1
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
2
|
Okamoto A, Nakanishi T, Tonai S, Shimada M, Yamashita Y. Neurotensin induces sustainable activation of the ErbB-ERK1/2 pathway, which is required for developmental competence of oocytes in mice. Reprod Med Biol 2024; 23:e12571. [PMID: 38510925 PMCID: PMC10951886 DOI: 10.1002/rmb2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
Collapse
Affiliation(s)
- Asako Okamoto
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| |
Collapse
|
3
|
Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat. Sci Rep 2022; 12:4243. [PMID: 35273320 PMCID: PMC8913792 DOI: 10.1038/s41598-022-08238-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Developmental competence of in vitro matured cumulus oocyte complexes (COCs) in conventional IVM (C.IVM) is lower than in vivo maturated COCs and is related to unsynchronized nuclear and cytoplasmic maturation. To overcome this dearth, COCs can be exposed to granulosa secreted factors in a two-step system. Therefore, in the first experiment, 1000 nM of C-type natriuretic peptide for 8 h was determined (CAPA), as the best time and concentration to retain oocytes in germinal vesicle stage. This condition, also reduces lipid droplets and increases the expression of ATGL and PLIN2 involved in lipolysis and lipogenesis, respectively. In the second experiment, maturation was stimulated with prostaglandin E2 and amphiregulin for 18 h (CAPA-IVM), and their optimal concentrations based on blastocyst formation rates through in vitro fertilization (IVF) were determined as 1 and 600 nM, respectively. In the third experiment, the in vitro and in vivo developmental competency of SCNT embryos in CAPA-IVM group were determined. Despite similar blastocyst formation rates in IVF and SCNT between CAPA-IVM and C.IVM, the quality of blastocysts were quality was higher in CAPA-IVM, which reflected itself, as higher ICM/TE ratio and also expression of NANOG in SCNT blastocysts. Pregnancy rate, live births rate and SCNT efficiency were not significant between CAPA-IVM and C.IVM groups. Therefore, CAPA-IVM can improve the developmental competency of SCNT derived embryos.
Collapse
|
4
|
Roshong A, Pier B. A Comparison of Prostaglandin Profile in Human Follicular Fluid Between White and Black/Hispanic Women. Reprod Sci 2022; 29:2039-2042. [PMID: 35233737 DOI: 10.1007/s43032-022-00893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
The aim of the study is to compare prostaglandin (PG) profiles in human follicular fluid between White and Black/Hispanic women using data from a previously published study. A retrospective cohort study of 5 White and 5 Black/Hispanic women who underwent oocyte retrieval was conducted. Human follicular fluid was obtained from the first follicle entered at time of oocyte retrieval for patients undergoing in vitro fertilization cycles (IVF). PG levels were compared using mass spectroscopy with known standards to quantify PG levels. Five White women were matched with 5 Black/Hispanic women with diagnosis. Both cohorts had similar levels of age, body mass index, and IVF cycle characteristics. There were no statistical differences in PG profiles (PGE2, PGF1α, PGF2α, or 8 iso-PGF1α). In this small repeat analysis of previously studied data, there were no differences noted in PG profiles in follicular fluid. Larger studies are needed to verify this finding. This study further demonstrates the lack of representation of minority patients in studies.
Collapse
Affiliation(s)
- Anne Roshong
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Bruce Pier
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA.
| |
Collapse
|
5
|
Fawzy AM, Ibrahim S, Mahmoud K, Heleil BA, El-Kon II, Almadaly EA, Ramoun AA. Gene expression profiles in the oocyte and granulosa cells and concomitant follicular fluid steroid hormone concentrations in pregnant versus non-pregnant she-camels. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
The Role of MAPK3/1 and AKT in the Acquisition of High Meiotic and Developmental Competence of Porcine Oocytes Cultured In Vitro in FLI Medium. Int J Mol Sci 2021; 22:ijms222011148. [PMID: 34681809 PMCID: PMC8537457 DOI: 10.3390/ijms222011148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
The developmental potential of porcine oocytes cultured in vitro was remarkably enhanced in a medium containing FGF2, LIF and IGF1 (FLI) when compared to a medium supplemented with gonadotropins and EGF (control). We analyzed the molecular background of the enhanced oocyte quality by comparing the time course of MAPK3/1 and AKT activation, and the expression of genes controlled by these kinases in cumulus-oocyte complexes (COCs) cultured in FLI and the control medium. The pattern of MAPK3/1 activation in COCs was very similar in both media, except for a robust increase in MAPK3/1 phosphorylation during the first hour of culture in the FLI medium. The COCs cultured in the FLI medium exhibited significantly higher activity of AKT than in the control medium from the beginning up to 16 h of culture; afterwards a deregulation of AKT activity occurred in the FLI medium, which was not observed in the control medium. The expression of cumulus cell genes controlled by both kinases was also modulated in the FLI medium, and in particular the genes related to cumulus-expansion, signaling, apoptosis, antioxidants, cell-to-cell communication, proliferation, and translation were significantly overexpressed. Collectively, these data indicate that both MAPK3/1 and AKT are implicated in the enhanced quality of oocytes cultured in FLI medium.
Collapse
|
7
|
Lu S, Zhang H, Tang Y, Xu R, Liu J, Yao R, Wei J, Li C, Zhao X, Wei Q, Ma B. G protein-coupled estrogen receptor signaling dependent epidermal growth-like factor expression is required for NPR2 inhibition and meiotic resumption in goat oocytes. Theriogenology 2021; 176:35-42. [PMID: 34571396 DOI: 10.1016/j.theriogenology.2021.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
G protein-coupled estrogen receptor (GPER), which is different from traditional estrogen nuclear receptors (ERs), mediates the rapid transduction of nongenomic signals in cells, and works by regulating transcription and intracellular second messengers. Studies have shown that GPER may regulate oocyte maturation, but the relevant mechanism is not entirely clear. Here, goat cumulus-oocyte complexes (COCs) were used as a model to explore the regulation and mechanism of GPER on oocyte maturation. Our study showed that 17β-estradiol (E2) significantly reduced cyclic guanosine monophosphate (cGMP) synthesis in COCs and accelerated the meiotic resumption of goat oocytes via GPER. Further investigation found that GPER mediated the downregulation of natriuretic peptide receptor 2 (NPR2) protein expression in goat cumulus cells by E2. In addition, we found that E2 significantly upregulated the mRNA levels of epidermal growth (EGF)-like factors in goat cumulus cells through GPER, and activated the downstream EGF receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. Both AG1478 (EGFR inhibitor) and U0126 (ERK1/2 inhibitor) abolished the inhibitory effect of E2 on the protein expression of NPR2. These results indicate that, through GPER, E2 upregulates the mRNA levels of EGF-like factors in goat cumulus cells and activates the downstream EGF signaling network to suppress the expression of NPR2 protein, which results in a decrease in cGMP synthesis and acceleration of meiotic resumption in goat oocytes.
Collapse
Affiliation(s)
- Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ru Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Juncai Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Jaworski JP, Urrutia M, Dascal E, Jaita G, Peluffo MC. C-C motif chemokine receptor 2 as a novel intermediate in the ovulatory cascade. Mol Hum Reprod 2021; 26:289-300. [PMID: 32159806 DOI: 10.1093/molehr/gaaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of immune function genes within follicle cells has been reported in ovaries from many species. Recent work from our laboratory showed a direct effect of the monocyte chemoattractant protein 1/C-C motif chemokine receptor 2 system within the feline cumulus oocyte complex, by increasing the mRNA levels of key genes involved in the ovulatory cascade in vitro. Studies were designed to evaluate if C-C motif chemokine receptor 2 acts as a novel mediator of the ovulatory cascade in vitro. Therefore, feline cumulus oocyte complexes were cultured in the presence or absence of a highly selective C-C motif chemokine receptor 2 antagonist together with known inducers of cumulus-oocyte expansion and/or oocyte maturation to assess mRNA expression of key genes related to periovulatory events in other species as well as oocyte maturation. Also, the effects of recombinant monocyte chemoattractant protein 1 on spontaneous or gonadotrophin-induced oocyte maturation were assessed. This is an in vitro system using isolated cumulus oocyte complexes from feline ovaries. The present study reveals the modulation of several key ovulatory genes by a highly selective C-C motif chemokine receptor 2 antagonist. However, this antagonist was not enough to block the oocyte maturation induced by gonadotropins or amphiregulin. Nonetheless, recombinant monocyte chemoattractant protein 1 had a significant effect on spontaneous oocyte maturation, increasing the percentage of metaphase II stage oocytes in comparison to the control. This is the first study in any species to establish C-C motif chemokine receptor 2 as a mediator of some actions of the mid-cycle gonadotrophin surge.
Collapse
Affiliation(s)
- J P Jaworski
- Instituto de Virología, INTA (National Institute of Agricultural Technology-Instituto Nacional de Tecnología Agropecuaria)-CONICET, Argentina. Las Cabañas y Los Reseros s/n, Las Cabañas y Los Reseros 10 s/n, Castelar, Argentina
| | - M Urrutia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| | - E Dascal
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| | - G Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires Buenos, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - M C Peluffo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Differential molecular and hormonal changes in oocytes, granulosa cells and follicular fluid of pregnant and non-pregnant camels. ZYGOTE 2021; 29:427-434. [PMID: 33823953 DOI: 10.1017/s096719942000091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to compare the expression of genes regulating follicles development, survival and steroid hormones secretion in oocytes and granulosa cells (GCs) and study the correlation between their expression and follicular fluid (FF) levels of progesterone (P4) in pregnant and non-pregnant camels. In total, 138 ovarian pairs from slaughtered camels were used. Gene expression and hormonal assay were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The obtained results revealed that the number of follicles (3-8 mm) was significantly (P < 0.05) lower in pregnant, compared with non-pregnant, camels. P4 level in the FF was significantly (P < 0.05) higher in pregnant, compared with non-pregnant, camels. However, no significant (P > 0.05) difference was noticed in the oestradiol (E2) level. STAR, PTEN, IGF1 and BCL2 mRNA levels were significantly higher in GCs and significantly lower in oocytes of pregnant, compared with non-pregnant, camels. However, follicle-stimulating hormone receptor (FSHR) mRNA level was significantly lower in GCs and oocytes, and the BMP15 mRNA level was significantly lower in oocytes of pregnant, compared with non-pregnant, camels. P4 level in FF was positively correlated with STAR, PTEN, IGF1 and BCL2 mRNA levels in GCs and negatively correlated with BMP15 mRNA levels in oocytes and FSHR mRNA levels in GCs and oocytes of pregnant camels. It could be concluded that pregnancy-induced variations in oocytes and GC expression of BMP15, IGF1, FSHR, STAR, BCL2, and PTEN genes might be associated with a decrease in the number of follicles and an increase in the FF level of P4.
Collapse
|
10
|
Boruszewska D, Kowalczyk-Zieba I, Suwik K, Staszkiewicz-Chodor J, Jaworska J, Lukaszuk K, Woclawek-Potocka I. Prostaglandin E 2 affects in vitro maturation of bovine oocytes. Reprod Biol Endocrinol 2020; 18:40. [PMID: 32393337 PMCID: PMC7216604 DOI: 10.1186/s12958-020-00598-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022] Open
Abstract
The role of prostaglandin E2 (PGE2) in the successful resumption of oocyte meiosis and cumulus expansion has been well-documented. However, there remains very little information available on the influence of PGE2 on other processes that occur during oocyte maturation. In this study, we supplemented a maturation medium with PGE2 and monitored oocyte quality markers, glucose metabolism, mitochondrial status, oxidative stress, and apoptosis in the cumulus-oocyte complexes (COCs), using a well-established in vitro model of embryo production in cattle. We found that this increased availability of PGE2 during maturation led to an increase in the expression of genes associated with oocyte competence and improved the quality of blastocysts produced. Prostaglandin E2 also appeared to stimulate glucose uptake and lactate production in the COCs, both influencing the expression of enzymes involved in glycolysis and the hexosamine biosynthetic pathway. We found that PGE2 reduced intracellular reactive oxygen species levels, and simultaneously increased glutathione concentration and stimulated antioxidant gene expression in the oocyte. These results indicate that PGE2 has an important role in the protection of oocytes against oxidative stress. Mitochondrial membrane potential was also improved in PGE2-treated oocytes, and there was a reduction in the occurrence of apoptosis in the COCs. Promotion of an anti-apoptotic balance in transcription of genes involved in apoptosis was present in both oocytes and the cumulus cells. In summary, PGE2 could represent a novel autocrine/paracrine player in the mechanisms that can facilitate successful oocyte maturation and oocyte survival in the cow.
Collapse
Affiliation(s)
- Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland.
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland
| | - Katarzyna Suwik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Str., 80-210, Gdansk, Poland
- INVICTA Fertility and Reproductive Center, Rajska 10 Str., 80-850, Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland
| |
Collapse
|
11
|
Lee SH, Oh HJ, Kim MJ, Lee BC. Exosomes derived from oviduct cells mediate the EGFR/MAPK signaling pathway in cumulus cells. J Cell Physiol 2019; 235:1386-1404. [PMID: 31338842 DOI: 10.1002/jcp.29058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
Current studies indicate that application of oviduct cells (OCs) in in vitro system create microenvironment similar to the in vivo conditions by releasing multiple growth factors which has beneficial effects on the development of cumulus-oocyte complexes and embryos. In particular, recent evidence with a coculture system indicates that there is a reciprocal relationship between canine OCs and cumulus cells and that oviductal secretions can promote changes in cellular protein/gene expression. Despite the fact that OCs respond to cumulus cells, a clear understanding of the mechanism by which the components released from OCs that play a role in modulating the biological function of cumulus cells is still elusive. Therefore, we hypothesized that exosomes derived from OCs (OC-Exo), which efficiently mediate cellular communication by transferring their molecular cargo to recipient cells, could be key modulators of the cross-talk with cumulus cells. We aimed to characterize OC-Exo and decipher their physiological effects on cumulus cells via the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway, which is one of the prerequisite pathways for cell development. Exposure of OC-Exo improved physiological cumulus cell condition including cell concentration, viability, and proliferation rate could reduce the accumulation of reactive oxygen species and the apoptotic rate. Moreover, exosomes could enhance the messenger RNA transcript and protein levels related to EGFR signaling in cumulus cells. The present study provides the first evidence that OC-Exo effectively enhance the physiological condition of cumulus cells exposed to GW4869 or Gefitinib via the EGFR/MAPK signaling pathway and this could be the primary mediators of molecular interactions among cumulus cells and shedding light on the role of exosomes in cumulus cells might permit improvement of oocyte and embryo development in vitro.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Mechanisms of FSH- and Amphiregulin-Induced MAP Kinase 3/1 Activation in Pig Cumulus-Oocyte Complexes During Maturation In Vitro. Int J Mol Sci 2019; 20:ijms20051179. [PMID: 30866587 PMCID: PMC6429514 DOI: 10.3390/ijms20051179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The maturation of mammalian oocytes in vitro can be stimulated by gonadotropins (follicle-stimulating hormone, FSH) or their intrafollicular mediator, epidermal growth factor (EGF)-like peptide—amphiregulin (AREG). We have shown previously that in pig cumulus-oocyte complexes (COCs), FSH induces expression and the synthesis of AREG that binds to EGF receptor (EGFR) and activates the mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. However, in this study we found that FSH also caused a rapid activation of MAPK3/1 in the cumulus cells, which cannot be explained by the de novo synthesis of AREG. The rapid MAPK3/1 activation required EGFR tyrosine kinase (TK) activity, was sensitive to SRC proto-oncogene non-receptor tyrosine kinase (SRC)-family and protein kinase C (PKC) inhibitors, and was resistant to inhibitors of protein kinase A (PKA) and metalloproteinases. AREG also induced the rapid activation of MAPK3/1 in cumulus cells, but this activation was only dependent on the EGFR TK activity. We conclude that in cumulus cells, FSH induces a rapid activation of MAPK3/1 by the ligand-independent transactivation of EGFR, requiring SRC and PKC activities. This rapid activation of MAPK3/1 precedes the second mechanism participating in the generation and maintenance of active MAPK3/1—the ligand-dependent activation of EGFR depending on the synthesis of EGF-like peptides.
Collapse
|
13
|
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod Biol Endocrinol 2018; 16:43. [PMID: 29716588 PMCID: PMC5928575 DOI: 10.1186/s12958-018-0359-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Infertility in mammalian females has been a challenge in reproductive medicine. The causes of female infertility include anovulation, ovulated oocyte defects, abnormal fertilization, and insufficient luteal support for embryo development, as well as early implantation. Ovulation induction, in vitro fertilization and luteal support regimens have been performed for decades to increase fertility rates. The identification of proteins and biochemical factors involved in female reproduction is essential to further increase female fertility rates. Evidence has shown that prostaglandins (PGs) might be involved in the female reproductive process, mainly ovulation, fertilization, and implantation. However, only a few studies on individual PGs in female reproduction have been done so far. This review aimed to identify the pivotal role of prostaglandin E2 (PGE2), a predominant PG, in female reproduction to improve fertility, specifically ovulation, fertilization, embryo development and early implantation. RESULTS Prostaglandin E2 (PGE2) was shown to play a relevant role in the ovulatory cascade, including meiotic maturation, cumulus expansion and follicle rupture, through inducing ovulatory genes, such as Areg, Ereg, Has2 and Tnfaip6, as well as increasing intracellular cAMP levels. PGE2 reduces extracellular matrix viscosity and thereby optimizes the conditions for sperm penetration. PGE2 reduces the phagocytic activity of polymorphonuclear neutrophils (PMNs) against sperm. In the presence of PGE2, sperm function and binding capacity to oocytes are enhanced. PGE2 maintains luteal function for embryo development and early implantation. In addition, it induces chemokine expression for trophoblast apposition and adhesion to the decidua for implantation. CONCLUSION It has been shown that PGE2 positively affects different stages of female fertility. Therefore, PGE2 should be taken into consideration when optimizing reproduction in infertile females. We suggest that in clinical practice, the administration of non-steroidal anti-inflammatory drugs, which are PGE2 synthesis inhibitors, should be reasonable and limited in infertile women. Additionally, assessments of PGE2 protein and receptor expression levels should be taken into consideration.
Collapse
Affiliation(s)
- Jean Damascene Niringiyumukiza
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hongcai Cai
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wenpei Xiang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
14
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
15
|
Khajeh M, Rahbarghazi R, Nouri M, Darabi M. Potential role of polyunsaturated fatty acids, with particular regard to the signaling pathways of arachidonic acid and its derivatives in the process of maturation of the oocytes: Contemporary review. Biomed Pharmacother 2017; 94:458-467. [PMID: 28779707 DOI: 10.1016/j.biopha.2017.07.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023] Open
Abstract
Oocyte meiotic maturation is one of the significant physiological requirements for ovulation and fertility. It is believed that Cyclic Adenosine Monophosphate, protein kinase A and protein kinase C pathways along with eicosanoids, particularly prostaglandin E2, and steroids are the key factors regulating mammalian oocyte maturation. The aim of the current study was to highlight the molecular events triggered by arachidonic acid during oocyte meiotic arrest and resumption at the time of gonadotrophin surge. It should be noted that arachidonic acid release is tightly regulated by Follicle-stimulating and Luteinizing hormones during oocyte development.
Collapse
Affiliation(s)
- Masoumeh Khajeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS, Roberts RM. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc Natl Acad Sci U S A 2017; 114:E5796-E5804. [PMID: 28673989 PMCID: PMC5530680 DOI: 10.1073/pnas.1703998114] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Assisted reproductive technologies in all mammals are critically dependent on the quality of the oocytes used to produce embryos. For reasons not fully clear, oocytes matured in vitro tend to be much less competent to become fertilized, advance to the blastocyst stage, and give rise to live young than their in vivo-produced counterparts, particularly if they are derived from immature females. Here we show that a chemically defined maturation medium supplemented with three cytokines (FGF2, LIF, and IGF1) in combination, so-called "FLI medium," improves nuclear maturation of oocytes in cumulus-oocyte complexes derived from immature pig ovaries and provides a twofold increase in the efficiency of blastocyst production after in vitro fertilization. Transfer of such blastocysts to recipient females doubles mean litter size to about nine piglets per litter. Maturation of oocytes in FLI medium, therefore, effectively provides a fourfold increase in piglets born per oocyte collected. As they progress in culture, the FLI-matured cumulus-oocyte complexes display distinctly different kinetics of MAPK activation in the cumulus cells, much increased cumulus cell expansion, and an accelerated severance of cytoplasmic projections between the cumulus cells outside the zona pellucida and the oocyte within. These events likely underpin the improvement in oocyte quality achieved by using the FLI medium.
Collapse
Affiliation(s)
- Ye Yuan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211;
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Yuchen Tian
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Jie Zhou
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65212
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211;
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| |
Collapse
|
17
|
Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: the role of protein kinase B. Prostaglandins Other Lipid Mediat 2017; 130:38-46. [DOI: 10.1016/j.prostaglandins.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022]
|
18
|
Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev 2016; 61:495-502. [PMID: 26688146 PMCID: PMC4685214 DOI: 10.1262/jrd.2015-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the
preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling
network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa
cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell
compartment and the oocyte itself. Over the last decade, essential progress has been made in the
identification of molecular events associated with the final maturation and ovulation of mammalian oocytes.
All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the
gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways
leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation
of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even
though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we
aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the
activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a
specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Collapse
Affiliation(s)
- Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
19
|
Kim SO, Duffy DM. Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal. Biol Reprod 2016; 95:33. [PMID: 27307073 PMCID: PMC5029471 DOI: 10.1095/biolreprod.116.140574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key intrafollicular mediator of ovulation in many, if not all, mammalian species. PGE2 acts at follicular cells via four distinct PGE2 receptors (PTGERs). Within the ovulatory follicle, each cell type (e.g., oocyte, cumulus granulosa cell, mural granulosa cell, theca cell, endothelial cell) expresses a different subset of the four PTGERs. Expression of a subset of PTGERs has consequences for the generation of intracellular signals and ultimately the unique functions of follicular cells that respond to PGE2. Just as the ovulatory LH surge regulates PGE2 synthesis, the LH surge also regulates expression of the four PTGERs. The pattern of expression of the four PTGERs among follicular cells before and after the LH surge forms a spatial and temporal map of PGE2 responses. Differential PTGER expression, coupled with activation of cell-specific intracellular signals, may explain how a single paracrine mediator can have pleotropic actions within the ovulatory follicle. Understanding the role of each PTGER in ovulation may point to previously unappreciated opportunities to both promote and prevent fertility.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
20
|
Liu C, Wu GQ, Fu XW, Mo XH, Zhao LH, Hu HM, Zhu SE, Hou YP. The Extracellular Calcium-Sensing Receptor (CASR) Regulates Gonadotropins-Induced Meiotic Maturation of Porcine Oocytes. Biol Reprod 2015; 93:131. [PMID: 26490840 DOI: 10.1095/biolreprod.115.128579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gonadotropins and epidermal growth factor (EGF) play crucial roles in promoting oocyte maturation. The regulatory network downstream of these key factors is not well understood. The present study was designed to investigate the role of the calcium-sensing receptor (CASR) in porcine oocyte in vitro maturation. CASR expression was up-regulated in oocytes matured in gonadotropin-containing medium. Cortical distribution of CASR was enhanced with gonadotropins but not EGF. Supplementation of a CASR agonist (NPS R-568) in the gonadotropin (FSH and/or LH)-containing maturation medium significantly enhanced oocyte nuclear maturation. Addition of NPS2390, a CASR antagonist, compromised oocyte nuclear maturation. Furthermore, increased cortical distribution and decreased expression of CASR was observed after the NPS R-568 treatment. Oocytes treated with NPS R-568 had higher concentration of CYCLIN B1, decreased reactive oxygen species, and increased glutathione levels, indicative of advanced cytoplasmic maturation. In contrast, NPS2390 treatment compromised oocyte cytoplasmic maturation. A higher blastocyst formation rate after parthenogenetic activation was observed when oocytes were matured in the presence of the CASR agonist, NPS R-568. MAPK3/1 phosphorylation was increased during in vitro maturation and after NPS R-568 treatment, and decreased following CASR antagonist supplementation. Taken together, our data showed that the CASR is a gonadotropin-regulated factor that promotes porcine oocyte maturation in a MAPK-dependent manner.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guo-Quan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiang-Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian-Hong Mo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Hong Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Mei Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shi-En Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Peng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Ohtake J, Sakurai M, Hoshino Y, Tanemura K, Sato E. Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion. Mol Reprod Dev 2015; 82:218-31. [PMID: 25692763 DOI: 10.1002/mrd.22464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
We investigated the expression of focal adhesion kinase (FAK) in mouse cumulus-oocyte complexes (COCs), as well as the role of FAK phosphorylation at Tyr397 during oocyte maturation. The effect of inhibiting FAK phosphorylation at Tyr397 during in vitro maturation (IVM) on subsequent fertilization and preimplantation embryo development was also examined. Western blotting analyses revealed that total and Tyr397-phosphorylated FAK were expressed in vivo in both cumulus cells and oocytes. Immunocytochemical studies localized this kinase throughout the cytoplasm of cumulus cells and oocytes; in particular, Tyr397-phosphorylated FAK tended to accumulate in regions where cumulus cells contact each other. Interestingly, the in vivo level of Tyr397 phosphorylation in cumulus cells was significantly lower after compared to before cumulus expansion. Addition of FAK inhibitor 14, which specifically blocks phosphorylation at Tyr397, stimulated oocyte meiotic maturation and cumulus expansion during IVM in the absence of follicle-stimulating hormone (FSH). Reverse-transcriptase PCR showed that the mRNA expression of hyaluronan synthase 2 (Has2), a marker of cumulus expansion, was significantly induced in cumulus cells. Subsequent in vitro fertilization and culture showed that more oocytes developed to the blastocyst stage when they were treated with FAK inhibitor 14 during IVM, although the blastocyst total cell number was lower than in oocytes stimulated with FSH. These results indicate that FAK is involved in the maturation of COCs; specifically, phosphorylation at Tyr397 may regulate cumulus expansion via the expression of Has2 mRNA in cumulus cells, which could affect the developmental competence of oocytes.
Collapse
Affiliation(s)
- Jun Ohtake
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
22
|
Romero-Aguirregomezcorta J, Santa ÁP, García-Vázquez FA, Coy P, Matás C. Nitric oxide synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization. PLoS One 2014; 9:e115044. [PMID: 25542028 PMCID: PMC4277276 DOI: 10.1371/journal.pone.0115044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.
Collapse
Affiliation(s)
- Jon Romero-Aguirregomezcorta
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - Ángela Patricia Santa
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
23
|
Peluffo MC, Stanley J, Braeuer N, Rotgeri A, Fritzemeier KH, Fuhrmann U, Buchmann B, Adevai T, Murphy MJ, Zelinski MB, Lindenthal B, Hennebold JD, Stouffer RL. A prostaglandin E2 receptor antagonist prevents pregnancies during a preclinical contraceptive trial with female macaques. Hum Reprod 2014; 29:1400-12. [PMID: 24781425 DOI: 10.1093/humrep/deu083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can administration of a prostaglandin (PG) E2 receptor 2 (PTGER2) antagonist prevent pregnancy in adult female monkeys by blocking periovulatory events in the follicle without altering menstrual cyclicity or general health? SUMMARY ANSWER This is the first study to demonstrate that a PTGER2 antagonist can serve as an effective non-hormonal contraceptive in primates. WHAT IS KNOWN ALREADY The requirement for PGE2 in ovulation and the release of an oocyte surrounded by expanded cumulus cells (cumulus-oocyte expansion; C-OE) was established through the generation of PTGS2 and PTGER2 null-mutant mice. A critical role for PGE2 in primate ovulation is supported by evidence that intrafollicular injection of indomethacin in rhesus monkeys suppressed follicle rupture, whereas co-injection of PGE2 with indomethacin resulted in ovulation. STUDY DESIGN, SIZE, DURATION First, controlled ovulation protocols were performed in adult, female rhesus monkeys to analyze the mRNA levels for genes encoding PGE2 synthesis and signaling components in the naturally selected pre-ovulatory follicle at different times after the ovulatory hCG stimulus (0, 12, 24, 36 h pre-ovulation; 36 h post-ovulation, n = 3-4/time point). Second, controlled ovarian stimulation cycles were utilized to obtain multiple cumulus-oocyte complexes (COCs) from rhesus monkeys to evaluate the role of PGE2 in C-OE in vitro (n = 3-4 animals/treatment; ≥3 COCs/animal/treatment). Third, adult cycling female cynomolgus macaques were randomly assigned (n = 10/group) to vehicle (control) or PTGER2 antagonist (BAY06) groups to perform a contraceptive trial. After the first treatment cycle, a male of proven fertility was introduced into each group and they remained housed together for the duration of the 5-month contraceptive trial that was followed by a post-treatment reversibility trial. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR, COC culture and expansion, immunofluorescence/confocal microscopy, enzyme immunoassay, contraceptive trial, ultrasonography, complete blood counts, serum biochemistry tests and blood lipid profiles. MAIN RESULTS AND THE ROLE OF CHANCE Several mRNAs encoding proteins involved in PGE2 synthesis, metabolism and signaling increase (P < 0.05) in the periovulatory follicle after administration of an ovulatory hCG bolus. PGE2 signaling through PTGER2 induces cumulus cell expansion and production of hyaluronic acid, which are critical events for fertilization. Moreover, chronic administration of a selective PTGER2 antagonist resulted in a significant (P < 0.05 versus vehicle-treated controls) contraceptive effect without altering steroid hormone patterns or menstrual cyclicity during a 5-months contraceptive trial. Fertility recovered as early as 1 month after ending treatment. LIMITATIONS, REASONS FOR CAUTION This is a proof-of-concept study in a non-human primate model. Further investigations are warranted to elucidate the mechanism(s) of PTGER2 antagonist action in the primate ovary. Although PTGER2 antagonist treatment did not produce any obvious undesirable effects, improvements in the mode of administration, as well as the efficacy of these compounds, are necessary to consider such a contraceptive for women. WIDER IMPLICATIONS OF THE FINDINGS Monitoring as well as improving the efficacy and safety of female contraceptives is an important public health activity. Even though hormonal contraceptives are effective for women, concerns remain regarding their side-effects and long-term use because of the widespread actions of such steroidal products in many tissues. Moreover, some women cannot take hormones for medical reasons. Thus, development of non-hormonal contraceptives for women is warranted. STUDY FUNDING/COMPETING INTEREST(S) Supported by Bayer HealthCare Pharmaceuticals, The Eunice Kennedy Shriver NICHD Contraceptive Development and Research Center (U54 HD055744), NIH Office of the Director (Oregon National Primate Research Center P51 OD011092), and a Lalor Foundation Postdoctoral Basic Research Fellowship (MCP). The use of the Leica confocal was supported by grant number S10RR024585. Some of the authors (N.B., A.R., K.-H.F., U.F., B.B. and B.L.) are employees of Bayer Healthcare Pharma.
Collapse
|
24
|
Yamashita Y, Okamoto M, Ikeda M, Okamoto A, Sakai M, Gunji Y, Nishimura R, Hishinuma M, Shimada M. Protein kinase C (PKC) increases TACE/ADAM17 enzyme activity in porcine ovarian somatic cells, which is essential for granulosa cell luteinization and oocyte maturation. Endocrinology 2014; 155:1080-90. [PMID: 24424050 DOI: 10.1210/en.2013-1655] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During in vitro maturation of porcine cumulus cell-oocyte complexes and in vitro luteinization of porcine granulosa cells, FSH induces the expression of the protease TNFα-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) and the epidermal growth factor (EGF)-like factors, which activate the EGF receptor (EGFR)-MAPK3/1 pathway in both cumulus and granulosa cells. FSH is known to activate not only protein kinase A and p38MAPK pathways in both cell types but also activates protein kinase C (PKC). Because PKC-induced association of cellular-Sarcoma (c-Src) and TACE/ADAM17 is required for TACE/ADAM17 enzyme activation in some cancer cells, we hypothesized that PKC and c-Src impact TACE/ADAM17-mediated activation of EGFR signaling pathway in porcine granulosa and cumulus cells. When granulosa cells or cumulus cell-oocyte complexes were cultured with FSH, PKC activity and c-Src phosphorylation increased and were associated with increased TACE/ADAM17 enzyme activity. The PKC inhibitor calphostin C (CalC) and the c-Src inhibitor (4 amino 5 (4 chlorophenyl) 7 (t butyl)pyrazolo[3,4 d]pyrimidine [PP2]) suppressed TACE/ADAM17 enzyme activity, whereas these inhibitors did not affect Tace/Adam17 mRNA expression. Immunoprecipitation analysis showed that FSH mediated the association of c-Src with TACE/ADAM17 via a PKC-dependent mechanism. Either CalC or PP2 suppressed EGFR downstream signaling pathway (MAPK3/1) in these ovarian cell types and reduced cumulus expansion, meiotic maturation of oocytes, and progesterone production. The negative effects were overcome by the addition of amphiregulin. Collectively, these results indicate that activation of TACE/ADAM17 via a PKC-induced c-Src-dependent manner mediates proteolytic activation of the EGF-like factors that are involved in the induction of granulosa cell differentiation, cumulus expansion, and meiotic maturation of porcine oocytes in vitro.
Collapse
Affiliation(s)
- Yasuhisa Yamashita
- Laboratory of Animal Physiology (Y.Y., M.I., A.O., M.Sa.), Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara 727-0023, Japan; Laboratory of Theriogenology (M.O., Y.G., R.N., M.H.), School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; United Graduate School of Veterinary Medicine (Y.G.), Yamaguchi University, Yamaguchi 735-8515, Japan; and Laboratory of Reproductive Endocrinology (M.Sh.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jia B, Wu G, Fu X, Mo X, Du M, Hou Y, Zhu S. trans
-10, cis
-12 conjugated linoleic acid enhances in vitro maturation of porcine oocytes. Mol Reprod Dev 2013; 81:20-30. [DOI: 10.1002/mrd.22273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Baoyu Jia
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute; Kunming Yunnan People's Republic of China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| | - Xianhong Mo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences; China Agricultural University; Beijing People's Republic of China
| | - Ming Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences; China Agricultural University; Beijing People's Republic of China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| |
Collapse
|
26
|
Role of PTGS2-generated PGE2 during gonadotrophin-induced bovine oocyte maturation and cumulus cell expansion. Reprod Biomed Online 2013; 28:388-400. [PMID: 24447957 DOI: 10.1016/j.rbmo.2013.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 10/28/2013] [Accepted: 11/11/2013] [Indexed: 11/20/2022]
Abstract
Prostaglandin E2 (PGE2) is an autocrine/paracrine factor which mediates gonadotrophin (Gn) stimulation of cumulus expansion and oocyte maturation in rodents. Its role in bovine oocyte maturation is less characterized. This study detected PTGS2 (COX2) and PGE synthases (PTGES1, PTGES2 and PTGES3) in bovine cumulus-oocyte complexes (COC). Only PTGS2 and PTGES1 expression changed during maturation. In Gn-free media, no cumulus expansion and ∼45% nuclear maturation was achieved, while Gn-induced maturation showed full cumulus expansion (score 3) and ∼87% maturation. PGE2 supplementation without Gn induced mild cumulus expansion (score 0.5-1) but increased nuclear maturation to levels similar to those obtained with Gn alone. In the presence of Gn, exogenous PGE2 did not affect expansion or nuclear maturation and subsequent embryo development. Treatment with PTGS2 selective inhibitor (NS398), PTGS2-specific siRNA or PTGER2-receptor antagonist (AH6809) resulted in ∼20-25% reduction in nuclear maturation. NS398 and AH6809 did not affect cumulus expansion. Most oocytes not reaching metaphase of second meiosis (MII) following NS398, AH6809 and PTGS2-specific siRNA treatments were at MI. After longer maturation, NS398-treated oocytes had normal MII rate and uncompromised embryo development. PGE2 has a limited role in cumulus expansion in bovine COC but is important for the timing of Gn-induced nuclear maturation. We confirmed that genes involved in the synthesis of prostaglandin E2 (PGE2) are expressed by cumulus-oocyte complexes (or eggs) of cows and that PGE2 is synthesized during oocyte maturation in the presence of gonadotrophin hormones. When we inhibited synthesis of PGE2 or blocked its receptors, oocyte maturation, but not cumulus expansion, was compromised. Further investigation showed that oocyte maturation is delayed but not arrested when PGE2 synthesis is inhibited. On the other hand, addition of exogenous PGE2 induced a high maturation rate and mild cumulus expansion only in the absence of gonadotrophin stimulation, and had no effect in the presence of gonadotrophin.
Collapse
|
27
|
Assidi M, Richard FJ, Sirard MA. FSH in vitro versus LH in vivo: similar genomic effects on the cumulus. J Ovarian Res 2013; 6:68. [PMID: 24066945 PMCID: PMC3852229 DOI: 10.1186/1757-2215-6-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/17/2013] [Indexed: 01/02/2023] Open
Abstract
The use of gonadotropins to trigger oocyte maturation both in vivo and in vitro has provided precious and powerful knowledge that has significantly increased our understanding of the ovarian function. Moreover, the efficacy of most assisted reproductive technologies (ART) used in both humans and livestock species relies on gonadotropin input, mainly FSH and LH. Despite the significant progress achieved and the huge impact of gonadotropins, the exact molecular pathways of the two pituitary hormones, FSH and LH, still remain poorly understood. Moreover, these pathways may not be the same when moving from the in vivo to the in vitro context. This misunderstanding of the intricate synergy between these two hormones leads to a lack of consensus about their use mainly in vitro or in ovulation induction schedules in vivo. In order to optimize their use, additional work is thus required with a special focus on comparing the in vitro versus the in vivo effects. In this context, this overview will briefly summarize the downstream gene expression pathways induced by both FSH in vitro and LH in vivo in the cumulus compartment. Based on recent microarray comparative analysis, we are reporting that in vitro FSH stimulation on cumulus cells appears to achieve at least part of the gene expression activity after in vivo LH stimulation. We are then proposing that the in vitro FSH-response of cumulus cells have similitudes with the in vivo LH-response.
Collapse
Affiliation(s)
- Mourad Assidi
- Département des Sciences Animales, Faculté de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC G1K 7P4, Canada.
| | | | | |
Collapse
|
28
|
Caixeta ES, Sutton-McDowall ML, Gilchrist RB, Thompson JG, Price CA, Machado MF, Lima PF, Buratini J. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction 2013; 146:27-35. [PMID: 23641036 DOI: 10.1530/rep-13-0079] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2.
Collapse
Affiliation(s)
- Ester S Caixeta
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo 18618-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yazawa T, Kawabe S, Kanno M, Mizutani T, Imamichi Y, Ju Y, Matsumura T, Yamazaki Y, Usami Y, Kuribayashi M, Shimada M, Kitano T, Umezawa A, Miyamoto K. Androgen/androgen receptor pathway regulates expression of the genes for cyclooxygenase-2 and amphiregulin in periovulatory granulosa cells. Mol Cell Endocrinol 2013; 369:42-51. [PMID: 23415714 DOI: 10.1016/j.mce.2013.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/26/2012] [Accepted: 02/05/2013] [Indexed: 01/30/2023]
Abstract
It is well known that the androgen/androgen receptor (AR) pathway is involved in both male and female fertility in mammals. AR knockout female mice are reported to exhibit various abnormalities in follicle development, and a subfertile phenotype. In exogenous gonadotropin-induced superovulation, serum androgen levels were robustly elevated in female mice at the periovulatory stage after human chorionic gonadotropin (hCG) treatment. At this stage, ovarian AR proteins were strongly expressed in cumulus cells. Because these results suggested that the androgen/AR pathway is involved in ovulation, we investigated the expression of ovulation-related genes in the mouse ovary treated with the nonaromatizable androgen, 5α-dihydrotestosterone (DHT). DHT treatment induced the expression of the genes for cyclooxyganase-2 (Cox-2 or prostaglandin endoperoxidase synthase 2) and the epidermal growth factor-like factor, amphiregulin (Areg), in the ovary, whereas their hCG-induced expression was suppressed by the AR antagonist flutamide. These genes were also induced by DHT in AR-expressing primary granulosa and granulosa tumor-derived cells. Reporter assays, electrophoretic shift mobility assays and chromatin immunoprecipitation assays demonstrated that androgen response sequence(s) existing upstream of each gene were responsible for androgen responsiveness and were occupied by the AR in periovulatory granulosa cells. Our results suggest that the androgen/AR pathway is involved in the ovulatory process via expression of the Cox-2 and Areg genes in periovulatory granulosa cells.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen H, Kui C, Chan HC. Ca2+ mobilization in cumulus cells: Role in oocyte maturation and acrosome reaction. Cell Calcium 2013; 53:68-75. [DOI: 10.1016/j.ceca.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|