1
|
Li C, Cui Z, Liu Z, Fan H, Lan Y, Luo J, Ruan F, Huang Y, Chu K, Wu Y, Xia D, Zhou J. MiR-204 regulates autophagy and cell viability by targeting BDNF and inhibiting the NTRK2-dependent PI3K/Akt/mTOR pathway in a human granulosa cell line exposed to bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117304. [PMID: 39520743 DOI: 10.1016/j.ecoenv.2024.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a widespread endocrine disruptor that mimics estrogen. The accumulation of BPA within the human body has been shown to be detrimental to ovarian function. However, few studies have focused on the specific mechanisms by which it causes harm to granulosa cells (GCs), pivotal ovarian cells that are responsible for the growth and function of oocytes. In vitro research was conducted using human GC lines (KGN cells). The cells were exposed to various concentrations of BPA (0.1, 1, 10, or 100 µM) for either 24 or 48 hours. Here, our findings indicate that 100 μM BPA inhibits KGN cell proliferation and promotes cell autophagy through inhibiting the PI3K/Akt/mTOR pathway. Interestingly, these effects could be partly reversed by an NTRK2 activator (LM22b-10). NTRK2 is the receptor for BDNF. Moreover, via the use of bioinformatics tools, miR-204 was predicted to target BDNF. Additionally, our findings confirmed that miR-204 has the ability to directly target BDNF through a luciferase assay. Downregulation of miR-204 abrogated the BPA exposure-mediated effects on proliferation and autophagy. Furthermore, the inhibition of miR-204 significantly reversed the downregulation of PI3K/Akt/mTOR pathway-related molecules. Similarly, we validated miR-204 as a novel miRNA involved in BPA-mediated damage to GC proliferation and autophagy, and our data provide the first in vitro evidence that increasing miR-204 expression and inhibiting the BDNF/NTRK2-mediated PI3K/Akt/mTOR signaling pathway are involved in the BPA-induced toxic effects in KGN cells.
Collapse
Affiliation(s)
- Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiyu Fan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fei Ruan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Shekarchi AA, Hosseini L, Kamrani A, Alipourfard I, Soltani-Zangbar MS, Akbari M, Roshangar L, Aghebati-Maleki L, Chakari-Khiavi F, Chakari-Khiavi A, Motlagh Asghari K, Danaii S, Pourlak T, Ahmadian Heris J, Yousefi M. Evaluation of changes in exhausted T lymphocytes and miRNAs expression in the different trimesters of pregnancy in pregnant women. Mol Biol Rep 2024; 51:442. [PMID: 38520563 DOI: 10.1007/s11033-024-09370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Throughout the three trimesters of a typical pregnancy, we looked at changes in the expression of miRNAs and exhausted T lymphocytes for this study. METHODS AND RESULTS Fifty healthy subjects were included in this study. The frequency of exhausted T lymphocytes was measured in isolated PBMCs using flow cytometry. PD-1, TIM-3, and related miRNAs gene expression were assessed using qRT-PCR. The analyses revealed a significant decline in PD-1 and Tim-3 expression in PBMCs from RPL women (p = 0.0003 and p = 0.001, respectively). In addition, PD-1 and TIM-3 expression increased significantly in the 2nd trimester compared with the 1st trimester of healthy pregnant women (p < 0.0001 and p = 0.0002, respectively). PD-1 and TIM-3 expression was down-regulated in the 3rd trimester compared with the 1st and 2nd trimesters. In the present study, we demonstrated that TIM-3+/CD4+, TIM-3+/CD8+, PD-1+/CD4+, and PD-1+/CD8 + exhausted T lymphocytes increased in the circulation of women in the 2nd trimester compared to the 1st and 3rd trimester. In the 3rd trimester, the expression of miR-16-5p increased significantly (p < 0.0001). miR-125a-3p expression was down and upregulated in 2nd (p < 0.0001) and 3rd (p = 0.0007) trimesters compared to 1st trimester, respectively. This study showed a significant elevation of miR-15a-5p in 3rd trimester compared to 1st trimester of pregnant women (p = 0.0002). CONCLUSIONS Expression pattern of PD-1 and TIM3 in exhausted T lymphocytes is different not only between normal pregnant and RPL women but also in different trimesters of pregnancy. So, our results showed the role of these markers in the modulation lymphocytes activity in different stages of pregnancy.
Collapse
Affiliation(s)
- Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Aref Chakari-Khiavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kimia Motlagh Asghari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Tannaz Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
De los Reyes M, Dettleff P, Palomino J, Peralta OA, Vergara A. Dynamic Expression of Follicle-Stimulating Hormone and Estrogen mRNA Receptors Associated with microRNAs 34a and -let-7c in Canine Follicles during the Estrous Cycle. Animals (Basel) 2024; 14:214. [PMID: 38254383 PMCID: PMC10812696 DOI: 10.3390/ani14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The genes encoding for estrogen receptor (ESR2) and follicle-stimulating hormone receptor (FSHR) play crucial roles in ovarian follicular development. This study aimed to determine the expression levels of miRNAs predicted against FSHR and ESR2 mRNAs in follicular cells related to their target genes during the estrous cycle in canines. Antral follicles were dissected from 72 ovaries following ovariohysterectomies. MiRNAs regulating FSHR and ESR2 genes were selected from miRNA databases, and mature miRNA and mRNA expression profiling was performed using real-time polymerase chain reaction (PCR). The best miRNA for each target gene was selected considering the quantitative PCR (qPCR) performance and target prediction probability, selecting only miRNAs with a binding p-value of 1.0, and choosing cfa-miR-34a and cfa-let-7c for FSHR and ESR2, respectively. The expression levels comparing the different phases of the estrous cycle were evaluated using ANOVA. Pearson correlations between the expression pattern of each miRNA and their target genes were performed. Each miRNA and its target genes were expressed in the granulosa cells in all estrous phases. FSHR remained low in anestrus and proestrus, increased (p < 0.05) to the highest level in estrus, and decreased (p < 0.05) in diestrus. ESR2 showed the same trend as FSHR, with the highest (p < 0.05) expression in estrus and the lowest (p < 0.05) in anestrus and proestrus. A tendency for an inverse relationship was observed between the expression of miR-34a and FSHR only in the anestrus phase, while an inverse correlation (r = -0.8) was found between miRNA-7c and ESR2 (p < 0.01). The expression profile of miR-34a and miR-let-7c and their predicted target genes of dog ovarian follicles throughout the estrous cycle observed in this study suggest a role in the transcriptional regulation of FSHR and ESR2, which is the first evidence of the involvement of these miRNAs in the canine follicular function.
Collapse
Affiliation(s)
- Monica De los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| | - Phillip Dettleff
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Jaime Palomino
- School of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O’Higgins University, Santiago 8370993, Chile;
| | - Oscar A. Peralta
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Ana Vergara
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| |
Collapse
|
4
|
Deng X, Ning Z, Li L, Cui Z, Du X, Amevor FK, Tian Y, Shu G, Du X, Han X, Zhao X. High expression of miR-22-3p in chicken hierarchical follicles promotes granulosa cell proliferation, steroidogenesis, and lipid metabolism via PTEN/PI3K/Akt/mTOR signaling pathway. Int J Biol Macromol 2023; 253:127415. [PMID: 37848113 DOI: 10.1016/j.ijbiomac.2023.127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
MicroRNAs (miRNAs) are a class of RNA macromolecules that play regulatory roles in follicle development by inhibiting protein translation through binding to the 3'UTR of its target genes. Granulosa cell (GC) proliferation, steroidogenesis, and lipid metabolism have indispensable effect during folliculogenesis. In this study, we found that miR-22-3p was highly expressed in the hierarchical follicles of the chickens, which indicated that it may be involved in follicle development. The results obtained suggested that miR-22-3p promoted proliferation, hormone secretion (progesterone and estrogen), and the content of lipid droplets (LDs) in the chicken primary GC. The results from the bioinformatics analysis, luciferase reporter assay, qRT-PCR, and Western blotting, confirmed that PTEN was directly targeted to miR-22-3p. Subsequently, it was revealed that PTEN inhibited proliferation, hormone secretion, and the content of LDs in GC. Therefore, this study showed that miR-22-3p could activate PI3K/Akt/mTOR pathway via targeting PTEN. Taken together, the findings from this study indicated that miR-22-3p was highly expressed in the hierarchical follicles of chickens, which promotes GC proliferation, steroidogenesis, and lipid metabolism by repressing PTEN to activate PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, PR China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China.
| |
Collapse
|
5
|
Liang J, Huang F, Song Z, Tang R, Zhang P, Chen R. Impact of NAD+ metabolism on ovarian aging. Immun Ageing 2023; 20:70. [PMID: 38041117 PMCID: PMC10693113 DOI: 10.1186/s12979-023-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senescence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address the many factors involved in this complicated procedure, which could improve fertility in women of advanced maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy related to ovarian aging.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Zhaoqi Song
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China.
| |
Collapse
|
6
|
Xu Z, Zhang T, Hu J, Zhang J, Yang G, He J, Wang H, Jiang R, Yao G. MicroRNA-338-3p helps regulate ovarian function by affecting granulosa cell function and early follicular development. J Ovarian Res 2023; 16:175. [PMID: 37633947 PMCID: PMC10463366 DOI: 10.1186/s13048-023-01258-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/10/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Follicular development in mammalian ovaries is a complex and dynamic process, and the interactions and regulatory-feedback loop between the follicular microenvironment, granulosa cells (GCs), and oocytes can affect follicular development and normal ovary functions. Abnormalities in any part of the process may cause abnormal follicular development, resulting in infertility. Hence, exploring the pathogenesis of abnormal follicular development is extremely important for diagnosing and treating infertile women. METHODS RNA sequencing was performed with ovarian cortical tissues established in vitro. In situ-hybridization assays were performed to study microRNA-338-3p (miR-338-3p) expressed in GCs and oocytes. In vitro culture models were established with GCs and neonatal mouse ovaries to study the biological effects of miR-338-3p. We also performed in vivo experiments by injecting adeno-associated virus vectors that drive miR-338-3p overexpression into the mouse ovarian bursae. RESULTS Sequencing analysis showed that miR-338-3p was expressed at significantly higher levels in ovarian cortical tissues derived from patients with ovarian insufficiency than in cortical tissues derived from patients with normal ovarian function; miR-338-3p was also significantly highly expressed in the GCs of patients with diminished ovarian reserve (P < 0.05). In situ-hybridization assays revealed that miR-338-3p was expressed in the cytoplasm of GCs and oocytes. Using in vitro culture models of granulosa cells, we found that miR-338-3p overexpression significantly suppressed the proliferation and oestradiol-production capacity of GCs (P < 0.05). In vitro culture models of neonatal mouse ovaries indicated that miR-338-3p overexpression suppressed the early follicular development in mouse ovaries. Further analysis revealed that miR-338-3p might be involved in transforming growth factor β-dependent regulation of granulosa cell proliferation and, thus, early follicular development. Injecting miR-338-3p-overexpression vectors into the mouse ovarian bursae showed that miR-338-3p down-regulated the oocyte mitochondrial membrane potential in mice and disrupted mouse oestrous cycles. CONCLUSION miR-338-3p can affect early follicular development and normal ovary functions by interfering with the proliferation and oestradiol production of GCs. We systematically elucidated the regulatory effect of miR-338-3p on follicular development and the underlying mechanism, which can inspire new studies on the diagnosis and treatment of diseases associated with follicular development abnormalities.
Collapse
Affiliation(s)
- Ziwen Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahuan He
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Zhang L, Zou J, Wang Z, Li L. A Subpathway and Target Gene Cluster-Based Approach Uncovers lncRNAs Associated with Human Primordial Follicle Activation. Int J Mol Sci 2023; 24:10525. [PMID: 37445702 DOI: 10.3390/ijms241310525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a critical regulator in controlling the expression level of genes involved in cell differentiation and development. Primordial follicle activation (PFA) is the first step for follicle maturation, and excessive PFA results in premature ovarian insufficiency (POI). However, the correlation between lncRNA and cell differentiation was largely unknown, especially during PFA. In this study, we observed the expression level of lncRNA was more specific than protein-coding genes in both follicles and granulosa cells, suggesting lncRNA might play a crucial role in follicle development. Hence, a systematical framework was needed to infer the functions of lncRNAs during PFA. Additionally, an increasing number of studies indicate that the subpathway is more precise in reflecting biological processes than the entire pathway. Given the complex expression patterns of lncRNA target genes, target genes were further clustered based on their expression similarity and classification performance to reveal the activated/inhibited gene modules, which intuitively illustrated the diversity of lncRNA regulation. Moreover, the knockdown of SBF2-AS1 in the A549 cell line and ZFAS1 in the SK-Hep1 cell line further validated the function of SBF2-AS1 in regulating the Hippo signaling subpathway and ZFAS1 in the cell cycle subpathway. Overall, our findings demonstrated the importance of subpathway analysis in uncovering the functions of lncRNAs during PFA, and paved new avenues for future lncRNA-associated research.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiyuan Zou
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Maternal exposure to PM2.5 decreases ovarian reserve in neonatal offspring mice through activating PI3K/AKT/FoxO3a pathway and ROS-dependent NF-κB pathway. Toxicology 2022; 481:153352. [DOI: 10.1016/j.tox.2022.153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
|
9
|
Isa AM, Sun Y, Li Y, Wang Y, Ni A, Yuan J, Ma H, Shi L, Tesfay HH, Fan J, Wang P, Chen J. MicroRNAs with non-additive expression in the ovary of hybrid hens target genes enriched in key reproductive pathways that may influence heterosis for egg laying traits. Front Genet 2022; 13:974619. [PMID: 36246615 PMCID: PMC9563710 DOI: 10.3389/fgene.2022.974619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Heterosis has been extensively exploited in chicken breeding to improve laying traits in commercial hybrid stock. However, the molecular mechanisms underlying it remains elusive. This study characterizes the miRNAome in the pre-hierarchical follicles of purebred and hybrid laying hens, and investigate the functions of miRNAs with non-additive expression in the pre-hierarchical follicles as they modulate heterosis for egg number and clutch size. To achieve that aim, White Leghorn and Rhode Island Red chicken lines were reciprocally crossed to generate hybrids. The crossbreds demonstrated heterosis for egg number and clutch size, and pre-hierarchical follicles from 4 birds of each genotype were collected at 53 weeks of age. Mode of miRNA expression was characterized after miRNA sequencing. A total of 50 miRNAs including 30 novel ones, were found to exhibit non-additive expression. Dominance was the predominant mode of expression exhibited by majority of the miRNAs. Functional analysis of target genes of the known miRNAs with non-additive expression revealed Gene Ontology terms related to regulation of transcription, metabolic processes and gene expression. KEGG and REACTOME pathways including hedgehog, cellular senescence, wnt, TGF-β, progesterone-mediated oocyte maturation, oocyte meiosis, GnRH signaling, signal transduction and generic transcription, which can be linked to primordial follicle activation, growth and ovulation, were significantly enriched by target genes of miRNAs with non-additive expression. Majority of the genes enriched in these biological pathways were targeted by gga-miR-19a, gga-miR-19b, gga-miR-375, gga-miR-135a, and gga-miR-7 and 7b, thus, revealing their synergistic roles in enhancing processes that could influence heterosis for egg number and clutch size in hybrid hens.
Collapse
Affiliation(s)
- Adamu Mani Isa
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yanyan Sun, ; Jilan Chen,
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailai Hagos Tesfay
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panlin Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yanyan Sun, ; Jilan Chen,
| |
Collapse
|
10
|
Johnson J, Emerson JW, Lawley SD. Recapitulating human ovarian aging using random walks. PeerJ 2022; 10:e13941. [PMID: 36032944 PMCID: PMC9406804 DOI: 10.7717/peerj.13941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/02/2022] [Indexed: 01/19/2023] Open
Abstract
Mechanism(s) that control whether individual human primordial ovarian follicles (PFs) remain dormant, or begin to grow, are all but unknown. One of our groups has recently shown that activation of the Integrated Stress Response (ISR) pathway can slow follicular granulosa cell proliferation by activating cell cycle checkpoints. Those data suggest that the ISR is active and fluctuates according to local conditions in dormant PFs. Because cell cycle entry of (pre)granulosa cells is required for PF growth activation (PFGA), we propose that rare ISR checkpoint resolution allows individual PFs to begin to grow. Fluctuating ISR activity within individual PFs can be described by a random process. In this article, we model ISR activity of individual PFs by one-dimensional random walks (RWs) and monitor the rate at which simulated checkpoint resolution and thus PFGA threshold crossing occurs. We show that the simultaneous recapitulation of (i) the loss of PFs over time within simulated subjects, and (ii) the timing of PF depletion in populations of simulated subjects equivalent to the distribution of the human age of natural menopause can be produced using this approach. In the RW model, the probability that individual PFs grow is influenced by regionally fluctuating conditions, that over time manifests in the known pattern of PFGA. Considered at the level of the ovary, randomness appears to be a key, purposeful feature of human ovarian aging.
Collapse
Affiliation(s)
- Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Center, Aurora, Colorado, United States
| | - John W. Emerson
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, United States
| | - Sean D. Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Song J, Ma X, Li F, Liu J. Exposure to multiple pyrethroid insecticides affects ovarian follicular development via modifying microRNA expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154384. [PMID: 35276145 DOI: 10.1016/j.scitotenv.2022.154384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pyrethroids, a class of insecticides widely used in agriculture and residential pest control, have been considered as endocrine-disrupting chemicals (EDCs). Our previous epidemiological study reported a positive association of urinary levels of pyrethroid metabolites with the risk of primary ovarian insufficiency in women, suggesting that pyrethroid exposure may be a potential risk factor for female ovarian health. In this study, female mice at gestational, lactational or peripubertal stages were exposed to eight most commonly used pyrethroids at the doses of acceptable daily intake (ADI) recommended by the World Health Organization (WHO). Gestational exposure to eight pyrethroids at ADI doses led to a significant decrease in the number of primary follicles in female offspring on postnatal day (PND) 3, and an increase in the number of atretic follicles and granulosa cell apoptosis, as well as lower estrogen and higher follicle-stimulating hormone (FSH) levels in adult female offspring. Lactational and peripubertal exposure to pyrethroid mixture had no significant effects on follicular development and ovarian functions. The data of high-throughput microRNA (miRNA) sequencing showed that 23 miRNAs were differentially expressed in the ovaries of female offspring mice on PND 1 after gestational exposure to pyrethroid mixture. The results of qPCR confirmed that miR-152-3p, miR-450b-3p and miR-196a-5p were significantly upregulated in the neonatal ovaries in the exposed group. The bioinformatic analysis indicates that the modification of the expression of ovarian miRNAs by pyrethroid exposure may disrupt the key biological processes (such as mRNA processing) and major signaling pathways (such as PI3K/Akt pathway, adipocytokine pathway and GnRH pathway) governing follicular development and ovarian functions. This study first reported that gestational exposure of female mice to multiple pyrethroids at the recommended human safe doses had irreversible adverse effects on the ovaries in female offspring in adulthood through regulating the expression of miRNAs during early developmental stages.
Collapse
Affiliation(s)
- Jingyi Song
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaochen Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Tang X, Dong H, Fang Z, Li J, Yang Q, Yao T, Pan Z. Ubiquitin-like modifier 1 ligating enzyme 1 relieves cisplatin-induced premature ovarian failure by reducing endoplasmic reticulum stress in granulosa cells. Reprod Biol Endocrinol 2022; 20:84. [PMID: 35610622 PMCID: PMC9128268 DOI: 10.1186/s12958-022-00956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1), the ligase of the UFMylation system, has recently been reported to be involved in apoptosis and endoplasmic reticulum stress (ER stress) in a variety of diseases. Premature ovarian failure (POF) is a gynecological disease that severely reduces the fertility of women, especially in female cancer patients receiving chemotherapy drugs. Whether UFL1 is involved in protection against chemotherapy-induced POF and its mechanism remain unclear. METHODS In this study, we examined the function of UFL1 in ovarian dysfunction and granulosa cell (GC) apoptosis induced by cisplatin through histological examination and cell viability analysis. We used western blotting, quantitative real-time PCR (qPCR) and immunofluorescence (IF) to detect the expression of UFL1 and the levels of ER stress specific markers. Enzyme linked immunosorbent assays were used to detect the levels of follicle-stimulating hormone (FSH) and estrogen (E2) in ovaries and GCs. In addition, we used infection with lentiviral particle suspensions to knock down and overexpress UFL1 in ovaries and GCs, respectively. RESULTS Our data showed that the expression of UFL1 was reduced in POF model ovaries, accompanied by ER stress. In vitro, cisplatin induced a stress-related increase in UFL1 expression in GCs and enhanced ER stress, which was aggravated by UFL1 knockdown and alleviated by UFL1 overexpression. Furthermore, UFL1 knockdown resulted in a decrease in ovarian follicle number, an increase in atretic follicles, and decreased expression of AMH and FSHR. Conversely, the overexpression of UFL1 reduced cisplatin-induced damage to the ovary in vitro. CONCLUSIONS Our research indicated that UFL1 regulates cisplatin-induced ER stress and apoptosis in GCs, and participates in protection against cisplatin-induced POF, providing a potential therapeutic target for the clinical prevention of chemotherapeutic drug-induced POF.
Collapse
Affiliation(s)
- Xiangting Tang
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Hao Dong
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi Fang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingyi Li
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Qi Yang
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Ting Yao
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Zezheng Pan
- Basic Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
13
|
Liu Y, Masternak MM, Schneider A, Zhi X. Dwarf mice as models for reproductive ageing research. Reprod Biomed Online 2021; 44:5-13. [PMID: 34794884 DOI: 10.1016/j.rbmo.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
Dwarf mice are characterized by extremely long lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rate. Snell dwarf, Ames dwarf and growth hormone receptor knockout mice are three commonly used models. Despite studies focusing on ageing and metabolism, the reproductive features of female dwarf mice have also attracted interest over the last decade. Female Snell and Ames dwarf mice have regular oestrous cycles and ovulation rates, as in normal mice, but with a larger ovarian reserve and delayed ovarian ageing. The primordial follicle reserve in dwarf mice is greater than in normal littermates. Anti-Müllerian hormone (AMH) concentration is seven times higher in Ames dwarf mice than in their normal siblings, and ovarian transcriptomic profiling showed distinctive patterns in older Ames dwarf mice, especially enriched in inflammatory and immune response-related pathways. In addition, microRNA profiles also showed distinctive differences in Ames dwarf mice compared with normal control littermates. This review aims to summarize research progress on dwarf mice as models in the reproductive ageing field. Investigations focusing on the mechanisms of their reserved reproductive ability are much needed and are expected to provide additional molecular biological bases for the clinical practice of reproductive medicine in women.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China.
| |
Collapse
|
14
|
Wang S, Tang W, Ma L, Yang J, Huang K, Du X, Luo A, Shen W, Ding T, Ye S, Zhou S, Yang S, Wang S. MiR-145 regulates steroidogenesis in mouse primary granulosa cells through targeting Crkl. Life Sci 2021; 282:119820. [PMID: 34273377 DOI: 10.1016/j.lfs.2021.119820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
AIMS It has been demonstrated that miR-145 is expressed in primordial follicles and modulates the initiation of primordial follicle development. We aimed to explore the function of miR-145 in mouse granulosa cells (mGCs). MATERIALS AND METHODS The proliferation and differentiation of GCs were examined via MTT, EDU assay, QRT-PCR, ELISA and electron microscope analysis. The target of miR-145 was determined by bioinformatics analysis and luciferase reporter assay and the molecular mechanisms were examined via western blot and quantitative Real-Time RT-PCR. KEY FINDINGS We proved that down-regulation of miR-145 could inhibit GCs proliferation and differentiation. In addition, we provided evidence that Crkl was the target gene of miR-145. The miR-145 antagomir caused an increase in Crkl expression and activation of the JNK/p38 MAPK pathway. Overexpression of Crkl with pEGFP-N1-Crkl vector inhibited GCs differentiation and progesterone synthesis as well as activation of the JNK/p38 MAPK pathway. SIGNIFICANCE Our study shows that miR-145 targets Crkl and through the JNK/p38 MAPK signaling pathway promotes the GCs proliferation, differentiation, and steroidogenesis. MiR-145 may play an important role in the ovarian physiology and pathology.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lanfang Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou, People's Republic of China
| | - Jun Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Kecheng Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaofang Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuangmei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
15
|
LIF and bFGF enhanced chicken primordial follicle activation by Wnt/β-catenin pathway. Theriogenology 2021; 176:1-11. [PMID: 34555602 DOI: 10.1016/j.theriogenology.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
The cytokines leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) are closely related to the development of primordial follicles. In this study, the functions and correlation of LIF and bFGF in the development of chicken primordial follicles were examined, along with the signaling pathways including protein kinase B (AKT), extracellular regulated protein kinase (ERK) and Wnt/β-catenin signaling pathways. Ovarian tissues were collected from four-day-old chicks and incubated with LIF and bFGF alone or in combination for three days to observe the changes in follicular development. Results showed that there was a time-dependent correlation between the changes in expression of LIF/its receptor (LIFR) and the developmental process of primordial follicles. LIF and bFGF exerted a synergistic effect on the activation of primordial follicles. However, SC144 (an antagonist of LIFR) inhibited this stimulating action. The effect by LIF and bFGF were shown to operate at AKT and ERK signaling pathways to suppress cell apoptosis and promote proliferation (P < 0.05) via the Wnt/β-catenin signaling (P < 0.05). In conclusion, local cytokines LIF and bFGF functioned to enhance the activation of chicken primordial follicles by increasing cell proliferation and decreasing apoptosis in the ovary involving AKT, ERK and Wnt/β-catenin signaling.
Collapse
|
16
|
The inhibition of WIP1 phosphatase accelerates the depletion of primordial follicles. Reprod Biomed Online 2021; 43:161-171. [PMID: 34210610 DOI: 10.1016/j.rbmo.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
RESEARCH QUESTION What role does wild-type p53-induced phosphatase 1 (WIP1) play in the regulation of primordial follicle development? DESIGN WIP1 expression was detected in the ovaries of mice of different ages by western blotting and immunohistochemical staining. Three-day-old neonatal mouse ovaries were cultured in vitro with or without the WIP1 inhibitor GSK2830371 (10 μM) for 4 days. Ovarian morphology, follicle growth and follicle classification were analysed and the PI3K-AKT-mTOR signal pathway and the WIP1-p53-related mitochondrial apoptosis pathway evaluated. RESULTS WIP1 expression was downregulated with age. Primordial follicles were significantly decreased in the GSK2830371-treated group, without a significant increase in growing follicles. The ratio of growing follicles to primordial follicles was not significantly different between the control and GSK2830371 groups, and no significant variation was observed in the PI3K-AKT-mTOR signal pathway. The inhibition of WIP1 phosphatase accelerated primordial follicle atresia by activating the p53-BAX-caspase-3 pathway. CONCLUSIONS These findings reveal that WIP1 participates in regulating primordial follicle development and that inhibiting WIP1 phosphatase leads to massive primordial follicle loss via interaction with the p53-BAX-caspase-3 pathway. This might also provide valuable information for understanding decreased ovarian reserve during ovarian ageing.
Collapse
|
17
|
Hu J, Dong J, Zeng Z, Wu J, Tan X, Tang T, Yan J, Jin C. Using exosomal miRNAs extracted from porcine follicular fluid to investigate their role in oocyte development. BMC Vet Res 2020; 16:485. [PMID: 33317549 PMCID: PMC7737261 DOI: 10.1186/s12917-020-02711-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Follicular development is crucial to normal oocyte maturation, with follicular size closely related to oocyte maturation. To better understand the molecular mechanisms behind porcine oocyte maturation, we obtained exosomal miRNA from porcine follicular fluid (PFF). These miRNA samples were then sequenced and analyzed regarding their different follicular sizes, as described in the methods section. RESULTS First, these results showed that this process successfully isolated PFF exosomes. Nearly all valid reads from the PFF exosomal sequencing data were successfully mapped to the porcine genome database. Second, we used hierarchical clustering methods to determine that significantly expressed miRNAs were clustered into A, B, C, and D groups in our heatmap according to different follicle sizes. These results allowed for the targeting of potential mRNAs genes related to porcine oocyte development. Third, we chose ten, significantly expressed miRNAs and predicted their target genes for further GO analysis. These results showed that the expression levels of neurotransmitter secretion genes were greatly changed, as were many target genes involved in the regulation of FSH secretion. Notably, these are genes that are very closely related to oocyte maturation in growing follicles. We then used pathway analysis for these targeted genes based on the originally selected ten miRNAs. Results indicated that the pathways were mainly related to the biosynthesis of TGF-beta and its signaling pathway, which are very closely related to reproductive system functions. CONCLUSIONS Finally, these exosomal miRNAs obtained from PFF may provide a valuable addition to our understanding of the mechanism of porcine oocyte maturation. It is also likely that these exosomal miRNAs could function as molecular biomarkers to choose high-quality oocytes and allow for in vitro porcine embryo production.
Collapse
Affiliation(s)
- Junhe Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China.
| | - Jinyi Dong
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Zhi Zeng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Juan Wu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Xiansheng Tan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Tao Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Jiao Yan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| |
Collapse
|
18
|
Alexandri C, Daniel A, Bruylants G, Demeestere I. The role of microRNAs in ovarian function and the transition toward novel therapeutic strategies in fertility preservation: from bench to future clinical application. Hum Reprod Update 2020; 26:174-196. [PMID: 32074269 DOI: 10.1093/humupd/dmz039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND New therapeutic approaches in oncology have converted cancer from a certain death sentence to a chronic disease. However, there are still challenges to be overcome regarding the off-target toxicity of many of these treatments. Oncological therapies can lead to future infertility in women. Given this negative impact on long-term quality of life, fertility preservation is highly recommended. While gamete and ovarian tissue cryopreservation are the usual methods offered, new pharmacological-based options aiming to reduce ovarian damage during oncological treatment are very attractive. In this vein, advances in the field of transcriptomics and epigenomics have brought small noncoding RNAs, called microRNAs (miRNAs), into the spotlight in oncology. MicroRNAs also play a key role in follicle development as regulators of follicular growth, atresia and steroidogenesis. They are also involved in DNA damage repair responses and they can themselves be modulated during chemotherapy. For these reasons, miRNAs may be an interesting target to develop new protective therapies during oncological treatment. This review summarizes the physiological role of miRNAs in reproduction. Considering recently developed strategies based on miRNA therapy in oncology, we highlight their potential interest as a target in fertility preservation and propose future strategies to make the transition from bench to clinic. OBJECTIVE AND RATIONALE How can miRNA therapeutic approaches be used to develop new adjuvant protective therapies to reduce the ovarian damage caused by cytotoxic oncological treatments? SEARCH METHODS A systematic search of English language literature using PubMed and Google Scholar databases was performed through to 2019 describing the role of miRNAs in the ovary and their use for diagnosis and targeted therapy in oncology. Personal data illustrate miRNA therapeutic strategies to target the gonads and reduce chemotherapy-induced follicular damage. OUTCOMES This review outlines the importance of miRNAs as gene regulators and emphasizes the fact that insights in oncology can inspire new adjuvant strategies in the field of onco-fertility. Recent improvements in nanotechnology offer the opportunity for drug development using next-generation miRNA-nanocarriers. WIDER IMPLICATIONS Although there are still some barriers regarding the immunogenicity and toxicity of these treatments and there is still room for improvement concerning the specific delivery of miRNAs into the ovaries, we believe that, in the future, miRNAs can be developed as powerful and non-invasive tools for fertility preservation.
Collapse
Affiliation(s)
- C Alexandri
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - A Daniel
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Université de Tours, Faculty of Science and Technology, 37200 Tours, France
| | - G Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - I Demeestere
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Fertility Clinic, CUB-Erasme, 1070 Brussels, Belgium
| |
Collapse
|
19
|
Kim KH, Kim EY, Kim GJ, Ko JJ, Cha KY, Koong MK, Lee KA. Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in aged rats. Stem Cell Res Ther 2020; 11:472. [PMID: 33153492 PMCID: PMC7643421 DOI: 10.1186/s13287-020-01988-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
Background Aging has detrimental effects on the ovary, such as a progressive reduction in fertility and decreased hormone production, that greatly reduce the quality of life of women. Thus, the current study was undertaken to investigate whether human placenta-derived mesenchymal stem cell (hPD-MSC) treatment can restore the decreases in folliculogenesis and ovarian function that occur with aging. Methods Acclimatized 52-week-old female SD rats were randomly divided into four groups: single hPD-MSC (5 × 105) therapy, multiple (three times, 10-day intervals) hPD-MSC therapy, control (PBS), and non-treated groups. hPD-MSC therapy was conducted by tail vein injection into aged rats. The rats were sacrificed 1, 2, 3, and 5 weeks after the last injection. hPD-MSC tracking and follicle numbers were histologically confirmed. The serum levels of sex hormones and circulating miRNAs were detected by ELISA and qRT-PCR, respectively. TGF-β superfamily proteins and SMAD proteins in the ovary were detected by Western blot analysis. Results We observed that multiple transplantations of hPD-MSCs more effectively promoted primordial follicle activation and ovarian hormone (E2 and AMH) production than a single injection. After hPD-MSC therapy, the levels of miR-21-5p, miR-132-3p, and miR-212-3p, miRNAs associated with the ovarian reserve, were increased in the serum. Moreover, miRNAs (miR-16-5p, miR-34a-5p, and miR-191-5p) with known adverse effects on folliculogenesis were markedly suppressed. Importantly, the level of miR-145-5p was reduced after single- or multiple-injection hPD-MSC therapy, and we confirmed that miR-145-5p targets Bmpr2 but not Tgfbr2. Interestingly, downregulation of miR-145-5p led to an increase in BMPR2, and activation of SMAD signaling concurrently increased primordial follicle development and the number of primary and antral follicles. Conclusions Our study verified that multiple intravenous injections of hPD-MSCs led to improved ovarian function via miR-145-5p and BMP-SMAD signaling and proposed the future therapeutic potential of hPD-MSCs to promote ovarian function in women at advanced age to improve their quality of life during climacterium.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, South Korea
| | - Eun-Young Kim
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, South Korea
| | - Gi Jin Kim
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, South Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, South Korea
| | - Kwang Yul Cha
- CHA Stem Cell Institute, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, South Korea
| | - Mi Kyung Koong
- CHA Fertility Center Seoul Station, CHA University School of Medicine, 416, Hangang-daero, Jung-gu, Seoul, 04637, South Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, South Korea.
| |
Collapse
|
20
|
Slow-Freezing Cryopreservation Ensures High Ovarian Tissue Quality Followed by In Vivo and In Vitro Methods and Is Safe for Fertility Preservation. ACTA ACUST UNITED AC 2020; 56:medicina56100547. [PMID: 33086522 PMCID: PMC7603126 DOI: 10.3390/medicina56100547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
Background and objectives: Cancer incidence is growing with younger patients diagnosed with this disease every year. Improved cancer diagnostics and treatment lead to better survival of cancer patients. However, after aggressive chemo- or radiotherapy, cancer survivors suffer from various degrees of subfertility or infertility. Several fertility preservation technologies have been developed for young cancer patients: cryopreservation of germ cells, embryos, or reproductive tissues. The best results have been shown by cryopreservation of sperm and embryos. Yet the success of using cryopreserved oocytes or reproductive tissues (ovarian and testicular) is still insufficient. Therefore, this study was designed to assess the vitality, viability, general quality, and safety of frozen-thawed human ovarian tissue for retransplantation using modern molecular tests. Materials and Methods: The new miRNA array test was used to evaluate miRNA expression in thawed ovarian tissue in combination with standard xenotransplantation and pathological examination of microslides. Results: Our results demonstrated that slow freezing is an efficient way (80%) to cryopreserve ovarian tissue with no structural damage afterwards. We have shown that xenotransplantation into immunodeficient mice, histology, and immunohistochemistry could be potentially replaced by more recent molecular methods. Conclusions: The latter method has shown that altered expression of miRNAs might be used as identifiers of normal/damaged tissue after further analysis. Newer, safer, and more specific approaches need to be developed in order to eliminate the risk of disease reoccurrence.
Collapse
|
21
|
Lu T, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. A Preliminary Study on the Characteristics of microRNAs in Ovarian Stroma and Follicles of Chuanzhong Black Goat during Estrus. Genes (Basel) 2020; 11:genes11090970. [PMID: 32825655 PMCID: PMC7564575 DOI: 10.3390/genes11090970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNAs) play a significant role in ovarian follicular maturity, but miRNA expression patterns in ovarian stroma (OS), large follicles (LF), and small follicles (SF) have been rarely explored. We herein aimed to identify miRNAs, their target genes and signaling pathways, as well as their interaction networks in OS, LF, and SF of Chuanzhong black goats at the estrus phase using small RNA-sequencing. We found that the miRNA expression profiles of LF and SF were more similar than those of OS—32, 16, and 29 differentially expressed miRNAs were identified in OS vs. LF, OS vs. SF, and LF vs. SF, respectively. Analyses of functional enrichment and the miRNA-targeted gene interaction network suggested that miR-182 (SMC3), miR-122 (SGO1), and miR-206 (AURKA) were involved in ovarian organogenesis and hormone secretion by oocyte meiosis. Furthermore, miR-202-5p (EREG) and miR-485-3p (FLT3) were involved in follicular maturation through the MAPK signaling pathway, and miR-2404 (BMP7 and CDKN1C) played a key role in follicular development through the TGF-β signaling pathway and cell cycle; nevertheless, further research is warranted. To our knowledge, this is the first study to investigate miRNA expression patterns in OS, LF, and SF of Chuanzhong black goats during estrus. Our findings provide a theoretical basis to elucidate the role of miRNAs in follicular maturation. These key miRNAs might provide candidate biomarkers for the diagnosis of follicular maturation and will assist in developing new therapeutic targets for female goat infertility.
Collapse
Affiliation(s)
- Tingting Lu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Xian Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- Correspondence: ; Tel.: +86-1862-019-3682
| |
Collapse
|
22
|
Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci 2020; 259:118174. [PMID: 32745529 DOI: 10.1016/j.lfs.2020.118174] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in females of the reproductive age. PCOS is commonly manifested as ovulatory dysfunction, clinical and biochemical excess androgen level, and polycystic ovaries. Metabolic sequelae associated with PCOS, including insulin resistance (IR), type 2 diabetes (T2DM), obesity and increased cardiometabolic risk. The underlying pathology of PCOS is not fully understood with various genetic and environmental factors have been proposed. MicroRNAs (miRNAs), are endogenously produced, small non-coding, single-stranded RNAs that capable of regulating gene expression at the post-transcriptional level. Altered miRNAs expression has been associated with various disorders, including T2DM, IR, lipid disorder, infertility, atherosclerosis, endometriosis, and cancer. Given that PCOS also present with similar features, there is an increasing interest to investigate the role of miRNAs in the diagnosis and management of PCOS. In recent years, studies have demonstrated that miRNAs are present in various body fluids, including follicular fluid of women with PCOS. Therefore, it may act as a potential biomarker and could serve as a novel therapeutic target for the diagnosis and treatment of PCOS. This review aims to summarise the up to date research on the relation between miRNAs and PCOS and explore its potential role in the diagnosis and the management of PCOS.
Collapse
Affiliation(s)
- Mohammed Abdalla
- Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Harshal Deshmukh
- Clinical lecturer at Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Stephen L Atkin
- Head of School Postgraduate Studies and Research, RCIS-Bahrain, Medical University of Bahrain, Bahrain.
| | - Thozhukat Sathyapalan
- Honorary Consultant Endocrinologist at Hull University Teaching Hospital NHS Trust, UK; Chair in Academic Diabetes, Endocrinology and metabolism in Hull York Medical School, University of Hull, UK.
| |
Collapse
|
23
|
Transactivation of miR-202-5p by Steroidogenic Factor 1 (SF1) Induces Apoptosis in Goat Granulosa Cells by Targeting TGFβR2. Cells 2020; 9:cells9020445. [PMID: 32075111 PMCID: PMC7072820 DOI: 10.3390/cells9020445] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs play key roles during ovary development, with emerging evidence suggesting that miR-202-5p is specifically expressed in female animal gonads. Granulosa cells (GCs) are somatic cells that are closely related to the development of female gametes in mammalian ovaries. However, the biological roles of miR-202-5p in GCs remain unknown. Here, we show that miR-202-5p is specifically expressed in GCs and accumulates in extracellular vesicles (EVs) from large growth follicles in goat ovaries. In vitro assays showed that miR-202-5p induced apoptosis and suppressed the proliferation of goat GCs. We further revealed that miR-202-5p is a functional miRNA that targets the transforming growth factor-beta type II receptor (TGFβR2). MiR-202-5p attenuated TGF-β/SMAD signaling through the degradation of TGFβR2 at both the mRNA and protein level, decreasing p-SMAD3 levels in GCs. Moreover, we verified that steroidogenic factor 1 (SF1) is a transcriptional factor that binds to the promoters of miR-202 and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) through luciferase reporter and chromatin immunoprecipitation (ChIP) assays. That contributed to positive correlation between miR-202-5p and CYP19A1 expression and estradiol (E2) release. Furthermore, SF1 repressed TGFβR2 and p-SMAD3 levels in GCs through the transactivation of miR-202-5p. Taken together, these results suggest a mechanism by which miR-202-5p regulates canonical TGF-β/SMAD signaling through targeting TGFβR2 in GCs. This provides insight into the transcriptional regulation of miR-202 and CYP19A1 during goat ovarian follicular development.
Collapse
|
24
|
Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence. Theriogenology 2020; 145:77-85. [PMID: 32004821 DOI: 10.1016/j.theriogenology.2020.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Developmental competence determines the oocyte capacity to support initial embryo growth, but the molecular mechanisms underlying this phenomenon are still ill-defined. Changes in microRNA (miRNA) expression pattern have been described during follicular growth in several species. Therefore, aim of this study was to investigate whether miRNA expression pattern in cow oocyte and follicular fluid (FF) is associated with the acquisition of developmental competence. Samples were collected from ovaries with more than, or fewer than, 10 mid-antral follicles (H- and L-ovaries) because previous studies demonstrated that this parameter is a reliable predictor of oocyte competence. After miRNA deep sequencing and bioinformatic data analysis, we identified 58 miRNAs in FF and 6 in the oocyte that were differentially expressed between H- and L-ovaries. Overall, our results indicate that miRNA levels both in FF and in the ooplasm must remain within specific thresholds and that changes in either direction compromising oocyte competence. Some of the miRNAs found in FF (miR-769, miR-1343, miR-450a, miR-204, miR-1271 and miR-451) where already known to regulate follicle growth and their expression pattern indicate that they are also involved in the acquisition of developmental competence. Some miRNAs were differentially expressed in both compartments but with opposite patterns, suggesting that miRNAs do not flow freely between FF and oocyte. Gene Ontology analysis showed that the predicted gene targets of most differentially expressed miRNAs are part of a few signalling pathways. Regulation of maternal mRNA storage and mitochondrial activity seem to be the processes more functionally relevant in determining oocyte quality. In conclusion, our data identified a few miRNAs in the follicular fluid and in the ooplasm that modulate the oocyte developmental competence. This provides new insights that could help with the management of cattle reproductive efficiency.
Collapse
|
25
|
Gong Z, Yang J, Bai S, Wei S. MicroRNAs regulate granulosa cells apoptosis and follicular development - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1714-1724. [PMID: 32054175 PMCID: PMC7649074 DOI: 10.5713/ajas.19.0707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Objective MicroRNAs (miRNAs) are the most abundant small RNAs. Approximately 2,000 annotated miRNAs genes have been found to be differentially expressed in ovarian follicles during the follicular development (FD). Many miRNAs exert their regulatory effects on the apoptosis of follicular granulosa cells (FGCs) and FD. However, accurate roles and mechanism of miRNAs regulating apoptosis of FGCs remain undetermined. Methods In this review, we summarized the regulatory role of each miRNA or miRNA cluster on FGCs apoptosis and FD on the bases of 41 academic articles retrieved from PubMed and web of science and other databases. Results Total of 30 miRNAs and 4 miRNAs clusters in 41 articles were reviewed and summarized in the present article. Twenty nine documents indicated explicitly that 24 miRNAs and miRNAs clusters in 29 articles promoted or induced FGCs apoptosis through their distinctive target genes. The remaining 10 miRNAs and miRNAs of 12 articles inhibited FGCs apoptosis. MiRNAs exerted modulation actions by at least 77 signal pathways during FGCs apoptosis and FD. Conclusion We concluded that miRNAs or miRNAs clusters could modulate the apoptosis of GCs (including follicular GCs, mural GCs and cumulus cells) by targeting their specific genes. A great majority of miRNAs show a promoting role on apoptosis of FGCs in mammals. But the accurate mechanism of miRNAs and miRNA clusters has not been well understood. It is necessary to ascertain clearly the role and mechanism of each miRNA or miRNA cluster in the future. Understanding precise functions and mechanisms of miRNAs in FGCs apoptosis and FD will be beneficial in developing new diagnostic and treatment strategies for treating infertility and ovarian diseases in humans and animals.
Collapse
Affiliation(s)
- Zhuandi Gong
- Hospital, Northwest Minzu University, Lanzhou 730030, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Shengju Bai
- Hospital, Northwest Minzu University, Lanzhou 730030, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
26
|
Zhang C, Shen J, Kong S, Zhang M, Zhang Q, Zhou J, Zhen X, Kang N, Jiang Y, Ding L, Sun H, Yan G. MicroRNA-181a promotes follicular granulosa cell apoptosis via sphingosine-1-phosphate receptor 1 expression downregulation†. Biol Reprod 2019; 101:975-985. [PMID: 31359035 DOI: 10.1093/biolre/ioz135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress induces granulosa cell (GC) apoptosis and subsequent follicular atresia. Since our previous studies indicate that microRNA-181a (miR-181a) expression is increased in GCs undergoing apoptosis, the present study was designed to define the relationship between exposure to oxidative stressors in GCs and changes in miR-181a expression and function. To achieve this, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. We demonstrated that in vitro miR-181a overexpression promoted GC apoptosis in a dose-dependent manner; sphingosine-1-phosphate (S1P) significantly reversed both H2O2-induced and miR-181a-induced apoptosis in GCs. Moreover, we identified sphingosine-1-phosphate receptor 1 (S1PR1), a critical receptor of S1P, as a novel target of miR-181a in GCs. MicroRNA-181a induced GC apoptosis by repressing S1PR1 expression in vitro. Importantly, increased miR-181a expression and decreased S1PR1 expression were detected in the in vivo ovarian oxidative stress model by Western blot analysis and immunohistochemistry. Furthermore, we found similar expression patterns of miR-181a and S1PR1 in GCs from patients with premature ovarian insufficiency. In conclusion, our results suggest that miR-181a directly suppresses expression of S1PR1, which has critical roles in mediating oxidative stress-induced GC apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxue Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingtao Shen
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Nannan Kang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Zhang J, Lai Z, Shi L, Tian Y, Luo A, Xu Z, Ma X, Wang S. Repeated superovulation increases the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging in mice. Aging (Albany NY) 2019; 10:1089-1102. [PMID: 29787998 PMCID: PMC5990379 DOI: 10.18632/aging.101449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Superovulation procedures and assisted reproductive technologies have been widely used to treat couples who have infertility problems. Although generally safe, the superovulation procedures are associated with a series of complications, such as ovarian hyper-stimulation syndrome, thromboembolism, and adnexal torsion. The role of long-term repeated superovulation in ovarian aging and especially in associated disorders such as osteoporosis and cardiovascular diseases is still unclear. In this study, we sought to determine if repeated superovulation by ten cycles of treatment with pregnant mare serum gonadotropin/human chorionic gonadotropin could affect ovarian reserve, ovarian function, bone density and heart function. Ovarian reserve and function were reflected by the size of the primordial follicle pool, anti-Mullerian hormone expressions, hormone levels and fertility status. Furthermore, we examined bone density and heart function by microCT and cardiovascular ultrasonography, respectively. After repeated superovulation, the size of the primordial follicle pool and the expression of anti-mullerian hormone decreased, along with the concentrations of estrogen and progesterone. Mice exposed to repeated superovulation showed an obvious decrease in fertility and fecundity. Furthermore, both bone density and heart ejection fraction significantly decreased. These results suggest that repeated superovulation may increase the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiwen Lai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Maternal and Child Health Hospital of Zigong, Sichuan, People's Republic of China
| | - Liangyan Shi
- Department of Obstetrics and Gynecology, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei, People's Republic of China
| | - Yong Tian
- The Central Hospital of Enshi Autonomous Prefecture, Enshi Autonomous Prefecture, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zheyuan Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
28
|
MicroRNA profiling and identification of let-7a as a target to prevent chemotherapy-induced primordial follicles apoptosis in mouse ovaries. Sci Rep 2019; 9:9636. [PMID: 31270341 PMCID: PMC6610114 DOI: 10.1038/s41598-019-45642-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer treatments as cyclophosphamide and its active metabolites are highly gonadotoxic leading to follicle apoptosis and depletion. Considering the risk of subsequent infertility, fertility preservation is recommended. Beside the germ cells and gametes cryopreservation options, ovarian pharmacological protection during treatment appears to be very attractive. Meanwhile, the advances in the field of oncology have brought microRNAs into spotlight as a potential feature of cancer treatment. Herein, we investigated miRNAs expressions in response to chemotherapy using postnatal-day-3 (PND3) mouse ovaries. Our results revealed that several miRNAs are differently expressed during chemotherapy exposure. Amongst them, let-7a was the most profoundly downregulated and targets genes involved in crucial cellular processes including apoptosis. Thus we developed a liposome-based system to deliver the let-7a mimic in whole PND3 ovaries in vitro. We showed that let-7a mimic prevented the upregulation of genes involved in cell death and reduced the chemotherapy-induced ovarian apoptosis, suggesting that it can be an interesting target to preserve ovarian function. However, its impact on subsequent follicular development has to be further elucidated in vivo using an appropriate delivery system. In this study, we demonstrated that miRNA replacement approaches can be a useful tool to reduce chemotherapy-induced ovarian damage in the future.
Collapse
|
29
|
Wong QWL, Sun MA, Lau SW, Parsania C, Zhou S, Zhong S, Ge W. Identification and characterization of a specific 13-miRNA expression signature during follicle activation in the zebrafish ovary. Biol Reprod 2019; 98:42-53. [PMID: 29228146 DOI: 10.1093/biolre/iox160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian folliculogenesis is always of great interest in reproductive biology. However, the molecular mechanisms that control follicle development, particularly the early phase of follicle activation or recruitment, still remain poorly understood. In an attempt to decipher the gene networks and signaling pathways involved in such transition, we conducted a transcriptomic analysis (RNA-seq) on zebrafish primary growth (PG, stage I; inactive) and previtellogenic (PV, stage II; activated) follicles. A total of 118 unique microRNAs (miRNAs) (11 downregulated and 83 upregulated during PG/PV transition) and 56711 unique messenger RNAs (mRNAs) (1839 downregulated and 7243 upregulated during PG/PV transition) were identified. Real-time quantitative polymerase chain reaction analysis confirmed differential expression of 46 miRNAs from 66 candidates (66.67%). Among which, we chose to focus on 13 miRNAs (let-7a, -7b, -7c-5p, -7d-5p, -7h, -7i; miR-21, -23a-3p, -27c-3p, -107a-3p, -125b-5p, -145-3p, and -202-5p) that exhibited significant differential expression between PG and PV follicles (P ≤ 0.045*). With this 13-miRNA expression signature alone, PG follicles can be well differentiated from PV follicles by hierarchical clustering, suggesting their functional relevance during PG-to-PV transition. By overlaying predicted target genes and the differentially expressed mRNAs revealed by the RNA-seq analysis, especially those showing reciprocal miRNA-mRNA expression patterns, we shortlisted a panel of miRNA downstream targets for luciferase reporter validation. The reporter assay confirmed the interactions of let-7i:: atg4a (P = 0.01*), miR-202-5p::c23h20orf24 (P = 0.0004***), and miR-144-5p::ybx1 (P = 0.003**), implicating these potential miRNA-mRNA gene pairs in follicle activation during folliculogenesis. Our transcriptomic data analyses suggest that miRNA-mediated post-transcriptional control may represent an important mechanism underlying follicle activation.
Collapse
Affiliation(s)
- Queenie Wing-Lei Wong
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ming-An Sun
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chirag Parsania
- Genomics & Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shaolong Zhou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
30
|
Xiong J, Wu M, Zhang Q, Zhang C, Xiong G, Ma L, Lu Z, Wang S. Proteomic analysis of mouse ovaries during the prepubertal stages. Exp Cell Res 2019; 377:36-46. [PMID: 30797753 DOI: 10.1016/j.yexcr.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/01/2022]
Abstract
Postnatal folliculogenesis, primordial follicle activation and follicular development at early stage are important for normal ovarian function and fertility, and a comprehensive understanding of this process under physiological condition is necessary. To observe the regulation and mechanism of ovarian follicle development during the prepubertal stages, we collected the mouse ovaries from three time points, including 1 day, 7 days, and 4 weeks after birth. We then performed a proteomic analysis using tandem mass tags (TMT) labeling combined with a two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique. A total of 706 proteins were determined to be significant differential abundance (P-SDA). Sixty upregulated proteins and 12 downregulated proteins that were P-SDA and 3 significant KEGG pathways (P < 0.05) were found at 7 days vs. 1 day after birth, while 237 upregulated proteins, 271 downregulated proteins and 42 significant KEGG pathways were found for 4 weeks vs. 7 days after birth. Some vital genes (Figla, Ooep, Padi6, Zp3, Hsd3b1, cyp11a1), key pathways (ECM-receptor interaction, focal adhesion, ovarian steroidogenesis, complement and coagulation cascades, PI3K/Akt/mTOR), and metabolic regulation (energy metabolism, lipid metabolism, metal ion metabolism) were found to be related to the postnatal folliculogenesis, primordial follicle activation and follicular development. Finally, qRT-PCR and western blotting verified some vital genes and further elucidated the developmental process of follicles, and the results may contribute to the understanding of the formation and activation of primordial follicle and follicular development. Significance: This study offers the first proteomic insights into mechanisms of follicle development under physiological condition during the prepubertal stages. By comparing P-SDA of mouse ovaries during various period of age, our data reveals that the regulation of primordial follicle formation and activation is significantly different from that of follicular development. These findings demonstrate that many unique molecular mechanisms underlie ovarian development could be used for ovarian disease research.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoping Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, China,Centre for Reproductive Medicine, Puren Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
31
|
Li X, Ye J, Han X, Qiao R, Li X, Lv G, Wang K. Whole-genome sequencing identifies potential candidate genes for reproductive traits in pigs. Genomics 2019; 112:199-206. [PMID: 30707936 DOI: 10.1016/j.ygeno.2019.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 11/24/2022]
Abstract
Reproductive performance is a complex quantitative trait, that is determined by multiple genes, regulatory pathways and environmental factors. A list of major genes with large effect have been detected, although multiple QTLs are identified. To identify candidate genes for pig prolificacy, whole genome variants from five high- and five low-prolificacy Yorkshire sows were collected using whole-genome resequencing. A total of 13,955,609 SNPs and 2,666,366 indels were detected across the genome. Common differential SNPs and indels were identified between the two groups of sows. Genes encoding components of the TGF-beta signaling pathway were enriched with the variations, including BMP5, BMP6, BMP7, ACVR1, INHBA, ZFYVE9, TGFBR2, DCN, ID4, BAMBI, and ACVR2A. Several differential variants within these genes related to reproductive traits were identified to be associated with litter size. A comparison of selective regions and published QTL data suggests that NEDD9, SLC39A11, SNCA, and UNC5D are candidate genes for reproduction traits.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Jianwei Ye
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xuelei Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Ruimin Qiao
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xiuling Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Gang Lv
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Kejun Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
32
|
Zhang J, Xu Y, Liu H, Pan Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol 2019; 17:9. [PMID: 30630485 PMCID: PMC6329178 DOI: 10.1186/s12958-018-0450-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that posttranscriptionally regulate gene expression. In the past decade, studies on miRNAs in ovaries have revealed the key roles of miRNAs in ovarian development and function. In this review, we first introduce the development of follicular atresia research and then summarize genome-wide studies on the ovarian miRNA profiles of different mammalian species. Differentially expressed miRNA profiles during atresia and other biological processes are herein compared. In addition, current knowledge on confirmed functional miRNAs during the follicular atresia process, which is mostly indicated by granulosa cell (GC) apoptosis, is presented. The main miRNA families and clusters, including the let-7 family, miR-23-27-24 cluster, miR-183-96-182 cluster and miR-17-92 cluster, and related pathways that are involved in follicular atresia are thoroughly summarized. A deep understanding of the roles of miRNA networks will not only help elucidate the mechanisms of GC apoptosis, follicular development, atresia and their disorders but also offer new diagnostic and treatment strategies for infertility and other ovarian dysfunctions.
Collapse
Affiliation(s)
- Jinbi Zhang
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| | - Yinxue Xu
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| | - Honglin Liu
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| | - Zengxiang Pan
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
33
|
Dutta RK, Chinnapaiyan S, Rasmussen L, Raju SV, Unwalla HJ. A Neutralizing Aptamer to TGFBR2 and miR-145 Antagonism Rescue Cigarette Smoke- and TGF-β-Mediated CFTR Expression. Mol Ther 2018; 27:442-455. [PMID: 30595527 PMCID: PMC6369566 DOI: 10.1016/j.ymthe.2018.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
Transforming growth factor β (TGF-β), signaling induced by cigarette smoke (CS), plays an important role in the progression of airway diseases, like chronic bronchitis associated with chronic obstructive pulmonary disease (COPD), and in smokers. Chronic bronchitis is characterized by reduced mucociliary clearance (MCC). Cystic fibrosis transmembrane conductance regulator (CFTR) plays an important role in normal MCC. TGF-β and CS (via TGF-β) promote acquired CFTR dysfunction by suppressing CFTR biogenesis and function. Understanding the mechanism by which CS promotes CFTR dysfunction can identify therapeutic leads to reverse CFTR suppression and rescue MCC. TGF-β alters the microRNAome of primary human bronchial epithelium. TGF-β and CS upregulate miR-145-5p expression to suppress CFTR and the CFTR modifier, SLC26A9. miR-145-5p upregulation with a concomitant CFTR and SLC26A9 suppression was validated in CS-exposed mouse models. While miR-145-5p antagonism rescued the effects of TGF-β in bronchial epithelial cells following transfection, an aptamer to block TGF-β signaling rescues CS- and TGF-β-mediated suppression of CFTR biogenesis and function in the absence of any transfection reagent. These results demonstrate that miR-145-5p plays a significant role in acquired CFTR dysfunction by CS, and they validate a clinically feasible strategy for delivery by inhalation to locally modulate TGF-β signaling in the airway and rescue CFTR biogenesis and function.
Collapse
Affiliation(s)
- Rajib K Dutta
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Lawrence Rasmussen
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Vamsee Raju
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hoshang J Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
34
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
35
|
Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet 2018; 35:1135-1148. [PMID: 29691711 PMCID: PMC6063820 DOI: 10.1007/s10815-018-1180-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. METHODS We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. RESULTS The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. CONCLUSIONS There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.
Collapse
Affiliation(s)
- Jaimin S Shah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas at Houston Health Science Center, Houston, TX, USA
| | - Reem Sabouni
- Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kamaria C Cayton Vaught
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA
| | - Carter M Owen
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - James H Segars
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA.
- Gynecology and Obstetrics, 720 Rutland Avenue/Ross 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Kallen A, Polotsky AJ, Johnson J. Untapped Reserves: Controlling Primordial Follicle Growth Activation. Trends Mol Med 2018; 24:319-331. [PMID: 29452791 DOI: 10.1016/j.molmed.2018.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022]
Abstract
Even with the benefit of assisted reproductive technologies (ART), many women are unable to conceive and deliver healthy offspring. One common cause of infertility is the inability to produce eggs capable of contributing to live birth. This can occur despite standard-of-care treatment to maximize the recovery of eggs from growing ovarian follicles. Dormant primordial follicles in the human ovary are a 'reserve ' that can be exploited clinically to overcome this problem. We discuss how controlling primordial follicle growth activation (PFGA) can produce increased numbers of high-quality eggs available for fertility treatment(s). We consider the state of the art in interventions used to control PFGA, and consider genetic and epigenetic strategies on the horizon that might improve compromised oocyte quality to increase live births.
Collapse
Affiliation(s)
- Amanda Kallen
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Reproductive Endocrinology, New Haven, CT, USA
| | - Alex J Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Aurora, CO 80045, USA
| | - Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis 2018; 9:151. [PMID: 29396446 PMCID: PMC5833407 DOI: 10.1038/s41419-017-0205-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Canonical TGF-β signals are transduced from the cell surface to the cytoplasm, and then translocated into the nucleus, a process that involves ligands (TGF-β1), receptors (TGFBR2/1), receptor-activated SMADs (SMAD2/3), and the common SMAD (SMAD4). Here we provide evidence that SMAD4, a core component of the canonical TGF-β signaling pathway, regulates the canonical TGF-β signaling pathway in porcine granulosa cells (GCs) through a feedback mechanism. Genome-wide analysis and qRT-PCR revealed that SMAD4 affected miRNA biogenesis in GCs. Interestingly, TGFBR2, the type II receptor of the canonical TGF-β signaling pathway, was downregulated in SMAD4-silenced GCs and found to be a common target of SMAD4-inhibited miRNAs. miR-425, the most significantly elevated miRNA in SMAD4-silenced GCs, mediated the SMAD4 feedback regulation of the TGF-β signaling pathway. This was accomplished through a direct interaction between the transcription factor SMAD4 and the miR-425 promoter, and a direct interaction between miR-425 and the TGFBR2 3′-UTR. Furthermore, miR-425 enhanced GC apoptosis by targeting TGFBR2 and the canonical TGF-β signaling pathway, which was rescued by SMAD4 and TGF-β1. Overall, our findings demonstrate that a positive feedback mechanism exists within the canonical TGF-β signaling pathway. This study also provides new insights into mechanism underlying the canonical TGF-β signaling pathway, which regulates GC function and follicular development.
Collapse
|
38
|
Wang W, La Y, Zhou X, Zhang X, Li F, Liu B. The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Anim Reprod Sci 2018; 189:19-29. [DOI: 10.1016/j.anireprosci.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
|
39
|
Xue Y, Lv J, Xu P, Gu L, Cao J, Xu L, Xue K, Li Q. Identification of microRNAs and genes associated with hyperandrogenism in the follicular fluid of women with polycystic ovary syndrome. J Cell Biochem 2018; 119:3913-3921. [PMID: 29193229 DOI: 10.1002/jcb.26531] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease, which is characterized by hyperandrogenism (HA), chronic anovulation, polycystic ovaries, insulin resistance, and obesity. At present, the mechanism by which PCOS/HA occurs has not been fully elucidated, thus, the mechanisms behind and interventions for HA in PCOS are current hot topics in research. MiRNAs have recently been shown to serve as diagnostic or prognostic biomarkers in patients with cancer. Thus, we are currently focused on studying the altered expression of miRNAs in follicular fluid and their correlation with HA in PCOS. Illumina deep sequencing technology was used to explore different miRNAs in the follicular fluid of women with PCOS/HA and in the follicular fluid of women in a control group. Target prediction databases were then used to analyse the target genes of different expressed miRNAs, and GO analysis and the KEGG pathway database were used to identify the functions and the main biochemical and signalling pathways of differentially expressed target genes. The expression levels of 263 miRNAs were significantly different (>2-fold up-regulated or <0.5-fold down-regulated, P < 0.05) between the two groups of women. For example, the expression levels of miRNA (200a-3p, 10b-3p, 200b-3p, 29c-3p, 99a-3p, and 125a-5p) were significantly increased, while there was a decreased expression of miR-105-3p in PCOS patients with respect to the control. Literature has shown that the above seven miRNAs were associated with HA in PCOS. Furthermore, 31 770 genes were predicted to be targets of the 263 differentially expressed microRNAs. GO analysis and the KEGG pathway database showed involvement of these target genes in HA in PCOS. These results suggest the presence of differentially expressed miRNAs in the follicular fluid of women with PCOS/HA versus women in the control group. The potential role of these microRNAs was elucidated using bioinformatics tools and was found to be involved in the regulation of different pathways, biological functions, and cellular components underlying PCOS. The results of this research may reveal new mechanisms of PCOS/HA and suggest potential treatment targets.
Collapse
Affiliation(s)
- Yunping Xue
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Juan Lv
- Department of Oncology, Nanjing Maternal and Child Health Hospital, affiliated to Nanjing Medical University, Nanjing, China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Lin Gu
- Department of Gynecological Endocrinology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Jian Cao
- Department of Oncology, Nanjing Maternal and Child Health Hospital, affiliated to Nanjing Medical University, Nanjing, China
| | - Lingling Xu
- Department of Gynecological Endocrinology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Kai Xue
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Qian Li
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Tesfaye D, Gebremedhn S, Salilew-Wondim D, Hailay T, Hoelker M, Grosse-Brinkhaus C, Schellander K. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction 2017; 155:R121-R135. [PMID: 29170163 DOI: 10.1530/rep-17-0428] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
The genetic regulation of female fertility (follicular development, oocyte maturation and early preimplantation embryo development) involves the spatio-temporal regulation of those genes that play key roles in various stages of the female reproductive axis. MicroRNAs (miRNAs), a class of small non-coding RNAs, are known to regulate the expression of a large proportion of such genes. In recent decades, multiple studies have aimed to determine the roles of these non-coding RNAs in mammalian follicular development, oocyte growth and embryo development. These studies have applied a variety of approaches, including conditional knockout of miRNA biogenesis genes, high-throughput sequencing technologies for pattern recognition in miRNA expression and loss- and gain-of-function of miRNAs in various animal models. In addition to the cellular miRNAs, a large variety of RNAs are found in circulation, being coupled with extracellular vesicles, proteins and lipids. Because of their potential as diagnostic markers for abnormal physiologies, there is increasing interest in the identification of extracellular miRNAs in various biological fluids and spent in vitro culture media. This review focuses on studies addressing the expression and potential role of cellular and extracellular miRNAs in mammalian follicular cell physiology and subsequent ovarian functionality and oocyte maturation.
Collapse
Affiliation(s)
- Dawit Tesfaye
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany .,Center of Integrated Dairy ResearchUniversity of Bonn, Bonn, Germany
| | - Samuel Gebremedhn
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany.,Center of Integrated Dairy ResearchUniversity of Bonn, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany.,Center of Integrated Dairy ResearchUniversity of Bonn, Bonn, Germany
| | - Tsige Hailay
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany.,Center of Integrated Dairy ResearchUniversity of Bonn, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany.,Center of Integrated Dairy ResearchUniversity of Bonn, Bonn, Germany
| | - Christine Grosse-Brinkhaus
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal SciencesDepartment of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany.,Center of Integrated Dairy ResearchUniversity of Bonn, Bonn, Germany
| |
Collapse
|
41
|
Zhou S, Yan W, Shen W, Cheng J, Xi Y, Yuan S, Fu F, Ding T, Luo A, Wang S. Low expression of SEMA6C accelerates the primordial follicle activation in the neonatal mouse ovary. J Cell Mol Med 2017; 22:486-496. [PMID: 28881413 PMCID: PMC5742695 DOI: 10.1111/jcmm.13337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
The primordial follicle assembly, activation and the subsequent development are critical processes for female reproduction. A limited number of primordial follicles are activated to enter the growing follicle pool each wave, and the primordial follicle pool progressively diminishes over a woman's life‐time. The number of remaining primordial follicles represents the ovarian reserve. Identification and functional investigation of the factors involved in follicular initial recruitment will be of great significance to the understanding of the female reproduction process and ovarian ageing. In this study, we aimed to study whether and how semaphorin 6C (Sema6c) regulated the primordial follicle activation in the neonatal mouse ovary. The attenuation of SEMA6C expression by SiRNA accelerated the primordial follicle activation in the in vitro ovary culture system. PI3K‐AKT‐rpS6 pathway was activated when SEMA6C expression was down‐regulated. And the LY294002 could reverse the effect of low SEMA6C expression on primordial follicle activation. Our findings revealed that Sema6c was involved in the activation of primordial follicles, and the down‐regulation of SEMA6C led to massive primordial follicle activation by interacting with the PI3K‐AKT‐rpS6 pathway, which might also provide valuable information for understanding premature ovarian failure and ovarian ageing.
Collapse
Affiliation(s)
- Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Tesfaye D, Salilew-Wondim D, Gebremedhn S, Sohel MMH, Pandey HO, Hoelker M, Schellander K. Potential role of microRNAs in mammalian female fertility. Reprod Fertil Dev 2017; 29:8-23. [PMID: 28278789 DOI: 10.1071/rd16266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the first evidence for the involvement of microRNAs (miRNAs) in various reproductive processes through conditional knockout of DICER, several studies have been conducted to investigate the expression pattern and role of miRNAs in ovarian follicular development, oocyte maturation, embryo development, embryo-maternal communication, pregnancy establishment and various reproductive diseases. Although advances in sequencing technology have fuelled miRNA studies in mammalian species, the presence of extracellular miRNAs in various biological fluids, including follicular fluid, blood plasma, urine and milk among others, has opened a new door in miRNA research for their use as diagnostic markers. This review presents data related to the identification and expression analysis of cellular miRNA in mammalian female fertility associated with ovarian folliculogenesis, oocyte maturation, preimplantation embryo development and embryo implantation. In addition, the relevance of miRNAs to female reproductive disorders, including polycystic ovary syndrome (PCOS), endometritis and abnormal pregnancies, is discussed for various mammalian species. Most importantly, the mechanism of release and the role of extracellular miRNAs in cell-cell communication and their potential role as non-invasive markers in female fertility are discussed in detail. Understanding this layer of regulation in female reproduction processes will pave the way to understanding the genetic regulation of female fertility in mammalian species.
Collapse
Affiliation(s)
- Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Samuel Gebremedhn
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Md Mahmodul Hasan Sohel
- Department of Animal Science, Faculty of Agriculture, Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Turkey
| | - Hari Om Pandey
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| |
Collapse
|
43
|
Kim YY, Tamadon A, Ku SY. Potential Use of Antiapoptotic Proteins and Noncoding RNAs for Efficient In Vitro Follicular Maturation and Ovarian Bioengineering. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:142-158. [PMID: 27763207 DOI: 10.1089/ten.teb.2016.0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In vitro culture of ovarian follicles is a promising bioengineering technique for preserving fecundity in reproductive-aged female by providing fertilizable oocytes. Successful clinical application should be preceded by developing the protocols that can efficiently overcome follicular cell apoptosis since the apoptosis is a critical phenomenon in in vivo folliculogenesis and in in vitro follicular maturation. Numerous prosurvival and antiapoptotic molecules, including follicular developmental regulators, have been reported to be involved in the intraovarian apoptosis. The authors searched literature and analyzed the current knowledge of these proteins and noncoding RNAs, and their antiapoptotic roles in the dynamics of follicular development in vivo and in vitro. Two-dimensional (2D) culture method has widely been used, however, with recent emergence of various biomaterials, three-dimensional (3D) culture is also considered a proper environment for maintenance of solid structure of ovarian follicles. The identification of candidate paracrine and endocrine intracellular effectors that are responsible for the coordination occurring between oocyte, granulosa, and theca cells during follicular development was explored in this review, to assess the possibility of their use as antiapoptotic factors in establishing more efficacious 2D or 3D in vitro follicular microenvironment. The retrieved information will provide an inventory and the insight for defining more sophisticated culture conditions that are essential for functional artificial ovarian bioengineering.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital , Seoul, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, Seoul National University Hospital , Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital , Seoul, South Korea
| |
Collapse
|
44
|
Dynamics of miRNA transcriptome during gonadal development of zebrafish. Sci Rep 2017; 7:43850. [PMID: 28262836 PMCID: PMC5338332 DOI: 10.1038/srep43850] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 12/28/2022] Open
Abstract
Studies in non-teleost vertebrates have found microRNAs (miRNAs) to be essential for proper gonadal development. However, comparatively little is known about their role during gonadal development in teleost fishes. So far in zebrafish, a model teleost, transcript profiling throughout gonadal development has not been established because of a tiny size of an organ in juvenile stages and its poor distinguishability from surrounding tissues. We performed small RNA sequencing on isolated gonads of See-Thru-Gonad line, from the undifferentiated state at 3 weeks post fertilization (wpf) to fully mature adults at 24 wpf. We identified 520 gonadal mature miRNAs; 111 of them had significant changes in abundance over time, while 50 miRNAs were either testis- or ovary-enriched significantly in at least one developmental stage. We characterized patterns of miRNA abundance over time including isomiR variants. We identified putative germline versus gonadal somatic miRNAs through differential small RNA sequencing of isolated gametes versus the whole gonads. This report is the most comprehensive analysis of the miRNA repertoire in zebrafish gonads during the sexual development to date and provides an important database from which functional studies can be performed.
Collapse
|
45
|
Menon B, Gulappa T, Menon KMJ. Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. Mol Cell Endocrinol 2017; 442:81-89. [PMID: 27940300 PMCID: PMC5371357 DOI: 10.1016/j.mce.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
We have previously reported that LHCGR expression in the ovary is regulated through a post-transcriptional mechanism involving an mRNA binding protein designated as LRBP, which is regulated, at least in part, by a non-coding RNA, miR-122. Our present study examined the regulatory role of miR-122 in FSH-induced LHCGR expression during follicle development. Treatment of rat granulosa cells concurrently with FSH and 17β estradiol showed, as expected, a time-dependent increase in LHCGR mRNA levels as well as hCG-induced progesterone production. However, miR-122 expression was decreased during the early time periods, which preceded the increased expression of LHCGR mRNA. The role of miR-122 in FSH-induced LHCGR mRNA expression was then examined by overexpressing miR-122 prior to FSH stimulation by infecting granulosa cells with an adenoviral vector containing a miR-122 insert (AdmiR-122). Pretreatment with AdmiR-122 resulted in complete abrogation of FSH- mediated upregulation of LHCGR. AdmiR-122 also blocked FSH-induced decrease in LRBP expression and increased the binding of LHCGR mRNA to LRBP. Based on these results, we conclude that miR-122 plays a regulatory role in LHCGR expression by modulating LRBP levels during FSH-induced follicle growth.
Collapse
Affiliation(s)
- Bindu Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - Thippeswamy Gulappa
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA.
| |
Collapse
|
46
|
Worku T, Rehman ZU, Talpur HS, Bhattarai D, Ullah F, Malobi N, Kebede T, Yang L. MicroRNAs: New Insight in Modulating Follicular Atresia: A Review. Int J Mol Sci 2017; 18:ijms18020333. [PMID: 28208755 PMCID: PMC5343868 DOI: 10.3390/ijms18020333] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
Our understanding of the post-transcriptional mechanisms involved in follicular atresia is limited; however, an important development has been made in understanding the biological regulatory networks responsible for mediating follicular atresia. MicroRNAs have come to be seen as a key regulatory actor in determining cell fate in a wide range of tissues in normal and pathological processes. Profiling studies of miRNAs during follicular atresia and development have identified several putative miRNAs enriched in apoptosis signaling pathways. Subsequent in vitro and/or in vivo studies of granulosa cells have elucidated the functional role of some miRNAs along with their molecular pathways. In particular, the regulatory roles of some miRNAs have been consistently observed during studies of follicular cellular apoptosis. Continued work should gradually lead to better understanding of the role of miRNAs in this field. Ultimately, we expect this understanding will have substantial benefits for fertility management at both the in vivo or/and in vitro levels. The stable nature of miRNA holds remarkable promise in clinical use as a diagnostic tool and in reproductive medicine to solve the ever-increasing fertility problem. In this review, we summarize current knowledge of the involvement of miRNAs in follicular atresia, discuss the challenges for further work and pinpoint areas for future research.
Collapse
Affiliation(s)
- Tesfaye Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- School of Veterinary Medicine, Wollega University, P.O. Box 395, Nekemte, Ethiopia.
| | - Zia Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Farman Ullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ngabu Malobi
- State Key Laboratory of Agricultural Microbiology, Education Ministry of China, College of Veterinary Medicine Huazhong Agricultural University, Wuhan 430070, China.
| | - Tesfaye Kebede
- Departments of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Zhang J, Fang L, Shi L, Lai Z, Lu Z, Xiong J, Wu M, Luo A, Wang S. Protective effects and mechanisms investigation of Kuntai capsule on the ovarian function of a novel model with accelerated aging ovaries. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:173-181. [PMID: 27845267 DOI: 10.1016/j.jep.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/18/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuntai capsule, a traditional Chinese medicine, has been widely used for the clinical treatment of menopausal syndrome. However, its mechanisms remain poorly understood. Considering that aging ovaries are the primary cause of menopause, this study was designed to investigate the effects and mechanisms of Kuntai capsule on ovarian function in a novel mice model with accelerated aging ovaries. MATERIALS AND METHODS Seventy-five female C57BL/6 mice were chosen for this study. Fifteen of the mice were separated into the normal control group (NC). The remaining sixty were used to establish the novel accelerated aging ovary model by superovulation and oxidative stress and then by randomly dividing the mice into four equal groups. One group was considered the model group (Mod). The other three groups were treated with low (0.4g/kg), middle (0.8g/kg) and high (1.6g/kg) doses of Kuntai capsule intragastrically every day for 4 weeks. During the treatment, the body weight and fur condition of all mice were recorded. All the mice were forced to swim to record their exhaustive swimming time (EST), which measures their strength. Mice were then sacrificed for sampling. Ovarian reserve was evaluated using follicle counts and AMH expression. Ovarian function was evaluated using estrous cycle, sex hormone level and litter experiments. Ovarian follicles were categorized and counted to estimate ovarian reserve, and ovarian histologic sections were stained for terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to detect apoptotic cells. The ultrastructure of ovarian cells was observed using transmission electron microscopy. Western blotting was used to measure expression of Bax, Bcl2, AMH and SOD2 protein. RESULTS Compared with the NC GROUP, the Mod group clearly displayed worse fur condition and ovarian function. These situations showed some improvement after Kuntai capsule treatment. Specifically, the fur condition and the EST of the Kuntai capsule groups were superior to the fur condition and EST of the Mod group. In cases of damaged ovarian function, Kuntai capsule can regulate the estrous cycles, increase hormone secretion and fertility and significantly decrease atretic follicles. The transmission electron microscopy results revealed that Kuntai capsule rescued the ovarian ultrastructure of mice. TUNEL staining confirmed that the apoptotic cells were reduced after Kuntai capsule treatment. Western blotting revealed that Kuntai capsule can increase AMH, SOD2, and Bcl2 protein expression and decrease Bax expression. CONCLUSIONS Kuntai capsule may improve damaged ovarian function, which may be related to its antioxidant and anti-apoptosis effects.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Li Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Liangyan Shi
- Department of Obstetrics and Gynecology, Hubei Province, Maternity and Child Health Care Hospital, Wuhan, Hubei 430030, PR China.
| | - Zhiwen Lai
- Maternal and Child Health Hospital of Zigong, Sichuan 643000, China.
| | - Zhiyong Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
48
|
Schneider A, Matkovich SJ, Victoria B, Spinel L, Bartke A, Golusinski P, Masternak MM. Changes of Ovarian microRNA Profile in Long-Living Ames Dwarf Mice during Aging. PLoS One 2017; 12:e0169213. [PMID: 28046124 PMCID: PMC5207734 DOI: 10.1371/journal.pone.0169213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
The Ames dwarf (df/df) mice have extended longevity and can preserve the ovarian reserve longer than Normal (N) mice. Based on this, the aim of our study was to evaluate the ovarian microRNA (miRNA) profile in young and aged df/df and N mice. Ovarian tissue was collected at 5–6 months and at 21–22 months of age for miRNA sequencing. We detected a total of 404 miRNAs in the ovarian samples, from which the abundance of 22 and 33 miRNAs changed with age in N and df/df mice, respectively. Of these, only three miRNAs were commonly regulated with age between N and df/df mice, indicating a very divergent miRNA profile between genotypes. We also detected that 46 miRNAs were regulated between N and df/df mice, of which 23 were regulated exclusively in young mice, 12 exclusively in old mice and 12 commonly regulated at young and old ages. Many genes likely to be targeted by these miRNAs are involved in the FoxO, mTOR, PI3k/Akt and insulin signaling pathways. These results suggest that the aging process has a differential impact on the ovarian miRNA profile in df/df mice, and suggest that these miRNAs can be central players in the maintenance of a younger ovarian phenotype.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
- * E-mail: (MMM); (AS)
| | - Scot J. Matkovich
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Lina Spinel
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Pawel Golusinski
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Michal M. Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
- * E-mail: (MMM); (AS)
| |
Collapse
|
49
|
Toms D, Pan B, Li J. Endocrine Regulation in the Ovary by MicroRNA during the Estrous Cycle. Front Endocrinol (Lausanne) 2017; 8:378. [PMID: 29403434 PMCID: PMC5786742 DOI: 10.3389/fendo.2017.00378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hormonal control of the estrous cycle that occurs in therian mammals is essential for the production of a functional egg. Supporting somatic cell types found within the ovary, such as granulosa and theca cells, respond to endocrine signals to support oocyte maturation and ovulation. Following the release of the egg, now available for fertilization, coordinated hormonal signaling between the mother and putative embryo are required for the establishment of pregnancy. If no conception occurs, both the ovary and uterus are "reset" in preparation for another cycle. The complex molecular changes that occur within cells in response to hormone signaling include a network of non-coding microRNAs (miRNAs) that posttranscriptionally regulate gene expression. They are thus able to fine-tune cellular responses to hormones and confer robustness in gene regulation. In this review, we outline the important roles established for miRNAs in regulating female reproductive hormone signaling during estrus, with a particular focus on signaling pathways in the ovary. Understanding this miRNA network can provide important insights to improving assisted reproductive technologies and may be useful in the diagnosis of female reproductive disorders.
Collapse
Affiliation(s)
- Derek Toms
- Faculty of Veterinary Medicine, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Pan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- College of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Julang Li,
| |
Collapse
|
50
|
Shi L, Zhang J, Lai Z, Tian Y, Fang L, Wu M, Xiong J, Qin X, Luo A, Wang S. Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Progesterone Production. PLoS One 2016; 11:e0162194. [PMID: 27676390 PMCID: PMC5038974 DOI: 10.1371/journal.pone.0162194] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Ovarian aging is a long-term and complex process associated with a decrease in follicular quantity and quality. The damaging effects of reactive oxygen species (ROS) in ovarian aging and ovarian aging-associated disorders have received relatively little attention. Thus, we assessed if the oxidative stress induced by long-term (defined by the Environmental Protection Agency as at least 30 days in duration) moderate ozone inhalation reduced ovarian reserves, decreased ovarian function and induced ovarian aging-associated disorders. The expression of oxidative stress markers and antioxidant enzymes was used to determine the degree of oxidative stress. Ultrastructural changes in ovarian cells were examined via electron microscopy. The ovarian reserve was assessed by measuring multiple parameters, such as the size of the primordial follicle pool and anti-Müllerian hormone (AMH) expression. The estrous cycle, hormone levels and fertility status were investigated to assess ovarian function. To investigate ovarian aging-associated disorders, we utilized bone density and cardiovascular ultrasonography in mice. The levels of oxidized metabolites, such as 8-hydroxy-2´-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE) and nitrotyrosine (NTY), significantly increased in ovarian cells in response to increased oxidative stress. The ultrastructural analysis indicated that lipid droplet formation and the proportion of mitochondria with damaged membranes in granulosa cells were markedly increased in ozone-exposed mice when compared with the control group. Ozone exposure did not change the size of the primordial follicle pool or anti-Müllerian hormone (AMH) expression. The estrogen concentration remained normal; however, progesterone and testosterone levels decreased. The mice exposed to ozone inhalation exhibited a substantial decrease in fertility and fecundity. No differences were revealed by the bone density or cardiovascular ultrasounds. These findings suggest that the decreased female reproductive function caused by long-term moderate oxidative damage may be due to a decrease in follicle quality and progesterone production.
Collapse
Affiliation(s)
- Liangyan Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwen Lai
- Maternal and Child Health Hospital of Zigong, Sichuan, 643000, China
| | - Yong Tian
- The Central Hospital of Enshi Autonomous Prefecture, 158 Wuyang Road, Enshi Autonomous Prefecture, Hubei, 445000, China
| | - Li Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (SW); (AL)
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (SW); (AL)
| |
Collapse
|