1
|
Mechanism of Herb Pairs Astragalus mongholicus and Curcuma phaeocaulis Valeton in Treating Gastric Carcinoma: A Network Pharmacology Combines with Differential Analysis and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8361431. [PMID: 35321506 PMCID: PMC8938068 DOI: 10.1155/2022/8361431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Background Gastric carcinoma (GC) is a kind of digestive tract tumor that is highly malignant and has a very poor prognosis. Although both Astragalus mongholicus (AM, huáng qí) and Curcuma phaeocaulis Valeton (CPV, é zhú) can slow the onset and progression of GC, the mechanism by which AM-CPV works in the treatment of GC is uncertain. Materials and Methods The traditional Chinese medicine network databases TCMSP, TCMID, and ETCM were used to identify the key functional components and associated targets of AM and CPV. To establish a theoretical foundation, the development of gastric cancer (GC) was predicted utilizing a GEO gene chip and TCGA difference analysis mixed with network pharmacology. A herbal-ingredient-target network and a core target-signal pathway network were created using GO and KEGG enrichment analyses. The molecular docking method was used to evaluate seventeen main targets and their compounds. Results Cell activity, reactive oxygen species modification, metabolic regulation, and systemic immune activation may all be involved in the action mechanism of the AM-CPV drug-pair in the treatment of GC. It inhibits the calcium signaling route, the AGE-RAGE signaling system, the cAMP signaling pathway, the PI3K-Akt signaling network, and the MAPK signaling pathway, slowing the progression of GC. The number of inflammatory substances in the tumor microenvironment is reduced, GC cell proliferation is deprived, apoptosis is promoted, and GC progression is retarded through controlling the IL-17 signaling route, TNF signaling pathway, and other inflammation-related pathways. Conclusions The AM-CPV pharmaceutical combination regulates GC treatment via a multitarget, component, and signal pathway with a cooperative and bidirectional regulatory mechanism. Its active constituents may treat GC by regulating the expression of STAT1, MMP9, IL6, HSP90AA1, JUN, CCL2, IFNG, CXCL8, and other targets, as well as activating or inhibiting immune-inflammatory and cancer signaling pathways.
Collapse
|
2
|
Ding Y, Haks MC, Forn-Cuní G, He J, Nowik N, Harms AC, Hankemeier T, Eeza MNH, Matysik J, Alia A, Spaink HP. Metabolomic and transcriptomic profiling of adult mice and larval zebrafish leptin mutants reveal a common pattern of changes in metabolites and signaling pathways. Cell Biosci 2021; 11:126. [PMID: 34233759 PMCID: PMC8265131 DOI: 10.1186/s13578-021-00642-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leptin plays a critical role in the regulation of metabolic homeostasis. However, the molecular mechanism and cross talks between leptin and metabolic pathways leading to metabolic homeostasis across different species are not clear. This study aims to explore the effects of leptin in mice and zebrafish larvae by integration of metabolomics and transcriptomics. Different metabolomic approaches including mass spectrometry, nuclear magnetic resonance (NMR) and high-resolution magic-angle-spinning NMR spectrometry were used to investigate the metabolic changes caused by leptin deficiency in mutant ob/ob adult mice and lepb-/- zebrafish larvae. For transcriptome studies, deep RNA sequencing was used. RESULTS Thirteen metabolites were identified as common biomarkers discriminating ob/ob mice and lepb-/- zebrafish larvae from their respective wild type controls: alanine, citrulline, ethanolamine, glutamine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, putrescine, serine and threonine. Moreover, we also observed that glucose and lipid levels were increased in lepb-/- zebrafish larvae compared to the lepb+/+ group. Deep sequencing showed that many genes involved in proteolysis and arachidonic acid metabolism were dysregulated in ob/ob mice heads and lepb mutant zebrafish larvae compared to their wild type controls, respectively. CONCLUSIONS Leptin deficiency leads to highly similar metabolic alterations in metabolites in both mice and zebrafish larvae. These metabolic changes show similar features as observed during progression of tuberculosis in human patients, mice and zebrafish larvae. In addition, by studying the transcriptome, we found similar changes in gene regulation related to proteolysis and arachidonic acid metabolism in these two different in vivo models.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Junling He
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Natalia Nowik
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Amy C Harms
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
3
|
Wang H, Pang W, Xu X, You B, Zhang C, Li D. Cryptotanshinone Attenuates Ischemia/Reperfusion-induced Apoptosis in Myocardium by Upregulating MAPK3. J Cardiovasc Pharmacol 2021; 77:370-377. [PMID: 33662979 DOI: 10.1097/fjc.0000000000000971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023]
Abstract
ABSTRACT Chinese people have used the root of Salvia miltiorrhiza Bunge (called "Danshen" in Chinese) for centuries as an anticancer agent, anti-inflammatory agent, antioxidant, and cardiovascular disease drug. In addition, Danshen is considered to be a drug that can improve ischemia/reperfusion (I/R)-induced myocardium injury in traditional Chinese medicine. However, Danshen is a mixture that includes various bioactive substances. In this study, we aimed to identify the protective component and mechanism of Danshen on myocardium through network pharmacology and molecular simulation methods. First, cryptotanshinone (CTS) was identified as a potential active compound from Danshen that was associated with apoptosis by a network pharmacology approach. Subsequently, biological experiments validated that CTS inhibited ischemia/reperfusion-induced cardiomyocyte apoptosis in vivo and in vitro. Molecular docking techniques were used to screen key target information. Based on the simulative results, MAPKs were verified as well-connected molecules of CTS. Western blotting assays also demonstrated that CTS could enhance MAPK expression. Furthermore, we demonstrated that inhibition of the MAPK pathway reversed the CTS-mediated effect on cardiomyocyte apoptosis. Altogether, our work screened out CTS from Danshen and demonstrated that it protected cardiomyocytes from apoptosis.
Collapse
Affiliation(s)
- Hefeng Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Wenhui Pang
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xingsheng Xu
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Beian You
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Cuijuan Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| | - Dan Li
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| |
Collapse
|
4
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Gestrinone inhibits growth of human uterine leiomyoma may relate to activity regulation of ERα, Src and P38 MAPK. Biomed Pharmacother 2012; 66:569-77. [DOI: 10.1016/j.biopha.2012.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/29/2012] [Indexed: 11/19/2022] Open
|
6
|
Tanfin Z, Breuiller-Fouché M. The endothelin axis in uterine leiomyomas: new insights. Biol Reprod 2012; 87:5, 1-10. [PMID: 22553222 DOI: 10.1095/biolreprod.111.097725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The endothelin axis, comprising endothelin-1 (ET-1) and its receptors (ETA and ETB), is involved in the pathophysiology of different human tumors. Here we review conventional approaches and gene expression profiling indicating the association of ET-1 and its cognate receptors with human and rat leiomyomas, the most common benign tumors of myometrium. Specifically, ET-1/ETA interactions affect human and rat leiomyoma cell proliferation through protein kinase C and mitogen-activated protein kinase-dependent signaling pathways. Recent experiments demonstrate that the ET-1 axis exerts a potent antiapoptotic effect involving sphingolipid metabolism and prostaglandin-endoperoxide synthase 2/prostaglandin system in the rat Eker leiomyoma tumor-derived ELT3 cell line. Evidence supports that steroid hormones, growth factors, and extracellular matrix are key regulators of the leiomyoma growth. Interestingly, the ET-1 axis is under steroid hormones and can cooperate with these growth factors. Therefore, ET-1 alone or in association with these factors could contribute to the complex regulation of uterine tumor growth, such as proliferation, survival, and extracellular matrix production. This review summarizes current knowledge and emerging data on ET-1 in uterine leiomyoma pathology.
Collapse
Affiliation(s)
- Zahra Tanfin
- Université Paris-Sud-11, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Equipe Signalisation Moléculaire et Cellulaire utérine, Orsay, France
| | | |
Collapse
|
7
|
Acetic acid- and phenyl-p-benzoquinone-induced overt pain-like behavior depends on spinal activation of MAP kinases, PI3K and microglia in mice. Pharmacol Biochem Behav 2012; 101:320-8. [DOI: 10.1016/j.pbb.2012.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 11/30/2011] [Accepted: 01/22/2012] [Indexed: 11/17/2022]
|
8
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Tanfin Z, Serrano-Sanchez M, Leiber D. ATP-binding cassette ABCC1 is involved in the release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late pregnant rat myometrium. Cell Signal 2011; 23:1997-2004. [PMID: 21803151 DOI: 10.1016/j.cellsig.2011.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 01/08/2023]
Abstract
Sphingosine 1-phosphate (S1P), a bioactive lipid generated by sphingosine kinases (SphK1/2), initiates different signalling pathways involved in physiological and pathological processes. We previously demonstrated that in rat myometrium at late (day 19) gestation, SphK1 increases the expression of COX2 via S1P generation and release. In rat uterine leiomyoma cells (ELT3), SphK1/S1P axis controls survival and proliferation. In the present study we demonstrate that PDBu activates SphK1 but not SphK2. SphK1 activation requires PKC and MAPK ERK1/2. S1P produced by PDBu is released in the medium. PDBu-induced S1P export is abolished by Ro-318220 and BIM (PKC inhibitors), by U0126 and PD98059 (MEK inhibitors), SKI-II (SphKI/2 inhibitor) and SphK1-siRNA, suggesting the involvement of PKC, ERK and SphK1 respectively. The release of S1P is insensitive to inhibitors of ATP Binding Cassette (ABC)A1 and ABCB1 transporters, but is abolished when ABCC1 transporters are inhibited by MK571 or down-regulated by ABCC1-siRNA. PDBu increases COX2 expression that is blocked by the inhibition of PKC, ERK1/2, SphK1, and when cells are treated with MK571 or transfected with ABCC1-siRNA. The induction of COX2 by the S1P release due to PDBu or by exogenous S1P involves S1P2 receptors coupled to Gi. In myometrium from rat at late gestation, the release of S1P is also strongly reduced when SphK and ABCC1 are inhibited. The data reveal that in rat leiomyoma cells and late pregnant rat myometrium, the release of S1P involves a similar signalling pathway and occurs through ABCC1.
Collapse
Affiliation(s)
- Zahra Tanfin
- Signalisation et Régulations Cellulaires, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 8619, Centre National de la Recherche Scientifique,Université Paris-Sud XI, 91405 Orsay, France.
| | | | | |
Collapse
|