than the transcriptional level. Prostaglandin release is attenuated temporarily only during early pregnancy; during the third week of pregnancy, the endometrium resumes the ability to secrete PGF2α. The equine conceptus initiates steroidogenesis as early as Day 6 and synthesizes estrogens, androgens, and progesterone. Estrogens are metabolized locally, presumably regulating their bioavailability and actions. Results of experiments attempting to prove that conceptus-derived estrogens are responsible for extension of corpus luteum function have been inconclusive. By the fourth week of pregnancy, the chorionic girdle becomes visible on the trophoblast. Subsequent invasion of chorionic girdle cells leads to formation of endometrial cups which secrete equine chorionic gonadotropin. Equine chorionic gonadotropin has luteinizing hormone functions in the mare, causing luteinization of follicles resulting in the formation of secondary corpora lutea essential to production of progesterone and maintenance of pregnancy.
Collapse
Affiliation(s)
- Claudia Klein
- Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
44
|
RNA-seq analysis of equine conceptus transcripts during embryo fixation and capsule disappearance. PLoS One 2014; 9:e114414. [PMID: 25514169 PMCID: PMC4267804 DOI: 10.1371/journal.pone.0114414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
Extensive studies have been conducted to characterize the unique phenomena of equine pregnancy. Most studies have focused on embryo transmigration when the embryo is covered with a mucin-like glycoprotein capsule and on the characterization of the chorionic girdle and chorionic gonadotropin (CG) secretion. However, the events preceding and following capsule disappearance have not been well studied. In this study, the mRNA expression in conceptus membranes at days 19, 21, and 25 (day 0 = day of ovulation) was analyzed by RNA-seq (SOLiD3), and transcript levels on these three days and day 13 were confirmed by real-time PCR. Of the 26,416 equine genes registered, 20,436 transcripts were aligned to sequences in the Ensembl database, from which 4,625 transcripts were registered in both Ensembl and the KEGG pathway. Each of the 4,625 transcripts was examined through KEGG pathway analysis, and 12 transcripts of integrins (ITGs) and collagens (COLs) were confirmed through real-time PCR. Our data indicated that extracellular matrix (ECM)-related mRNAs were highly expressed in day 19, 21, and 25 conceptus membranes. In combination with previous results, which confirmed a lack of laminin and fibronectin transcript expression in the endometrium, these observations suggest that in contrast to attachment through focal adhesion, conceptus chorionic membrane ECMs function as a scaffold-like structure to possibly maintain the shape of the conceptus and a separation between chorionic membranes and the uterine luminal epithelium.
Collapse
|
45
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
46
|
Iqbal K, Chitwood JL, Meyers-Brown GA, Roser JF, Ross PJ. RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm. Biol Reprod 2014; 90:61. [PMID: 24478389 DOI: 10.1095/biolreprod.113.113928] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Formation of the inner cell mass (ICM) and trophectoderm (TE) marks the first differentiation event in mammalian development. These two cell types have completely divergent fates for the remainder of the developmental process. The molecular mechanisms that regulate ICM and TE formation are poorly characterized in horses. The objective of this study was to establish the transcriptome profiles of ICM and TE cells from horse blastocysts using RNA sequencing (RNA-seq). A total of 12 270 genes were found to be expressed in either lineage. Global analysis of the transcriptome profiles by unsupervised clustering indicated that ICM and TE samples presented different gene expression patterns. Statistical analysis indicated that 1662 genes were differentially expressed (adjusted P < 0.05 and fold change > 2) between ICM and TE. Genes known to be specific to the ICM and TE were expressed primarily in their respective tissue. Transcript abundance for genes related to biological processes important for horse blastocyst formation and function is presented and discussed. Collectively, our data and analysis serve as a valuable resource for gene discovery and unraveling the fundamental mechanisms of early horse development.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Department of Animal Science, University of California Davis, Davis, California
| | | | | | | | | |
Collapse
|
47
|
Hall V, Hinrichs K, Lazzari G, Betts DH, Hyttel P. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Vet J 2013; 197:128-42. [PMID: 23810186 DOI: 10.1016/j.tvjl.2013.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/01/2023]
Abstract
Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.
Collapse
Affiliation(s)
- V Hall
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
48
|
Klein C, Troedsson MHT. Macrophage Migration Inhibitory Factor is Expressed by Equine Conceptuses and Endometrium. Reprod Domest Anim 2012; 48:297-304. [DOI: 10.1111/j.1439-0531.2012.02148.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Early developing pig embryos mediate their own environment in the maternal tract. PLoS One 2012; 7:e33625. [PMID: 22470458 PMCID: PMC3314662 DOI: 10.1371/journal.pone.0033625] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/14/2012] [Indexed: 01/19/2023] Open
Abstract
The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development.
Collapse
|
50
|
Klein C, Troedsson MHT. Equine pre-implantation conceptuses express neuraminidase 2--a potential mechanism for desialylation of the equine capsule. Reprod Domest Anim 2011; 47:449-54. [PMID: 22022932 DOI: 10.1111/j.1439-0531.2011.01901.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the second and third week of pregnancy, the equine conceptus is covered by an acellular glycoprotein capsule. This capsule contains glycoproteins resembling those of the mucin family with sialic acid making up a high proportion of the carbohydrate. Coinciding with conceptus fixation, a marked decline in sialic acid content of the capsule occurs, which has been proposed to contribute to cessation of conceptus mobility. Herein, we describe the expression of neuraminidase 2 (NEU2) by pre-implantation stages of equine conceptus development. NEU2 transcript abundance was examined in conceptuses obtained 8, 10, 12, 14 and 16 days after ovulation; highest levels were observed 16 days after ovulation. Transcript abundance observed in endometrial tissue was on average 474-fold lower than in conceptus tissue. Protein expression was localized to trophoblast cells and capsular material. Functionality of NEU2 was shown using an Amplex Red reagent-based assay. NEU2, formerly known as sialidase 2, belongs to a family of enzymes that cleave sialic acid from polysaccharide chains. The expression of NEU2 described herein provides a mechanism by which the conceptus can regulate the sialic acid content of its own capsule. The timely desialylation coinciding with conceptus fixation has been suggested integral for establishment of normal pregnancy.
Collapse
Affiliation(s)
- C Klein
- Gluck Equine Research Center, Department of Veterinary Science, Lexington, KY 40546, USA.
| | | |
Collapse
|