1
|
Varghese J, Link B, Wong B, Thundathil JC. Comparison of the developmental competence of in vitro-produced mouse embryos cultured under 5 versus 2% O 2 with in vivo-derived blastocysts. J Assist Reprod Genet 2024; 41:3089-3103. [PMID: 39313714 PMCID: PMC11621300 DOI: 10.1007/s10815-024-03267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE The prevalence of infertility in Canada has substantially increased over 30 years, and plateaued success rates of culture systems warrant further optimization for transfer outcomes. In clinical programs, embryos commonly undergo extended culture under 5% O2 until the blastocyst stage. The aim of this study is to characterize the developmental competence and stress-related responses of embryos cultured under 5 versus 2% O2 in comparison to in vivo-derived blastocysts. We hypothesized 2% O2 compromises developmental competence through altered embryonic stress responses and induction of apoptosis-related genes relative to those cultured under 5% O2 and in vivo-derived blastocysts. METHODS Quantitative measures of development and relative expressions of a cohort of stress-related genes in CD1 mouse zygotes cultured to blastocysts under 5 or 2% O2 were compared to in vivo-derived embryos. Apoptotic responses were evaluated using an immunofluorescence assay for Caspase-3. RESULTS The mean percentage of blastocysts developed, and total cell number of embryos derived in vivo or cultured under 5% O2 was significantly higher than those cultured under 2% O2. Blastocyst expansion was greatest in embryos cultured under 5% O2. Stress response genes were significantly upregulated in embryos cultured under 2% O2, and expression of antioxidant-related genes was significantly lower in cultured versus in vivo-derived embryos. Caspase-3 immunofluorescence was significantly higher in cultured embryos versus in vivo-derived embryos. CONCLUSION We inferred that 5% O2 systems better approximate physiologic oxygen availability for culture of mouse embryos, warranting re-evaluation of culturing embryos under threshold or sub-physiologic oxygen concentrations during clinical IVF programs.
Collapse
Affiliation(s)
- Jacob Varghese
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Brad Link
- Regional Fertility Program, 2000 Veterans Pl NW #400, Calgary, AB, T3B 4N2, Canada
| | - Ben Wong
- Regional Fertility Program, 2000 Veterans Pl NW #400, Calgary, AB, T3B 4N2, Canada
| | - Jacob C Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Rio PD, DiMarco S, Madan P. MicroRNAomic Analysis of Spent Media from Slow- and Fast-Growing Bovine Embryos Reveal Distinct Differences. Animals (Basel) 2024; 14:2331. [PMID: 39199865 PMCID: PMC11350645 DOI: 10.3390/ani14162331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In bovine embryos, the microRNA (miRNA) expression has been profiled at each stage of early development in vitro. The miRNAomic analysis of spent media has the potential to reveal characteristics of embryo health; however, applications are limited without categorizing miRNA profiles by embryo quality. Time-lapse imaging has shown the timing of embryo development in vitro may be indicative of their developmental potential. The study aimed to characterize miRNAs in the spent media of bovine embryos with different growth rates during the pre-implantation phase. Bovine cumulus-oocyte complexes were aspirated from ovaries, fertilized, and cultured to blastocyst stage of development. At the 2-cell, 8-cell, and blastocyst stage, each microdrop of 30 presumptive zygotes were classified as slow- or fast-growing based on the percentage of embryos that had reached the desired morphological stage. A comparative analysis was performed on the spent media of slow- and fast-growing embryos using the results of a GeneChip miRNA 4.0 array hybridization. In total, 34 differentially expressed miRNAs were identified between the comparison groups: 14 miRNAs were found in the 2-cell samples, 7 in the 8-cell samples, and 12 in the blastocyst samples. The results demonstrate distinct miRNAs populations can be identified between slow- and fast-growing embryos, highlighting the novel biomarkers of developmental potential at each stage of pre-implantation development.
Collapse
Affiliation(s)
| | | | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Montgomery T, Uh K, Lee K. TET enzyme driven epigenetic reprogramming in early embryos and its implication on long-term health. Front Cell Dev Biol 2024; 12:1358649. [PMID: 39149518 PMCID: PMC11324557 DOI: 10.3389/fcell.2024.1358649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Mammalian embryo development is initiated by the union of paternal and maternal gametes. Upon fertilization, their epigenome landscape is transformed through a series of finely orchestrated mechanisms that are crucial for survival and successful embryogenesis. Specifically, maternal or oocyte-specific reprogramming factors modulate germ cell specific epigenetic marks into their embryonic states. Rapid and dynamic changes in epigenetic marks such as DNA methylation and histone modifications are observed during early embryo development. These changes govern the structure of embryonic genome prior to zygotic genome activation. Differential changes in epigenetic marks are observed between paternal and maternal genomes because the structure of the parental genomes allows interaction with specific oocyte reprogramming factors. For instance, the paternal genome is targeted by the TET family of enzymes which oxidize the 5-methylcytosine (5mC) epigenetic mark into 5-hydroxymethylcytosine (5hmC) to lower the level of DNA methylation. The maternal genome is mainly protected from TET3-mediated oxidation by the maternal factor, STELLA. The TET3-mediated DNA demethylation occurs at the global level and is clearly observed in many mammalian species. Other epigenetic modulating enzymes, such as DNA methyltransferases, provide fine tuning of the DNA methylation level by initiating de novo methylation. The mechanisms which initiate the epigenetic reprogramming of gametes are critical for proper activation of embryonic genome and subsequent establishment of pluripotency and normal development. Clinical cases or diseases linked to mutations in reprogramming modulators exist, emphasizing the need to understand mechanistic actions of these modulators. In addition, embryos generated via in vitro embryo production system often present epigenetic abnormalities. Understanding mechanistic actions of the epigenetic modulators will potentially improve the well-being of individuals suffering from these epigenetic disorders and correct epigenetic abnormalities in embryos produced in vitro. This review will summarize the current understanding of epigenetic reprogramming by TET enzymes during early embryogenesis and highlight its clinical relevance and potential implication for assisted reproductive technologies.
Collapse
Affiliation(s)
- Ty Montgomery
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Kyungjun Uh
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Karahan G, Martel J, Rahimi S, Farag M, Matias F, MacFarlane AJ, Chan D, Trasler J. Higher incidence of embryonic defects in mouse offspring conceived with assisted reproduction from fathers with sperm epimutations. Hum Mol Genet 2023; 33:48-63. [PMID: 37740387 PMCID: PMC10729866 DOI: 10.1093/hmg/ddad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Assisted reproductive technologies (ART) account for 1-6% of births in developed countries. While most children conceived are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, haploinsufficiency for Dnmt3L, an important co-factor for DNA methylation reactions, and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For embryos conceived by natural conception, abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Mena Farag
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Fernando Matias
- Nutrition Research Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
5
|
Ducreux B, Barberet J, Guilleman M, Pérez-Palacios R, Teissandier A, Bourc’his D, Fauque P. Assessing the influence of distinct culture media on human pre-implantation development using single-embryo transcriptomics. Front Cell Dev Biol 2023; 11:1155634. [PMID: 37435029 PMCID: PMC10330962 DOI: 10.3389/fcell.2023.1155634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
The use of assisted reproductive technologies is consistently rising across the world. However, making an informed choice on which embryo culture medium should be preferred to ensure satisfactory pregnancy rates and the health of future children critically lacks scientific background. In particular, embryos within their first days of development are highly sensitive to their micro-environment, and it is unknown how their transcriptome adapts to different embryo culture compositions. Here, we determined the impact of culture media composition on gene expression in human pre-implantation embryos. By employing single-embryo RNA-sequencing after 2 or 5 days of the post-fertilization culture in different commercially available media (Ferticult, Global, and SSM), we revealed medium-specific differences in gene expression changes. Embryos cultured pre-compaction until day 2 in Ferticult or Global media notably displayed 266 differentially expressed genes, which were related to essential developmental pathways. Herein, 19 of them could have a key role in early development, based on their previously described dynamic expression changes across development. When embryos were cultured after day 2 in the same media considered more suitable because of its amino acid enrichment, 18 differentially expressed genes thought to be involved in the transition from early to later embryonic stages were identified. Overall, the differences were reduced at the blastocyst stage, highlighting the ability of embryos conceived in a suboptimal in vitro culture medium to mitigate the transcriptomic profile acquired under different pre-compaction environments.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
| | - Julie Barberet
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Magali Guilleman
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Raquel Pérez-Palacios
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | - Patricia Fauque
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| |
Collapse
|
6
|
Zhu L, Zeng X, Liu W, Han W, Huang G, Li J. Comparison of DNA methylation profiles of human embryos cultured in either uninterrupted or interrupted incubators. J Assist Reprod Genet 2023; 40:113-123. [PMID: 36459262 PMCID: PMC9840733 DOI: 10.1007/s10815-022-02669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE We aimed to compare the DNA methylation profiles of human embryos cultured in uninterrupted or interrupted incubators. METHODS This study included 9 women, ≤ 30 years old (range: 20-30 years), without a history of genetic diseases or smoking, undergoing ICSI treatment, and each woman donated one oocyte. Embryos were randomly assigned to culture in either time-lapse imaging or standard incubators after ICSI. We compared the DNA methylation profiles of human eight-cell embryos cultured in uninterrupted condition using time-lapse imaging (TLI) incubator (EmbryoScope) to those cultured in interrupted culture model using standard incubators (SI, G185 K-System). Nine single-cell whole-genome bisulfite sequencing (WGBS) datasets were analyzed, including four SI-cultured embryos and five TLI-cultured embryos at the eight-cell stage. RESULTS A total of 581,140,020 and 732,348,182 clean reads were generated from the TLI and SI groups, respectively. TLI-cultured embryos had similar genome-wide methylation patterns to SI-cultured embryos. There were no significant differences in the methylation and transcription levels of transposable elements and imprinted control regions. Although a total of 198 differentially methylated genes (DMGs) were identified, only five DMGs had significantly different transcription levels between the two groups. CONCLUSIONS This is the first study to compare the DNA methylation profiles of embryos cultured in TLI and SI and will provide a foundation for evaluating the safety of TLI application in assisted reproductive technologies. However, further study with a larger cohort of samples was needed for the data validation.
Collapse
Affiliation(s)
- Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xi Zeng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
7
|
Menezo Y, Elder K, Clement P, Clement A, Patrizio P. Biochemical Hazards during Three Phases of Assisted Reproductive Technology: Repercussions Associated with Epigenesis and Imprinting. Int J Mol Sci 2022; 23:ijms23168916. [PMID: 36012172 PMCID: PMC9408922 DOI: 10.3390/ijms23168916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Medically assisted reproduction, now considered a routine, successful treatment for infertility worldwide, has produced at least 8 million live births. However, a growing body of evidence is pointing toward an increased incidence of epigenetic/imprinting disorders in the offspring, raising concern that the techniques involved may have an impact on crucial stages of early embryo and fetal development highly vulnerable to epigenetic influence. In this paper, the key role of methylation processes in epigenesis, namely the essential biochemical/metabolic pathways involving folates and one-carbon cycles necessary for correct DNA/histone methylation, is discussed. Furthermore, potential contributors to epigenetics dysregulation during the three phases of assisted reproduction: preparation for and controlled ovarian hyperstimulation (COH); methylation processes during the preimplantation embryo culture stages; the effects of unmetabolized folic acid (UMFA) during embryogenesis on imprinting methyl “tags”, are described. Advances in technology have opened a window into developmental processes that were previously inaccessible to research: it is now clear that ART procedures have the potential to influence DNA methylation in embryonic and fetal life, with an impact on health and disease risk in future generations. Critical re-evaluation of protocols and procedures is now an urgent priority, with a focus on interventions targeted toward improving ART procedures, with special attention to in vitro culture protocols and the effects of excessive folic acid intake.
Collapse
Affiliation(s)
- Yves Menezo
- Laboratoire Clément, 17 Avenue d’Eylau, 75016 Paris, France
- Correspondence:
| | - Kay Elder
- Bourn Hall Clinic, Cambridge CB1 0BE, UK
| | | | - Arthur Clement
- Laboratoire Clément, 17 Avenue d’Eylau, 75016 Paris, France
| | - Pasquale Patrizio
- Reproductive Endocrinology & Infertility, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Song X, Li T, Xiong X, Shan H, Feng T, Cui K, Shi D, Liu Q, Li Z. RNA-Seq Reveals the Underlying Molecular Mechanism of First Cleavage Time Affecting Porcine Embryo Development. Genes (Basel) 2022; 13:genes13071251. [PMID: 35886034 PMCID: PMC9320770 DOI: 10.3390/genes13071251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The selection and evaluation of high-quality embryos are the key factors affecting in vitro embryo development and pregnancy outcome. The timing of first embryonic cleavage has been considered a positive indicator of the in vitro developmental potential of embryos, while the underlying molecular mechanism is still not fully understood. In this study, the embryos generated by parthenogenetic activation (PA) or in vitro fertilization (IVF) were monitored and recorded every 2 h and divided into two groups (early cleavage or late cleavage) based on the cleavage rate and blastocyst formation data. RNA sequencing was used to analyze the gene expression pattern of the embryos. We identified 667 and 71 different expression genes (DEGs) in early cleavage and late cleavage porcine PA and IVF embryos, respectively. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs are mainly enriched in pathways concerning the proteasome, DNA repair, cell cycle arrest, autophagy, and apoptosis, suggesting that severe endoplasmic reticulum stress (ERS) and DNA damage may be the key factors that led to the low development potential of late cleavage embryos. This study provides a theoretical basis for the following application and offers important information about the understanding of the timely manner of porcine embryo development.
Collapse
Affiliation(s)
- Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (X.S.); (H.S.); (T.F.); (K.C.); (D.S.)
| | - Tiantian Li
- Guangdong-Hong Kong-Macao Central Nervous Research Institute, Medical School, Jinan University, Guangzhou 510632, China; (T.L.); (X.X.)
| | - Xin Xiong
- Guangdong-Hong Kong-Macao Central Nervous Research Institute, Medical School, Jinan University, Guangzhou 510632, China; (T.L.); (X.X.)
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (X.S.); (H.S.); (T.F.); (K.C.); (D.S.)
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (X.S.); (H.S.); (T.F.); (K.C.); (D.S.)
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (X.S.); (H.S.); (T.F.); (K.C.); (D.S.)
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (X.S.); (H.S.); (T.F.); (K.C.); (D.S.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (X.S.); (H.S.); (T.F.); (K.C.); (D.S.)
- Correspondence: ; Tel.: +86-185-0136-1752
| |
Collapse
|
9
|
Caramaschi D, Jungius J, Page CM, Novakovic B, Saffery R, Halliday J, Lewis S, Magnus MC, London SJ, Håberg SE, Relton CL, Lawlor DA, Elliott HR. Association of medically assisted reproduction with offspring cord blood DNA methylation across cohorts. Hum Reprod 2021; 36:2403-2413. [PMID: 34136910 PMCID: PMC8289315 DOI: 10.1093/humrep/deab137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Is cord blood DNA methylation associated with having been conceived by medically assisted reproduction? SUMMARY ANSWER This study does not provide strong evidence of an association of conception by medically assisted reproduction with variation in infant blood cell DNA methylation. WHAT IS KNOWN ALREADY Medically assisted reproduction consists of procedures used to help infertile/subfertile couples conceive, including ART. Due to its importance in gene regulation during early development programming, DNA methylation and its perturbations associated with medically assisted reproduction could reveal new insights into the biological effects of assisted reproductive technologies and potential adverse offspring outcomes. STUDY DESIGN, SIZE, DURATION We investigated the association of DNA methylation and medically assisted reproduction using a case–control study design (N = 205 medically assisted reproduction cases and N = 2439 naturally conceived controls in discovery cohorts; N = 149 ART cases and N = 58 non-ART controls in replication cohort). PARTICIPANTS/MATERIALS, SETTINGS, METHODS We assessed the association between medically assisted reproduction and DNA methylation at birth in cord blood (205 medically assisted conceptions and 2439 naturally conceived controls) at >450 000 CpG sites across the genome in two sub-samples of the UK Avon Longitudinal Study of Parents and Children (ALSPAC) and two sub-samples of the Norwegian Mother, Father and Child Cohort Study (MoBa) by meta-analysis. We explored replication of findings in the Australian Clinical review of the Health of adults conceived following Assisted Reproductive Technologies (CHART) study (N = 149 ART conceptions and N = 58 controls). MAIN RESULTS AND THE ROLE OF CHANCE The ALSPAC and MoBa meta-analysis revealed evidence of association between conception by medically assisted reproduction and DNA methylation (false-discovery-rate-corrected P-value < 0.05) at five CpG sites which are annotated to two genes (percentage difference in methylation per CpG, cg24051276: Beta = 0.23 (95% CI 0.15,0.31); cg00012522: Beta = 0.47 (95% CI 0.31, 0.63); cg17855264: Beta = 0.31 (95% CI 0.20, 0.43); cg17132421: Beta = 0.30 (95% CI 0.18, 0.42); cg18529845: Beta = 0.41 (95% CI 0.25, 0.57)). Methylation at three of these sites has been previously linked to cancer, aging, HIV infection and neurological diseases. None of these associations replicated in the CHART cohort. There was evidence of a functional role of medically assisted reproduction-induced hypermethylation at CpG sites located within regulatory regions as shown by putative transcription factor binding and chromatin remodelling. LIMITATIONS, REASONS FOR CAUTIONS While insufficient power is likely, heterogeneity in types of medically assisted reproduction procedures and between populations may also contribute. Larger studies might identify replicable variation in DNA methylation at birth due to medically assisted reproduction. WIDER IMPLICATIONS OF THE FINDINGS Newborns conceived with medically assisted procedures present with divergent DNA methylation in cord blood white cells. If these associations are true and causal, they might have long-term consequences for offspring health. STUDY FUNDING/COMPETING INTERESTS(S) This study has been supported by the US National Institute of Health (R01 DK10324), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 669545, European Union’s Horizon 2020 research and innovation programme under Grant agreement no. 733206 (LifeCycle) and the NIHR Biomedical Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Methylation data in the ALSPAC cohort were generated as part of the UK BBSRC funded (BB/I025751/1 and BB/I025263/1) Accessible Resource for Integrated Epigenomic Studies (ARIES, http://www.ariesepigenomics.org.uk). D.C., J.J., C.L.R. D.A.L and H.R.E. work in a Unit that is supported by the University of Bristol and the UK Medical Research Council (Grant nos. MC_UU_00011/1, MC_UU_00011/5 and MC_UU_00011/6). B.N. is supported by an NHMRC (Australia) Investigator Grant (1173314). ALSPAC GWAS data were generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (Contract no. N01-ES-75558), NIH/NINDS (Grant nos. (i) UO1 NS 047537-01 and (ii) UO1 NS 047537-06A1). For this work, MoBa 1 and 2 were supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01-ES-49019) and the Norwegian Research Council/BIOBANK (Grant no. 221097). This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, Project no. 262700. D.A.L. has received support from national and international government and charity funders, as well as from Roche Diagnostics and Medtronic for research unrelated to this study. The other authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Doretta Caramaschi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - James Jungius
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian M Page
- Division for Research Support, Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Health, Oslo, Norway
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Jane Halliday
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Sharon Lewis
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Centre for Fertility and Health, Norwegian Institute of Health, Oslo, Norway
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Health, Oslo, Norway
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Bristol NIHR Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Abstract
Assisted reproductive technology is today considered a safe and reliable medical intervention, with healthy live births a reality for many IVF and ICSI treatment cycles. However, there are increasing numbers of published reports describing epigenetic/imprinting anomalies in children born as a result of these procedures. These anomalies have been attributed to methylation errors in embryo chromatin remodelling during in vitro culture. Here we re-visit three concepts: (1) the so-called 'in vitro toxicity' of 'essential amino acids' before the maternal to zygotic transition period; (2) the effect of hyperstimulation (controlled ovarian hyperstimulation) on homocysteine in the oocyte environment and the effect on methylation in the absence of essential amino acids; and (3) the fact/postulate that during the early stages of development the embryo undergoes a 'global' demethylation. Methylation processes require efficient protection against oxidative stress, which jeopardizes the correct acquisition of methylation marks as well as subsequent methylation maintenance. The universal precursor of methylation [by S-adenosyl methionine (SAM)], methionine, 'an essential amino acid', should be present in the culture. Polyamines, regulators of methylation, require SAM and arginine for their syntheses. Cystine, another 'semi-essential amino acid', is the precursor of the universal protective antioxidant molecule: glutathione. It protects methylation marks against some undue DNA demethylation processes through ten-eleven translocation (TET), after formation of hydroxymethyl cytosine. Early embryos are unable to convert homocysteine to cysteine as the cystathionine β-synthase pathway is not active. In this way, cysteine is a 'real essential amino acid'. Most IVF culture medium do not maintain methylation/epigenetic processes, even in mouse assays. Essential amino acids should be present in human IVF medium to maintain adequate epigenetic marking in preimplantation embryos. Furthermore, morphological and morphometric data need to be re-evaluated, taking into account the basic biochemical processes involved in early life.
Collapse
|
11
|
Barberet J, Binquet C, Guilleman M, Doukani A, Choux C, Bruno C, Bourredjem A, Chapusot C, Bourc'his D, Duffourd Y, Fauque P. Do assisted reproductive technologies and in vitro embryo culture influence the epigenetic control of imprinted genes and transposable elements in children? Hum Reprod 2021; 36:479-492. [PMID: 33319250 DOI: 10.1093/humrep/deaa310] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Do assisted reproductive technologies (ART) and in vitro embryo culture influence the epigenetic control of imprinted genes (IGs) and transposable elements (TEs) in children? SUMMARY ANSWER Significant differences in the DNA methylation of IGs or transposon families were reported between ART and naturally conceived children, but there was no difference between culture media. WHAT IS KNOWN ALREADY There is concern that ART may play a role in increasing the incidence of adverse health outcomes in children, probably through epigenetic mechanisms. It is crucial to assess epigenetic control, especially following non-optimal in vitro culture conditions and to compare epigenetic analyses from ART-conceived and naturally conceived children. STUDY DESIGN, SIZE, DURATION This follow-up study was based on an earlier randomized study comparing in vitro fertilization outcomes following the use of two distinct culture media. We compared the epigenetic profiles of children from the initial randomized study according to the mode of conception [i.e. ART singletons compared with those of a cohort of naturally conceived singleton children (CTL)], the type of embryo culture medium used [global medium (LifeGlobal) and single step medium (Irvine Scientific)] and the mode of in vitro fertilization (i.e. IVF versus ICSI). PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 57 buccal smears were collected from 7- to 8-year-old children. The DNA methylation profiles of four differentially methylated regions (DMRs) of IGs (H19/IGF2: IG-DMR, KCNQ1OT1: TSS-DMR, SNURF: TSS-DMR, and PEG3: TSS-DMR) and two TEs (AluYa5 and LINE-1) were first assessed by pyrosequencing. We further explored IGs and TEs' methylation changes through methylation array (Human MethylationEPIC BeadChip referred as EPIC array, Illumina). MAIN RESULTS AND THE ROLE OF CHANCE Changes in the IGs' DNA methylation levels were found in ART children compared to controls. DNA methylation levels of H19/IGF2 DMR were significantly lower in ART children than in CTL children [52% versus 58%, P = 0.003, false discovery rate (FDR) P = 0.018] while a significantly higher methylation rate was observed for the PEG3 DMR (51% versus 48%, P = 0.007, FDR P = 0.021). However, no differences were found between the culture media. After observing these targeted modifications, analyses were performed at wider scale. Again, no differences were detected according to the culture media, but imprinted-related DMRs overlapping promoter region near the genes major for the development (MEG3, BLCAP, and DLX5) were detected between the ART and CTL children. LIMITATIONS, REASONS FOR CAUTION The sample size could seem relatively small, but the high consistency of our results was ensured by the homogeneity of the cohort from the initial randomized study, the standardized laboratory techniques and the robust statistical analyses accounting for multiple testing. WIDER IMPLICATIONS OF THE FINDINGS Although this study did not report DNA methylation differences depending on the culture medium, it sheds light on epigenetic changes that could be observed in some children conceived by ART as compared to CTL children. The clinical relevance of such differences remains largely unknown, and it is still unclear whether such changes are due to some specific ART procedures and/or to parental infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the Agence Nationale pour la Recherche ('CARE'-ANR JCJC 2017). The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER Not concerned.
Collapse
Affiliation(s)
- J Barberet
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - C Binquet
- CHU Dijon Bourgogne, Centre d'Investigation Clinique, module Epidémiologie Clinique/essais cliniques (CIC-EC), Dijon, France.,INSERM, CIC1432, module épidémiologie clinique, Dijon, France
| | - M Guilleman
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - A Doukani
- Faculté de Médecine Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
| | - C Choux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique, Dijon, France
| | - C Bruno
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - A Bourredjem
- CHU Dijon Bourgogne, Centre d'Investigation Clinique, module Epidémiologie Clinique/essais cliniques (CIC-EC), Dijon, France.,INSERM, CIC1432, module épidémiologie clinique, Dijon, France
| | - C Chapusot
- CHU Dijon Bourgogne, Plateforme de génétique des Cancers de bourgogne, Dijon, France
| | - D Bourc'his
- Institut Curie, PSL University, CNRS, INSERM, Paris, France
| | - Y Duffourd
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - P Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
12
|
Martino NA, Marzano G, Mastrorocco A, Lacalandra GM, Vincenti L, Hinrichs K, Dell Aquila ME. Use of time-lapse imaging to evaluate morphokinetics of in vitro equine blastocyst development after oocyte holding for two days at 15°C versus room temperature before intracytoplasmic sperm injection. Reprod Fertil Dev 2020; 31:1862-1873. [PMID: 31708015 DOI: 10.1071/rd19223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/17/2019] [Indexed: 01/25/2023] Open
Abstract
Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22-27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.
Collapse
Affiliation(s)
- N A Martino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy; and Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy; and Corresponding author.
| | - G Marzano
- Department of Mathematics and Physics Ennio de Giorgi, University of Salento, Via per Arnesano, 73100, Lecce, Italy; and Institute of Nanotechnology, CNR Nanotec, Via per Monteroni, 73100, Lecce, Italy
| | - A Mastrorocco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy
| | - G M Lacalandra
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy
| | - L Vincenti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - M E Dell Aquila
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy
| |
Collapse
|
13
|
Abstract
The process of embryonic development is crucial and radically influences preimplantation embryo competence. It involves oocyte maturation, fertilization, cell division and blastulation and is characterized by different key phases that have major influences on embryo quality. Each stage of the process of preimplantation embryonic development is led by important signalling pathways that include very many regulatory molecules, such as primary and secondary messengers. Many studies, both in vivo and in vitro, have shown the importance of the contribution of reactive oxygen species (ROS) as important second messengers in embryo development. ROS may originate from embryo metabolism and/or oocyte/embryo surroundings, and their effect on embryonic development is highly variable, depending on the needs of the embryo at each stage of development and on their environment (in vivo or under in vitro culture conditions). Other studies have also shown the deleterious effects of ROS in embryo development, when cellular tissue production overwhelms antioxidant production, leading to oxidative stress. This stress is known to be the cause of many cellular alterations, such as protein, lipid, and DNA damage. Considering that the same ROS level can have a deleterious effect on the fertilizing oocyte or embryo at certain stages, and a positive effect at another stage of the development process, further studies need to be carried out to determine the rate of ROS that benefits the embryo and from what rate it starts to be harmful, this measured at each key phase of embryonic development.
Collapse
|
14
|
Kaihola H, Yaldir FG, Bohlin T, Samir R, Hreinsson J, Åkerud H. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts. PLoS One 2019; 14:e0226419. [PMID: 31856190 PMCID: PMC6922338 DOI: 10.1371/journal.pone.0226419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Morphological assessment at defined developmental stages is the most important method to select viable embryos for transfer and cryopreservation. Timing of different developmental stages in embryo development has been shown to correlate with its potential to develop into a blastocyst. However, improvements in pregnancy rates by using time-lapse techniques have been difficult to validate scientifically. Therefore, there is a need for new methods, preferably non-invasive methods based on metabolomics, genomics and proteomics, to improve the evaluation of embryo quality even further. The aim of this study was to investigate if different levels of caspase-3 and histidine-rich glycoprotein (HRG), secreted by the embryo into the culture media, can be used as biomarkers of embryo quality. In this study, a total of 334 samples of culture media were collected from in vitro fertilization (IVF) treatments at three different clinics. Protein analysis of the culture media was performed using multiplex proximity extension protein analysis to detect levels of caspase-3 and HRG in the embryo secretome. Protein levels were compared in secretome samples from high- and low-quality blastocysts and embryos that became arrested during development. Correlation between protein levels and time to morula formation was also analyzed. Furthermore, protein levels in secretomes from day-2 cultured embryos were compared on the basis of whether or not pregnancy was achieved. The results showed that caspase-3 levels were lower in secretomes from high-quality vs. low-quality blastocysts and those that became arrested (p ≤ 0.05 for both). In addition, higher HRG levels correlated with a shorter time to morula formation (p ≤ 0.001). Caspase-3 levels were also lower in secretomes from day-2 cultured embryos resulting in a pregnancy vs. those that did not (p ≤ 0.05). Furthermore, it was shown that caspase-3 might be used as a marker for predicting potential success rate after transfer of day-2 cultured embryos, where a caspase-3 cutoff level of 0.02 gave a prediction probability of 68% (p = 0.038). In conclusion, in future prediction models, levels of caspase-3 and HRG might be used as potential markers of embryo quality, and secreted caspase-3 levels could to some extent predict the outcome after transfer of day-2 cultured embryos.
Collapse
Affiliation(s)
- Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Fatma Gülen Yaldir
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Therese Bohlin
- Fertility Unit, Örebro University Hospital, Örebro, Sweden
| | | | - Julius Hreinsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- GynHälsan Fertility Clinic, Minerva Fertility, Uppsala, Sweden
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- GynHälsan Fertility Clinic, Minerva Fertility, Uppsala, Sweden
| |
Collapse
|
15
|
Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics 2019; 11:162. [PMID: 31767035 PMCID: PMC6878706 DOI: 10.1186/s13148-019-0751-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Over the last several decades, the average age of first-time mothers has risen steadily. With increasing maternal age comes a decrease in fertility, which in turn has led to an increase in the use of assisted reproductive technologies by these women. Assisted reproductive technologies (ARTs), including superovulation and embryo culture, have been shown separately to alter imprinted DNA methylation maintenance in blastocysts. However, there has been little investigation on the effects of advanced maternal age, with or without ARTs, on genomic imprinting. We hypothesized that ARTs and advanced maternal age, separately and together, alter imprinted methylation in mouse preimplantation embryos. For this study, we examined imprinted methylation at three genes, Snrpn, Kcnq1ot1, and H19, which in humans are linked to ART-associated methylation errors that lead to imprinting disorders. Results Our data showed that imprinted methylation acquisition in oocytes was unaffected by increasing maternal age. Furthermore, imprinted methylation was normally acquired when advanced maternal age was combined with superovulation. Analysis of blastocyst-stage embryos revealed that imprinted methylation maintenance was also not affected by increasing maternal age. In a comparison of ARTs, we observed that the frequency of blastocysts with imprinted methylation loss was similar between the superovulation only and the embryo culture only groups, while the combination of superovulation and embryo culture resulted in a higher frequency of mouse blastocysts with maternal imprinted methylation perturbations than superovulation alone. Finally, the combination of increasing maternal age with ARTs had no additional effect on the frequency of imprinted methylation errors. Conclusion Collectively, increasing maternal age with or without superovulation had no effect of imprinted methylation acquisition at Snrpn, Kcnq1ot1, and H19 in oocytes. Furthermore, during preimplantation development, while ARTs generated perturbations in imprinted methylation maintenance in blastocysts, advanced maternal age did not increase the burden of imprinted methylation errors at Snrpn, Kcnq1ot1, and H19 when combined with ARTs. These results provide cautious optimism that advanced maternal age is not a contributing factor to imprinted methylation errors in embryos produced in the clinic. Furthermore, our data on the effects of ARTs strengthen the need to advance clinical methods to reduce imprinted methylation errors in in vitro-produced embryos.
Collapse
Affiliation(s)
- Audrey J Kindsfather
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Megan A Czekalski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Catherine A Pressimone
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Margaret P Erisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Mellissa R W Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Abstract
Human embryo studies have proposed the use of additional morphological evaluations related to the moment of the first cell divisions as relevant to embryo viability. Nevertheless, there are still not enough data available related to morphokinetic analysis and its relationship with lipid composition in embryos. Therefore, the aim of this study was to address the lipid profile of bovine embryos with different developmental kinetics: fast (four or more cells) and slow (two or three cells) at 40 h post-insemination (hpi), at three time points of in vitro culture (40, 112 and 186 hpi) and compare these to profiles of in vivo embryos. The lipid profiles of embryos were analyzed by matrix-assisted laser desorption ionization mass spectrometry, which mainly detected pools of membrane lipids such as phosphatidylcholine and sphingomyelin. In addition to their structural function, these lipid classes have an important role in cell signalling, particularly regarding events such as stress and pregnancy. Different patterns of lipids in the fast and slow groups were revealed in all the analyzed stages. Also, differences between in vitro embryos were more pronounced at 112 hpi, a critical moment due to embryonic genome activation. At the blastocyst stage, in vitro-produced embryos, despite the kinetics, had a closer lipid profile when compared with in vivo blastocysts. In conclusion, the kinetics of development had a greater effect on the membrane lipid profiles throughout the embryo culture, especially at the 8-16-cell stage. The in vitro environment affects lipid composition and may compromise cell signalling and function in blastocysts.
Collapse
|
17
|
Chen S, Zhang M, Li L, Wang M, Shi Y, Zhang H, Kang B, Tang N, Li B. Loss of methylation of H19-imprinted gene derived from assisted reproductive technologies can be mitigated by cleavage-stage embryo transfer in mice. J Assist Reprod Genet 2019; 36:2259-2269. [PMID: 31515683 DOI: 10.1007/s10815-019-01575-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Studies on rodents have shown that assisted reproductive technologies (ARTs) are associated with perturbation of genomic imprinting in blastocyst-stage embryos. However, the vulnerable developmental window for ART influence on the genomic imprinting of embryos is still undetermined. The purpose of this study was to establish the specific embryonic development stage at which the loss of methylation of H19 imprinting control regions (ICRs) was caused by ART occurrence. Additionally, we explored protocols to safeguard against possible negative impacts of ART on embryo H19 imprinting. METHODS Mouse embryos were generated under four different experimental conditions, divided into four groups: control, in vitro culture (IVC), in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). The methylation levels of H19 ICR of the grouped or individual embryos were analyzed by bisulfite-sequencing PCR. RESULTS Our data showed that the loss of methylation of H19 ICR in mouse blastocysts was inflicted to a similar extent by IVC, IVF, and ICSI. Specifically, we observed a significant loss of methylation of H19 ICR between the mouse 8-cell and morula stages. In addition, we revealed that the transfer of mouse embryos generated by ARTs in the uterus at the 8-cell stage induced the occurrence of methylation patterns in the blastocysts closer to the in vivo ones. CONCLUSIONS Our findings indicate that the loss of methylation of H19 ICR caused by ARTs occurs between the 8-cell and the morula stages, and the transfer of cleavage embryos to the uterus mitigates the loss methylation of H19 derived by mice ARTs.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Meizi Zhang
- Reproductive Medicine Center, Tianjin Frist Central Hospital, Tianjin, 300192, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yongqian Shi
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Na Tang
- Shaanxi Institute for Food and Drug Control, Xi'an, 710038, People's Republic of China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
18
|
Yu MF, Wang JL, Yi JM, Ma L. Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos. PLoS One 2019; 14:e0220479. [PMID: 31356635 PMCID: PMC6663018 DOI: 10.1371/journal.pone.0220479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturation of oocytes, preimplantation embryonic development, and expression of important developmental genes. The results indicated that NaBu decreased the rates of GVBD and the first polar body extrusion (PBE) in vitro in a dose-dependent manner. Meanwhile, NaBu treatment led to an abnormality in the spindle apparatus in oocytes in MI. However, the ratio of phosphor-extracellular signal-regulated kinases (p-ERK)/ERK significantly decreased in oocytes treated with 2.0 mM NaBu for 8 h. Furthermore, NaBu treatment at 2.0 mM improved the quality of embryos and the mRNA expression levels of important developmental genes such as HDAC1, Sox2, and Pou5f1. These data suggest that although a high concentration NaBu will impede the meiosis of oocytes, 2.0 mM NaBu will promote the development of embryos in vitro. Further investigation is needed to clarify the direct/indirect effects of NaBu on the regulation of important developmental genes and their subsequent impacts on full-term development in mammals.
Collapse
Affiliation(s)
- Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Ju-Long Wang
- Key Laboratory of Agricultural Animal Genetic, Breeding, and Reproduction for Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, China
- School of Biotechnology, Wuhu Institute of Technology, Wuhu, China
| | - Jian-Ming Yi
- Key Laboratory of Agricultural Animal Genetic, Breeding, and Reproduction for Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, China
- * E-mail: (LM); (JMY)
| | - Lin Ma
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Moshan, Wuchang, Wuhan, Hubei, China
- * E-mail: (LM); (JMY)
| |
Collapse
|
19
|
Nasiri N, Karimian L, Hassani F, Gourabi H, Alipour H, Zolfaghari Z, Eftekhari-Yazdi P. Total Antioxidant Capacity; A Potential Biomarker for Non-Invasive Sex Prediction in Culture Medium of Preimplantation Human Embryos. CELL JOURNAL 2019; 21:253-258. [PMID: 31210430 PMCID: PMC6582414 DOI: 10.22074/cellj.2019.6115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
Objective The presence of a sex related metabolic difference in glucose utilization and, on the other hand, different
developmental kinetic rates in human preimplantation embryos, has been previously observed, hawever, the correlation
between these two events is unknown. Oxidative stress (OS) induced by higher glucose consumption appears to be a possible
cause for the delayed development rate in female embryos. We examined the correlation between glucose consumption and
total antioxidant capacity (TAC) concentration in individual embryo culture media for both male and female embryos.
Materials and Methods In this cross-sectional study, we evaluated high quality embryos from 51 patients that underwent
intracytoplasmic sperm injection (ICSI) and preimplantation genetic diagnosis (PGD) at the Royan Institute between December
2014 and September 2017. The embryos were individually cultured in G-2TMmedium droplets at days 3-5 or 48 hours post
PGD. We analysed the spent culture media following embryo transfer for total antioxidant capacity (TAC) and any remaining
glucose concentrations through fluorometric measurement by chemiluminecence system which indirectly was used for
measurement of glucose consumed by embryos.
Results The results showed that female embryos consumed more glucose which was associated with decreased TAC
concentration in their culture medium compared to male embryos. The mean of glucose concentration consumed by
the female embryos (30.7 ± 4.7 pmol/embryo/hour) was significantly higher than that of the male embryos (25.3 ± 3.3
pmol/embryo/hour) (P<0.001). There were significantly lower levels of TAC in the surrounding culture medium of female
embryos (22.60 ± 0.19 nmol/µl) compared with male embryos (24.74 ± 0.27 nmol/µl, P<0.01).
Conclusion This finding highlighted the utilization of sex dependent metabolic diversity between preimplantation embryos
for non-invasive sex diagnosis and suggests the TAC concentration as a potential noninvasive biomarker for prediction of sex.
Collapse
Affiliation(s)
- Nahid Nasiri
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Karimian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hiva Alipour
- Biomedicine Group, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Zahra Zolfaghari
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
20
|
Oliveira CS, de Barros BAF, Monteiro CAS, Rosa PMS, Leal GR, Serapião RV, Camargo LSA. Individual assessment of bovine embryo development using a homemade chamber reveals kinetic patterns of success and failure to reach blastocyst stage. Syst Biol Reprod Med 2019; 65:301-311. [PMID: 30958032 DOI: 10.1080/19396368.2019.1589601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most early developmental data are lost in bovine embryo culture systems. We developed and validated a method for culture of bovine embryos in groups that allow individual assessment. An autoclavable low-cost multiembryo chamber (MEC) was prepared using a polyester mesh fixed to a glass coverslip. Embryonic development was not affected by MEC. Compared to conventional bovine culture system (oil-covered drops, control), cleavage (C, 71.2 ± 7.8%; MEC, 74.3 ± 6.0%), blastocyst rate (C, 29.9 ± 4.4%; MEC, 28.3 ± 5.0%) and blastocyst cell number (C, 94.1 ± 9.7; MEC, 92.9 ± 5.3) were similar. Caspase 3 positive cell index in blastocysts was increased in MEC group, but apoptosis rate was below 5% (C, 2.9 ± 0.5; MEC, 4.6 ± 0.6). Using MEC, we performed a retrospective analysis for 'failure' and 'success' embryos, based on their ability to reach the blastocyst stage. We detected the majority of 'success' embryos displayed 8 cells at 48 h post-insemination (hpi) (48.7%), but blastocysts derived from this pattern presented lower cell numbers (91.3 ± 4.2 vs. 107.9 ± 4.9) and higher apoptosis index (6.2 ± 0.6 vs. 4.4 ± 0.5) than blastocysts from 4-cell embryos at 48 hpi. Most (72.0%) embryos that were at morula stage 120 hpi reached blastocyst stage at 168 hpi. Those blastocysts presented more number of cells than blastocysts derived from embryos exhibiting 16 cells at 120 hpi (108.6 ± 4.1 vs. 83.9 ± 4.8). Combination of embryo kinetics data at 48 and 120 hpi revealed high chances of blastocyst formation for patterns: 8 cells/morula, 4 cells/morula, 8 cells/16 cells and 4 cells/16 cells. Blastocysts formed from 4-cell/morula and 8-cell/morula patterns represented 69% of all 168 hpi blastocysts. Blastocysts derived from 4 cells/16 cells displayed decreased apoptosis (3.1 ± 0.6). Our results suggest that MEC can be used for bovine embryo culture without detrimental effects on development and can help to predict blastocyst formation and quality of in vitro fertilization (IVF) embryos. Abbreviations: BSA: bovine serum albumine; COC: cumulus-oocyte complex; FERT-TALP: Tyrode's albumin lactate pyruvate fertilization; FBS: fetal bovine serum; IVF: in vitro fertilization; MEC: multiembryo chamber; PBS: phosphate buffered saline; SOF-AA: synthetic oviductal fluid with amino acids medium; TCM: Tissue Culture Medium.
Collapse
Affiliation(s)
- Clara Slade Oliveira
- a Embrapa Dairy Cattle, Laboratory of Animal Reproduction , Santa Monica Experimental Field (LRA-CESM) , Rio de Janeiro , Brazil
| | - B A F de Barros
- a Embrapa Dairy Cattle, Laboratory of Animal Reproduction , Santa Monica Experimental Field (LRA-CESM) , Rio de Janeiro , Brazil
| | - C A S Monteiro
- a Embrapa Dairy Cattle, Laboratory of Animal Reproduction , Santa Monica Experimental Field (LRA-CESM) , Rio de Janeiro , Brazil.,b Faculty of Veterinary Medicine , Federal Fluminense University (UFF) , Rio de Janeiro , Brazil
| | - P M S Rosa
- a Embrapa Dairy Cattle, Laboratory of Animal Reproduction , Santa Monica Experimental Field (LRA-CESM) , Rio de Janeiro , Brazil
| | - G R Leal
- a Embrapa Dairy Cattle, Laboratory of Animal Reproduction , Santa Monica Experimental Field (LRA-CESM) , Rio de Janeiro , Brazil.,b Faculty of Veterinary Medicine , Federal Fluminense University (UFF) , Rio de Janeiro , Brazil
| | - R V Serapião
- c Animal Biology Laboratory , Agricultural Research Company of the Rio de Janeiro State (PESAGRO RIO) , Rio de Janeiro , Brazil
| | - L S A Camargo
- d Embrapa Dairy Cattle , Laboratory of Animal Reproduction , Juiz de Fora , Brazil
| |
Collapse
|
21
|
Lin X, Beckers E, Mc Cafferty S, Gansemans Y, Joanna Szymańska K, Chaitanya Pavani K, Catani JP, Van Nieuwerburgh F, Deforce D, De Sutter P, Van Soom A, Peelman L. Bovine Embryo-Secreted microRNA-30c Is a Potential Non-invasive Biomarker for Hampered Preimplantation Developmental Competence. Front Genet 2019; 10:315. [PMID: 31024625 PMCID: PMC6459987 DOI: 10.3389/fgene.2019.00315] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Recently, secreted microRNAs (miRNAs) have received a lot of attention since they may act as autocrine factors. However, how secreted miRNAs influence embryonic development is still poorly understood. We identified 294 miRNAs, 114 known, and 180 novel, in the conditioned medium of individually cultured bovine embryos. Of these miRNAs, miR-30c and miR-10b were much more abundant in conditioned medium of slow cleaving embryos compared to intermediate cleaving ones. MiR-10b, miR-novel-44, and miR-novel-45 were higher expressed in the conditioned medium of degenerate embryos compared to blastocysts, while the reverse was observed for miR-novel-113 and miR-novel-139. Supplementation of miR-30c mimics into the culture medium confirmed the uptake of miR-30c mimics by embryos and resulted in increased cell apoptosis, as also shown after delivery of miR-30c mimics in Madin-Darby bovine kidney cells (MDBKs). We also demonstrated that miR-30c directly targets Cyclin-dependent kinase 12 (CDK12) through its 3′ untranslated region (3′-UTR) and inhibits its expression. Overexpression and downregulation of CDK12 revealed the opposite results of the delivery of miRNA-30c mimics and inhibitor. The significant down-regulation of several tested DNA damage response (DDR) genes, after increasing miR-30c or reducing CDK12 expression, suggests a possible role for miR-30c in regulating embryo development through DDR pathways.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Beckers
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Séan Mc Cafferty
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - João Portela Catani
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Petra De Sutter
- Department of Uro-Gynaecology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
22
|
Carmignac V, Barberet J, Iranzo J, Quéré R, Guilleman M, Bourc’his D, Fauque P. Effects of assisted reproductive technologies on transposon regulation in the mouse pre-implanted embryo. Hum Reprod 2019; 34:612-622. [DOI: 10.1093/humrep/dez020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Julie Barberet
- Université Bourgogne Franche-Comté – INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, Dijon, France
| | - Julian Iranzo
- Institut Curie, PSL University, CNRS, INSERM, Paris, France
| | - Ronan Quéré
- Université Bourgogne Franche-Comté – INSERM UMR1231, Dijon, France
| | - Magali Guilleman
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, Dijon, France
| | | | - Patricia Fauque
- Université Bourgogne Franche-Comté – INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, Dijon, France
| |
Collapse
|
23
|
Bennemann J, Grothmann H, Wrenzycki C. Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle. Mol Reprod Dev 2018; 85:849-857. [PMID: 30307668 DOI: 10.1002/mrd.23073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Preimplantation epigenetic reprogramming is sensitive to the environment of the gametes and the embryo. In vitro maturation (IVM) of bovine oocytes is a critical step of embryo in vitro production procedures and several factors influence its efficiency, including atmospheric oxygen tension. The possibility that the IVM environment can alter this process is tested by determining whether the global DNA methylation pattern (measured via immunofluorescent labeling of 5-methylcytosine [5meC]) in the parental pronuclei of bovine zygotes produced from cumulus-oocyte complexes matured under low (5%) and atmospheric (~20%) oxygen tension. Normalized 5meC signals differed significantly between maternal and paternal pronuclei of oocytes matured in vitro at 5% oxygen (p ≤ 0.05). There was a significant difference of 5meC between maternal pronuclei of oocytes matured at 5% oxygen and 20% oxygen ( p ≤ 0.05). The relative methylation level (normalized fluorescence intensity of paternal pronucleus divided by the normalized fluorescence intensity of maternal pronucleus) subsequent to maturation in vitro at 5% and 20% oxygen was also significantly altered ( p ≤ 0.05). Our results show that the pattern of global DNA methylation in the maternal pronucleus of bovine zygotes is affected by maturing the oocytes under low oxygen tension which may have an impact on early embryonic development. These data may contribute to the understanding of possible effects of IVM conditions on pronucleus reprogramming.
Collapse
Affiliation(s)
- Johanna Bennemann
- Clinic for Cattle, University of Veterinary Medicine Hannover (Foundation), Hannover, Germany.,Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hanna Grothmann
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christine Wrenzycki
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Koscinski I, Merten M, Kazdar N, Guéant JL. [Culture conditions for gametes and embryos: Which culture medium? Which impact on newborn?]. ACTA ACUST UNITED AC 2018; 46:474-480. [PMID: 29709567 DOI: 10.1016/j.gofs.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 10/17/2022]
Abstract
Many studies have examined the impact of cell/embryo culture media on the development of human embryo during IVF process, but few studies have followed up and compared the effects of these culture media on the developmental outcome of children conceived by IVF. As recurrent experimental evidence from animal studies suggests potential long-term effects of embryo culture media on the health outcome of IVF-conceived children, more studies are needed to clarify the role of the culture media and mechanisms underlying such effects. In human, however, the effects of culture media are difficult to pinpoint due to complications stem from both the influence of maternal nutrition during the gestational period and the parental genetic. Based on a simple review of the literature integrating animal experimentations and human clinic studies, we suggest that the composition of culture medium should be considered beyond the character of unique or sequential medium, corresponding to "let embryo choose" or "back to nature" respectively. Instead, we suggest that the main components of embryo culture media should be considered from the point of view of metabolic consequences and potential epigenetic effects. Given that energetic metabolites can regulate epigenetic machinery, we hypothesize that metabolic abnormalities linked to morphological abnormalities could reveal epigenetic defects in embryos.
Collapse
Affiliation(s)
- I Koscinski
- Laboratoire de biologie de la reproduction, CHRU de Nancy, 10, rue du Dr-Heydenreich, 54000 Nancy, France; Unité Inserm 954 N-GERE, 9, avenue de la Forêt-de-Hayes, CS 5018, 54505 Vandœuvre-lès-Nancy, France.
| | - M Merten
- Unité Inserm 954 N-GERE, 9, avenue de la Forêt-de-Hayes, CS 5018, 54505 Vandœuvre-lès-Nancy, France; Laboratoire de biochimie, CHRU de Nancy, rue du Morvan, 54511 Vandœuvre-lès-Nancy, France
| | - N Kazdar
- Laboratoire Eylau-Unilabs, clinique Pierre-Cherest, 5, rue Pierre-Cherest, 92200 Neuilly-sur-Seine, France
| | - J-L Guéant
- Unité Inserm 954 N-GERE, 9, avenue de la Forêt-de-Hayes, CS 5018, 54505 Vandœuvre-lès-Nancy, France; Laboratoire de biochimie, CHRU de Nancy, rue du Morvan, 54511 Vandœuvre-lès-Nancy, France
| |
Collapse
|
25
|
Velker BAM, Denomme MM, Krafty RT, Mann MRW. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx015. [PMID: 29492315 PMCID: PMC5804554 DOI: 10.1093/eep/dvx015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 06/08/2023]
Abstract
Assisted reproductive technologies are fertility treatments used by subfertile couples to conceive their biological child. Although generally considered safe, these pregnancies have been linked to genomic imprinting disorders, including Beckwith-Wiedemann and Silver-Russell Syndromes. Silver-Russell Syndrome is a growth disorder characterized by pre- and post-natal growth retardation. The Mest imprinted domain is one candidate region on chromosome 7 implicated in Silver-Russell Syndrome. We have previously shown that maintenance of imprinted methylation was disrupted by superovulation or embryo culture during pre-implantation mouse development. For superovulation, this disruption did not originate in oogenesis as a methylation acquisition defect. However, in comparison to other genes, Mest exhibits late methylation acquisition kinetics, possibly making Mest more vulnerable to perturbation by environmental insult. In this study, we present a comprehensive evaluation of the effects of superovulation and in vitro culture on genomic imprinting at the Mest gene. Superovulation resulted in disruption of imprinted methylation at the maternal Mest allele in blastocysts with an equal frequency of embryos having methylation errors following low or high hormone treatment. This disruption was not due to a failure of imprinted methylation acquisition at Mest in oocytes. For cultured embryos, both the Fast and Slow culture groups experienced a significant loss of maternal Mest methylation compared to in vivo-derived controls. This loss of methylation was independent of development rates in culture. These results indicate that Mest is more susceptible to imprinted methylation maintenance errors compared to other imprinted genes.
Collapse
Affiliation(s)
- Brenna A. M. Velker
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| | - Michelle M. Denomme
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
- Fertility Laboratories Of Colorado, 10290 Ridgegate Circle, Lonetree, CO 80124 USA
| | - Robert T. Krafty
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mellissa R. W. Mann
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Bertoldo MJ, Locatelli Y, O'Neill C, Mermillod P. Impacts of and interactions between environmental stress and epigenetic programming during early embryo development. Reprod Fertil Dev 2017; 27:1125-36. [PMID: 24965854 DOI: 10.1071/rd14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Yann Locatelli
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Christopher O'Neill
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
27
|
Menezo Y, Dale B, Elder K. Time to re-evaluate ART protocols in the light of advances in knowledge about methylation and epigenetics: an opinion paper. HUM FERTIL 2017; 21:156-162. [PMID: 28438071 DOI: 10.1080/14647273.2017.1317846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
DNA methylation is a biochemical process that modifies gene expression without changing the underlying DNA sequence, and this represents the molecular basis for imprinting and epigenetics. Recent reports have revealed alterations in DNA methylation profiles in the placenta of babies born from assisted reproductive technologies (ART). This supports several previous observations that suggested an increase in the prevalence of imprinting diseases following ART treatment, and also fits our observations regarding the metabolism and requirements of early human embryos. Human embryo culture media (HECM) are currently formulated according to requirements based on the mouse embryo model, and in fact need to pass the Mouse Embryo Assay test in order to be accepted by the relevant authorities, despite the fact that physiological (especially the time necessary to reach genomic activation) and biochemical requirements of mouse and human embryos are quite different. This commentary aims to explain some of the discrepancies, and emphasize why human embryo metabolism tells us that the composition of HECM, as well as the role of the MEA as a unique model, should be re-evaluated.
Collapse
Affiliation(s)
| | - Brian Dale
- b Centre for Assisted Fertilization , Naples , Italy
| | - Kay Elder
- c Bourn Hall Clinic , Bourn, Cambridge , UK
| |
Collapse
|
28
|
Van Eetvelde M, Heras S, Leroy JLMR, Van Soom A, Opsomer G. The Importance of the Periconception Period: Immediate Effects in Cattle Breeding and in Assisted Reproduction Such as Artificial Insemination and Embryo Transfer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:41-68. [PMID: 28864984 DOI: 10.1007/978-3-319-62414-3_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In livestock breeding, the successful outcome is largely depending on the "periconception environment" which, in a narrow sense, refers to the genital tract, where gametogenesis and embryogenesis occur. During these early stages of development, gametes and embryos are known to be particularly sensitive to alterations in their microenvironment. However, as the microenvironment somehow reflects what is going on in the external world, we must widen our definition of "periconception environment" and refer to all events taking place around the time of conception, including metabolic state and health and nutrition of the dam. In modern dairy cows that have to manage an optimal reproductive performance with continued growth and high milk yield, the periconception period is particularly challenging. The metabolic priority for growth and lactation is known to generate adverse conditions hampering optimal ovarian function, oocyte maturation, and development of embryo/fetus. In addition, by using artificial reproductive technologies (ARTs), gametes and/or embryos of livestock are exposed to unnatural conditions outside the male and female genital tract. Artificial insemination, the most widely used technique, is currently yielding pregnancy rates similar to natural mating, and calves produced by AI are equally viable after natural mating. In contrast, other ART, such as multiple ovulation and embryo transfer, have been reported to induce changes in gene expression and DNA methylation patterns with potential consequences for development.Finally, the "periconceptional" environment has been shown to not only influence the successful establishment of pregnancy but also the long-term health and productivity of the offspring. Hence, the optimization of management around the time of conception might open doors to improve animal production and product quality.
Collapse
Affiliation(s)
- Mieke Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - J L M R Leroy
- University of Antwerp, Campus Drie Eiken, Universiteitsplein 1 D.U.010, 2610, Wilrijk, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| |
Collapse
|
29
|
Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 2016; 33:668-683. [DOI: 10.1016/j.rbmo.2016.09.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
|
30
|
Silva T, Santos E, Annes K, Soares C, Leite R, Lima C, Milazzotto M. Morphokinetic-related response to stress in individually cultured bovine embryos. Theriogenology 2016; 86:1308-17. [DOI: 10.1016/j.theriogenology.2016.04.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
31
|
Feuer S, Rinaudo P. From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare (Basel) 2016; 4:healthcare4030051. [PMID: 27517965 PMCID: PMC5041052 DOI: 10.3390/healthcare4030051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/29/2016] [Indexed: 01/18/2023] Open
Abstract
Human in vitro fertilization (IVF) as a treatment for infertility is regarded as one of the most outstanding accomplishments of the 20th century, and its use has grown dramatically since the late 1970s. Although IVF is considered safe and the majority of children appear healthy, reproductive technologies have been viewed with some skepticism since the in vitro environment deviates substantially from that in vivo. This is increasingly significant because the Developmental Origins of Health and Disease (DOHaD) hypothesis has illuminated the sensitivity of an organism to its environment at critical stages during development, including how suboptimal exposures restricted specifically to gamete maturation or the preimplantation period can affect postnatal growth, glucose metabolism, fat deposition, and vascular function. Today, some of the physiological metabolic phenotypes present in animal models of IVF have begun to emerge in human IVF children, but it remains unclear whether or not in vitro embryo manipulation will have lasting health consequences in the offspring. Our expanding knowledge of the DOHaD field is fueling a paradigm shift in how disease susceptibility is viewed across the life course, with particular emphasis on the importance of collecting detailed exposure information, identifying biomarkers of health, and performing longitudinal studies for any medical treatment occurring during a developmentally vulnerable period. As IVF use continues to rise, it will be highly valuable to incorporate DOHaD concepts into the clinical arena and future approaches to public health policy.
Collapse
Affiliation(s)
- Sky Feuer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
32
|
Dos Santos ÉC, Martinho H, Annes K, da Silva T, Soares CA, Leite RF, Milazzotto MP. Raman-based noninvasive metabolic profile evaluation of in vitro bovine embryos. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75002. [PMID: 27385403 DOI: 10.1117/1.jbo.21.7.075002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The timing of the first embryonic cell divisions may predict the ability of an embryo to establish pregnancy. Similarly, metabolic profiles may be markers of embryonic viability. However, in bovine, data about the metabolomics profile of these embryos are still not available. In the present work, we describe Raman-based metabolomic profiles of culture media of bovine embryos with different developmental kinetics (fast x slow) throughout the in vitro culture. The principal component analysis enabled us to classify embryos with different developmental kinetics since they presented specific spectroscopic profiles for each evaluated time point. We noticed that bands at 1076 cm(−1) (lipids), 1300 cm(−1) (Amide III), and 2719 cm(−1) (DNA nitrogen bases) gave the most relevant spectral features, enabling the separation between fast and slow groups. Bands at 1001 cm(−1) (phenylalanine) and 2892 cm(−1) (methylene group of the polymethylene chain) presented specific patterns related to embryonic stage and can be considered as biomarkers of embryonic development by Raman spectroscopy. The culture media analysis by Raman spectroscopy proved to be a simple and sensitive technique that can be applied with high efficiency to characterize the profiles of in vitro produced bovine embryos with different development kinetics and different stages of development.
Collapse
|
33
|
Tosti E, Ménézo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update 2016; 22:420-39. [PMID: 27278231 PMCID: PMC4917743 DOI: 10.1093/humupd/dmw014] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/01/2016] [Indexed: 01/07/2023] Open
Abstract
Background The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and rationale The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search methods We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic changes in gamete morphology and behavior, the regulatory molecules triggering gamete activation and the intracellular ions and second messengers involved in active metabolic pathways in different species. Recent scientific advances suggest that artificial gamete activation may represent a novel technique to improve human IVF outcomes, but this approach requires caution. Wider implications Although controversial, manipulation of gamete activation represents a promising tool for ameliorating the fertilization rate in assisted reproductive technologies. A better knowledge of mechanisms that transform the quiescent oocyte into a pluripotent cell may also provide new insights for the clinical use of stem cells.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London WIG7JD, UK
| |
Collapse
|
34
|
Milazzotto MP, Goissis MD, Chitwood JL, Annes K, Soares CA, Ispada J, Assumpção MEOÁ, Ross PJ. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol Reprod Dev 2016; 83:324-36. [DOI: 10.1002/mrd.22619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - James Lee Chitwood
- Department of Animal Science; University of California; Davis California
| | - Kelly Annes
- Center of Natural and Human Sciences; Universidade Federal do ABC; Santo Andre Sao Paulo Brazil
| | - Carlos Alexandre Soares
- Center of Natural and Human Sciences; Universidade Federal do ABC; Santo Andre Sao Paulo Brazil
| | - Jéssica Ispada
- Center of Natural and Human Sciences; Universidade Federal do ABC; Santo Andre Sao Paulo Brazil
| | | | - Pablo Juan Ross
- Department of Animal Science; University of California; Davis California
| |
Collapse
|
35
|
Hoeijmakers L, Kempe H, Verschure PJ. Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state. Mol Reprod Dev 2016; 83:94-107. [PMID: 26660493 DOI: 10.1002/mrd.22605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Hermannus Kempe
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Pernette J. Verschure
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
36
|
Harvey AJ, Rathjen J, Gardner DK. Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1816525. [PMID: 26839556 PMCID: PMC4709785 DOI: 10.1155/2016/1816525] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joy Rathjen
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - David K. Gardner
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
37
|
White CR, Denomme MM, Tekpetey FR, Feyles V, Power SGA, Mann MRW. High Frequency of Imprinted Methylation Errors in Human Preimplantation Embryos. Sci Rep 2015; 5:17311. [PMID: 26626153 PMCID: PMC4667293 DOI: 10.1038/srep17311] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
Assisted reproductive technologies (ARTs) represent the best chance for infertile couples to conceive, although increased risks for morbidities exist, including imprinting disorders. This increased risk could arise from ARTs disrupting genomic imprints during gametogenesis or preimplantation. The few studies examining ART effects on genomic imprinting primarily assessed poor quality human embryos. Here, we examined day 3 and blastocyst stage, good to high quality, donated human embryos for imprinted SNRPN, KCNQ1OT1 and H19 methylation. Seventy-six percent day 3 embryos and 50% blastocysts exhibited perturbed imprinted methylation, demonstrating that extended culture did not pose greater risk for imprinting errors than short culture. Comparison of embryos with normal and abnormal methylation didn’t reveal any confounding factors. Notably, two embryos from male factor infertility patients using donor sperm harboured aberrant methylation, suggesting errors in these embryos cannot be explained by infertility alone. Overall, these results indicate that ART human preimplantation embryos possess a high frequency of imprinted methylation errors.
Collapse
Affiliation(s)
- Carlee R White
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Michelle M Denomme
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Francis R Tekpetey
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,The Fertility Clinic, London Health Sciences Centre, London, Ontario, Canada
| | - Valter Feyles
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,The Fertility Clinic, London Health Sciences Centre, London, Ontario, Canada
| | - Stephen G A Power
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,The Fertility Clinic, London Health Sciences Centre, London, Ontario, Canada
| | - Mellissa R W Mann
- Department of Obstetrics &Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
38
|
Carrocera S, Caamaño JN, Trigal B, Martín D, Díez C. Developmental kinetics of in vitro-produced bovine embryos: An aid for making decisions. Theriogenology 2015; 85:822-827. [PMID: 26607875 DOI: 10.1016/j.theriogenology.2015.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022]
Abstract
Embryo developmental kinetics and embryo survival after cryopreservation have been correlated with embryo quality and viability. The main objectives of this work were to analyze developmental ability and quality of in vitro-produced bovine embryos in relation to their kinetics and to establish a criterion of quality to predict further viability. Embryos were classified and grouped by their specific stage of development (2, 3-4, or ≥ 5 cells) at 44 hours post insemination (hpi) and cultured separately up to Day 8. On Days 7 and 8, good quality expanded blastocysts were vitrified or frozen. Cryopreserved surviving hatched embryos were stained for cell counts. Embryos at a more advanced stage (3-4 cells, and ≥5 cells) developed to morulae (P < 0.001) and blastocysts (P < 0.01) at higher rates than those embryos that had cleaved once by 44 hpi. Vitrification improved the hatching rates of blastocysts at 48 hours (P < 0.001) when compared with slow-rate freezing within each group of embryos (3-4 cells and ≥5 cells). After vitrification/warming, blastocysts coming from 3- to 4-cell embryos had higher hatching rates at 48 hours than those that came from ≥5-cell embryos. With regard to differential cell counts, no effect of the initial developmental stage was observed after warming/thawing. However, trophectoderm and total cells were higher in vitrified/warmed than in the frozen/thawed embryos (P < 0.001). These data show that selecting IVF embryos at 44 hpi, after the evaluation of their in vitro embryo development, could be used as noninvasive markers of embryo developmental competence and may help to select IVF embryos that would be more suitable for cryopreservation.
Collapse
Affiliation(s)
- S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - J N Caamaño
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - B Trigal
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - D Martín
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - C Díez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain.
| |
Collapse
|
39
|
Anifandis G, Messini CI, Dafopoulos K, Messinis IE. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development. Curr Genomics 2015; 16:32-46. [PMID: 25937812 PMCID: PMC4412963 DOI: 10.2174/1389202916666141224205025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Embryo quality during the in vitro developmental period is of great clinical importance. Experimental genetic studies during this period have demonstrated the association between specific gene expression profiles and the production of healthy blastocysts. Although the quality of the oocyte may play a major role in embryo development, it has been well established that the post - fertilization period also has an important and crucial role in the determination of blastocyst quality. A variety of genes (such as OCT, SOX2, NANOG) and their related signaling pathways as well as transcription molecules (such as TGF-β, BMP) have been implicated in the pre- and post-implantation period. Furthermore, DNA methylation has been lately characterized as an epigenetic mark since it is one of the most important processes involved in the maintenance of genome stability. Physiological embryo development appears to depend upon the correct DNA methylation pattern. Due to the fact that soon after fertilization the zygote undergoes several morphogenetic and developmental events including activation of embryonic genome through the transition of the maternal genome, a diverse gene expression pattern may lead to clinically important conditions, such as apoptosis or the production of a chromosomically abnormal embryo. The present review focused on genes and their role during pre-implantation embryo development, giving emphasis on the various parameters that may alter gene expression or DNA methylation patterns. The pre-implantation embryos derived from in vitro culture systems (in vitro fertilization) and the possible effects on gene expression after the prolonged culture conditions are also discussed.
Collapse
Affiliation(s)
- G Anifandis
- Department of Obstetrics and Gynaecology ; Embryology Lab, University of Thessalia, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | | | | | | |
Collapse
|
40
|
Liu LX, Wu LF. Research progress in long non-coding RNAs and liver diseases. Shijie Huaren Xiaohua Zazhi 2015; 23:1211-1217. [DOI: 10.11569/wcjd.v23.i8.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts longer than 200 nt without protein coding capacity. LncRNAs regulate gene expression at epigenetic transcriptional and post-transcriptional levels, and they are deeply involved in biological and pathological changes. Recently, more and more evidence has shown that the altered expression of lncRNAs in hepatocellular carcinoma and viral hepatitis is important for the development, progression and prognosis of hepatic diseases. This review focuses on the role of lncRNAs in the pathogenesis of hepatocellular carcinoma and other liver diseases.
Collapse
|
41
|
Garcia SM, Marinho LSR, Lunardelli PA, Seneda MM, Meirelles FV. Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics. PLoS One 2015; 10:e0119463. [PMID: 25760989 PMCID: PMC4356560 DOI: 10.1371/journal.pone.0119463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos.
Collapse
Affiliation(s)
- Sheila Merlo Garcia
- São Paulo University (USP), Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| | | | - Paula Alvares Lunardelli
- State University of Londrina (UEL), Laboratório de Reprodução Animal, DCV, CCA, Londrina, PR, Brazil
| | - Marcelo Marcondes Seneda
- State University of Londrina (UEL), Laboratório de Reprodução Animal, DCV, CCA, Londrina, PR, Brazil
- * E-mail:
| | - Flávio Vieira Meirelles
- São Paulo University (USP), Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|
42
|
Bonakdar E, Edriss MA, Bakhtari A, Jafarpour F, Asgari V, Hosseini SM, Boroujeni NS, Hajian M, Rahmani HR, Nasr-Esfahani MH. A physiological, rather than a superovulated, post-implantation environment can attenuate the compromising effect of assisted reproductive techniques on gene expression in developing mice embryos. Mol Reprod Dev 2015; 82:191-206. [PMID: 25728573 DOI: 10.1002/mrd.22461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
Abstract
Assisted reproductive techniques (ARTs) may perturb the pre-/peri-conception microenvironments, which subsequently threaten the health of offspring. This study aimed to investigate the effects of superovulation, vitrification, in vitro culture, and embryo transfer on the expression of epigenetic modulators, imprinted genes, and pluripotency markers in expanded blastocysts and Day-9.5 (D9.5) concepti. Results revealed that 53.4% (8/15) and 86.7% (13/15) of genes in the fetus and placenta, respectively, have similar patterns of transcription in all D9.5 concepti, despite the perturbed mRNA expression observed at the blastocyst stage for each embryo-production technique. These observations indicate a counterbalancing of the abnormal expression pattern analyzed at the blastocyst stage during post-implantation development, particularly when the uterus of a naturally synchronized foster mother is employed. Superovulation resulted in the most abnormal expression patterns compared to other treatment groups, although these same blastocysts were able to develop in a synchronized uterus. Thus, superovulation creates a hormonal environment that negatively affected gene expression and impairs fetal growth more adversely during post-implantation development than other ART protocols, such as in vitro culture, vitrification, or embryo transfer-although each did contribute negatively to the implantation and development process. Together, these results may have implications for treating infertility in humans.
Collapse
Affiliation(s)
- E Bonakdar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gutierrez-Adan A, White CR, Van Soom A, Mann MRW. Why we should not select the faster embryo: lessons from mice and cattle. Reprod Fertil Dev 2015; 27:765-75. [DOI: 10.1071/rd14216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022] Open
Abstract
Many studies have shown that in vitro culture can negatively impact preimplantation development. This necessitates some selection criteria for identifying the best-suited embryos for transfer. That said, embryo selection after in vitro culture remains a subjective process in most mammalian species, including cows, mice and humans. General consensus in the field is that embryos that develop in a timely manner have the highest developmental competence and viability after transfer. Herein lies the key question: what is a timely manner? With emerging data in bovine and mouse supporting increased developmental competency in embryos with moderate rates of development, it is time to question whether the fastest developing embryos are the best embryos for transfer in the human clinic. This is especially relevant to epigenetic gene regulation, including genomic imprinting, where faster developing embryos exhibit loss of imprinted methylation, as well as to sex selection bias, where faster developmental rates of male embryos may lead to biased embryo transfer and, in turn, biased sex ratios. In this review, we explore evidence surrounding the question of developmental timing as it relates to bovine embryo quality, mouse embryo quality and genomic imprint maintenance, and embryo sex.
Collapse
|
44
|
Zhang B, Denomme MM, White CR, Leung KY, Lee MB, Greene NDE, Mann MRW, Trasler JM, Baltz JM. Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts. FASEB J 2014; 29:1069-79. [PMID: 25466894 DOI: 10.1096/fj.14-261131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The embryonic pattern of global DNA methylation is first established in the inner cell mass (ICM) of the mouse blastocyst. The methyl donor S-adenosylmethionine (SAM) is produced in most cells through the folate cycle, but only a few cell types generate SAM from betaine (N,N,N-trimethylglycine) via betaine-homocysteine methyltransferase (BHMT), which is expressed in the mouse ICM. Here, mean ICM cell numbers decreased from 18-19 in controls to 11-13 when the folate cycle was inhibited by the antifolate methotrexate and to 12-14 when BHMT expression was knocked down by antisense morpholinos. Inhibiting both pathways, however, much more severely affected ICM development (7-8 cells). Total SAM levels in mouse blastocysts decreased significantly only when both pathways were inhibited (from 3.1 to 1.6 pmol/100 blastocysts). DNA methylation, detected as 5-methylcytosine (5-MeC) immunofluorescence in isolated ICMs, was minimally affected by inhibition of either pathway alone but decreased by at least 45-55% when both BHMT and the folate cycle were inhibited simultaneously. Effects on cell numbers and 5-MeC levels in the ICM were completely rescued by methionine (immediate SAM precursor) or SAM. Both the folate cycle and betaine/BHMT appear to contribute to a methyl pool required for normal ICM development and establishing initial embryonic DNA methylation.
Collapse
Affiliation(s)
- Baohua Zhang
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Michelle M Denomme
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Carlee R White
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Kit-Yi Leung
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Martin B Lee
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Nicholas D E Greene
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Mellissa R W Mann
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Jacquetta M Trasler
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Jay M Baltz
- *Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Developmental Biology and Cancer Program, University College London Institute of Child Health, London, United Kingdom; Research Institute of the McGill University Health Centre, Montréal Children's Hospital, Montréal, Quebec, Canada; and Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
45
|
Abstract
Long noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and have no protein-coding function. LncRNAs can regulate gene expression at the levels of epigenetic modification, transcription and post-transcriptional processing, and participate in many physiological and pathological processes. It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. Moreover, emerging studies have demonstrated that a class of lncRNAs are dysregulated in hepatocellular carcinoma (HCC) and closely related with tumorigenesis, metastasis and prognosis. As such, lncRNAs may be promising novel molecules for disease diagnosis, treatment and prognosis. Here, we review the recent progress in understanding the role of lncRNAs in HCC.
Collapse
|
46
|
H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reprod Biomed Online 2014; 29:559-66. [DOI: 10.1016/j.rbmo.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/28/2022]
|
47
|
van Loendersloot L, van Wely M, van der Veen F, Bossuyt P, Repping S. Selection of embryos for transfer in IVF: ranking embryos based on their implantation potential using morphological scoring. Reprod Biomed Online 2014; 29:222-30. [DOI: 10.1016/j.rbmo.2014.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 12/01/2022]
|
48
|
D’Elia PQ, dos Santos AA, Bianco B, Barbosa CP, Christofolini DM, Aoki T. MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women. Reprod Biomed Online 2014; 28:733-8. [DOI: 10.1016/j.rbmo.2014.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022]
|
49
|
Yao GD, Shu YM, Shi SL, Peng ZF, Song WY, Jin HX, Sun YP. Expression and potential roles of HLA-G in human spermatogenesis and early embryonic development. PLoS One 2014; 9:e92889. [PMID: 24667226 PMCID: PMC3965489 DOI: 10.1371/journal.pone.0092889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
As one of the non-classical major histocompatibility complex(MHC)-1 antigens, Human Leukocyte Antigen G (HLA-G), has been suggested as a prognostic marker to identify the embryo developmental potential. In the present study, we investigated the potential roles of HLA-G in human spermatogenesis and early embryonic development. Quantitative real-time PCR analysis revealed that HLA-G's expression was increased with increased Johnsen score in testicular tissues. There was no significant difference in HLA-G mRNA expression between testicular tissues with Johnsen score of 8–9 and normal sperm from ejaculated semen. HLA-G mRNA expression was detected in human zygotes, embryos and blastocysts but not in unfertilized oocytes. In testicular tissues where sperm was obtained by testicular sperm extraction (Johnsen score was 8 to 9), there were no correlations between HLA-G mRNA expression and fertilization, cleavage and high-quality embryo rates. At 48–72 h post-fertilization, HLA-G expression was higher in fast growing embryos. HLA-G specific siRNA injection into zygotes not only slowed down embryonic cleavage rate at 48 h post-fertilization, but also down-regulated the expression of embryo metabolism related gene (SLC2A1) and cell cycle-regulated gene (CCND2). Taken together, our findings suggested that HLA-G plays significant roles in human spermatogenesis and early embryonic development.
Collapse
Affiliation(s)
- Gui-Dong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi-Min Shu
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sen-Lin Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhao-Feng Peng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wen-Yan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Xia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
50
|
Sequential (hFSH + recFSH) vs homogenous (hFSH or recFSH alone) stimulation: clinical and biochemical (cumulus cell gene expression) aspects. J Assist Reprod Genet 2014; 31:657-65. [PMID: 24639041 DOI: 10.1007/s10815-014-0208-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 01/16/2023] Open
Abstract
FSH is a key hormone in the regulation of follicular development. Together with the EGF network, these molecules mediate oocyte maturation and competence in preparation for the action of LH. FSH isoforms regulate distinct biological pathways and have specific effects on granulosa cell function and maturation of the ovarian follicle. Their dynamic interactions occur during the follicular cycle; short-living forms are predominant in the pre-ovulatory phase, whereas long-acting molecules characterize the luteal-follicular transition. Recombinant FSH (rFSH) molecules have a reduced number of isoforms and are less acidic, with a shorter half-life. We have investigated sequential stimulation, comparing hFSH + rFSH, vs. rFSH alone and hFSH alone for the entire stimulation phase. Sequential stimulation leads to an E2 per MII oocyte ratio that is much lower than is seen during treatment with the two drugs individually. Although there is a positive tendency in favor of the sequential treatment, there was no significant difference in pregnancy rates, even taking frozen embryos into consideration. The cumulus cell transcriptome varies considerably between the treatments, although with no clear significance. When comparing pregnant vs. non-pregnant patients, in general a decrease in mRNA expression can be observed in the pregnant patients, especially in expression of folic acid receptor 1 and ovostatin 2. This indicates that material has been transferred from CC to the oocyte. However, a common observation in the literature is that variations in the transcriptome of the cumulus cells are highly dependent upon the patient genotype; the potential for applying this strategy as a basis for selecting embryos is, at the very least, questionable.
Collapse
|