1
|
Bhat GR, Lone FA, Dalal J. Microfluidics-A novel technique for high-quality sperm selection for greater ART outcomes. FASEB Bioadv 2024; 6:406-423. [PMID: 39372125 PMCID: PMC11452445 DOI: 10.1096/fba.2024-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 10/08/2024] Open
Abstract
Microfluidics represent a quality sperm selection technique. Human couples fail to conceive and this is so in a significant population of animals worldwide. Defects in male counterpart lead to failure of conception so are outcomes of assisted reproduction affected by quality of sperm. Microfluidics, deals with minute volumes (μL) of liquids run in small-scale microchannel networks in the form of laminar flow streamlines. Microfluidic sperm selection designs have been developed in chip formats, mimicking in vivo situations. Here sperms are selected and analyzed based on motility and sperm behavioral properties. Compared to conventional sperm selection methods, this selection method enables to produce high-quality motile sperm cells possessing non-damaged or least damaged DNA, achieve greater success of insemination in bovines, and achieve enhanced pregnancy rates and live births in assisted reproduction-in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Besides, the concentration of sperm available to oocyte can be controlled by regulating the flow rate in microfluidic chips. The challenges in this technology are commercialization of chips, development of fully functional species-specific microfluidic tools, limited number of studies available in literature, and need of thorough understanding in reproductive physiology of domestic animals. In conclusion, incorporation of microfluidic system in assisted reproduction for sperm selection may promise a great success in IVF and ICSI outcomes. Future prospectives are to make this technology more superior and need to modify chip designs which is cost effective and species specific and ready for commercialization. Comprehensive studies in animal species are needed to be carried out for wider application of microfluidic sperm selection in in vitro procedures.
Collapse
Affiliation(s)
- Ghulam Rasool Bhat
- Division of Animal Reproduction, Gynaecology and ObstetricsSher‐e‐Kashmir Institute of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Farooz Ahmad Lone
- Division of Animal Reproduction, Gynaecology and ObstetricsSher‐e‐Kashmir Institute of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Jasmer Dalal
- Division of Veterinary Gynaecology and ObstetricsLala Lajpat Rai Veterinary and Animal Sciences UniversityHisarIndia
| |
Collapse
|
2
|
Yi YJ, Lee YJ, Adikari AADI, Yun BS. Control of sperm penetration using stereumamide A derived from Trichaptum fuscoviolaceum in the in vitro fertilization of pig oocytes. ZYGOTE 2024; 32:354-359. [PMID: 39450601 DOI: 10.1017/s0967199424000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fungal metabolites are known to have potent and diverse properties such as antiviral, antidiabetic, antitumour, antioxidant, free radical scavenging, and antibacterial effects which can be utilized to treat diseases. In this study, we investigated the functional activity of stereumamide A (StA) derived from a culture broth of Trichaptum fuscoviolaceum during the in vitro fertilization (IVF) of pig oocytes, to determine its effects on sperm penetration. Oocytes matured in vitro were fertilized in the absence or presence of varying concentrations of StA (0-50 μg/ml StA). When StA was directly added into the IVF medium, significantly lower fertilization rates were seen with the 20 or 50 μg/ml StA (2.0-17.5%) treatments compared with those of 10 μg/ml StA or the controls (60.9-62.3%), whereas StA had no influence on the survival of oocytes and spermatozoa throughout the IVF process. For evaluating the control of sperm entry, mature oocytes were pre-incubated in a medium containing 20 μg/ml StA for 1 h, and then IVF was subsequently performed. The incidence of polyspermy was significantly reduced when oocytes were pre-incubated with StA (15.0% vs. 50.4-57.5% in controls). In conclusion, sperm penetration was inhibited in the medium in the presence of StA during IVF, while StA did not affect sperm motility and fertility competence. Fertilization was controlled when mature oocytes were incubated with StA prior to IVF, suggesting the possible use of the fungal metabolite in assisted reproductive technology for humans and animals.
Collapse
Affiliation(s)
- Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon57922, Korea
| | - Yoon-Ju Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan54596, Korea
| | | | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan54596, Korea
| |
Collapse
|
3
|
Manssur TSB, Sebastião TRC, Franchi FF, Dos Santos PH, Razza EM, Nunes SG, Castilho ACDS, Fontes PK. Pre-fertilization approach using α-l-fucosidase modulates zona pellucida hardening during bovine in vitro embryo production. Vet Res Commun 2024; 48:1135-1147. [PMID: 38191818 DOI: 10.1007/s11259-023-10291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
The polyspermy occurrence is considerably lower under in vivo compared to in vitro embryo culture conditions, suggesting that the presence of some factors in the maternal environment is responsible for this. The α-L-fucosidase (FUCA) is a natural glycosidase present in the oviductal fluid, therefore, this study aimed at investigating the effect of adding FUCA to the hardening of the zona pellucida (ZP), polyspermy control, and embryonic yield and quality of bovine blastocysts produced in vitro. In the first experiment, the effect of FUCA (0.125 U/mL) was evaluated during the entire in vitro fertilization (IVF). However, it was demonstrated to be embryotoxic by completely inhibiting the blastocyst formation. In the second experiment, the FUCA (0.125 U/mL) was tested as short-term incubation before IVF (pre-fertilization step) for 30 min or 2 h, which demonstrated that FUCA treatment for 30 min resulted in ZP hardening. In the third experiment, a pre-fertilization FUCA treatment (1 h) at different concentrations (0, 0.0625, and 0.125 U/mL) showed that FUCA (0.0625 U/mL) improved pre-fertilization ZP hardening and tended to increase monospermic fertilization rates but did not improve embryo yield and quality. Together, it has been demonstrated that FUCA can induce oocyte pre-fertilization ZP hardening and might improve monospermic fertilization performance, and this effect is dependent on both variables (protein concentration and incubation time).
Collapse
Affiliation(s)
| | | | - Fernanda Fagali Franchi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | - Priscila Helena Dos Santos
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | - Eduardo Montanari Razza
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | - Sarah Gomes Nunes
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | | | - Patricia Kubo Fontes
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil.
| |
Collapse
|
4
|
Xu Z, Xie Y, Wu C, Gu T, Zhang X, Yang J, Yang H, Zheng E, Huang S, Xu Z, Li Z, Cai G, Liu D, Hong L, Wu Z. The effects of boar seminal plasma extracellular vesicles on sperm fertility. Theriogenology 2024; 213:79-89. [PMID: 37816296 DOI: 10.1016/j.theriogenology.2023.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
Extracellular vesicles (EVs) are abundant in body fluid and are critical in cell interaction. Seminal plasma contains numerous EVs which affecting sperm function via transferring regulatory cargoes to the sperm. However, the mechanism of seminal plasma extracellular vesicles (SP-EVs) is still not clear. The present study aimed to isolate the boar SP-EVs and explore its potential function, then identify the key protein involved in SP-EVs and sperms interaction, and elucidate mechanism of SP-EVs protein on sperms. Here, we successfully isolated and concentrated boar SP-EVs, the SP-EVs showed a typical vesicle structure under transmission electron microscopy, most of their diameters range between 50 and 200 nm and express EVs biomarkers CD9 and CD63. We proved that SP-EVs could inhibit sperm acrosome reaction and in vitro fertility. Through a data-independent acquisition analysis of protein profiles of noncapacitated sperms, normal capacitated sperms and SP-EVs treated capacitated sperms, we identified that EZRIN was one of the active proteins that participated in SP-EVs and sperms interaction. Furthermore, we tested that the inhibition of EZRIN could promote boar sperm fertility, which is in consistence with the function of SP-EVs. The results may facilitate future research of SP-EVs on sperm function and male infertility.
Collapse
Affiliation(s)
- Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xianwei Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China.
| |
Collapse
|
5
|
Toledo-Guardiola SM, Luongo C, Abril-Parreño L, Soriano-Úbeda C, Matás C. Different seminal ejaculated fractions in artificial insemination condition the protein cargo of oviductal and uterine extracellular vesicles in pig. Front Cell Dev Biol 2023; 11:1231755. [PMID: 37868907 PMCID: PMC10587466 DOI: 10.3389/fcell.2023.1231755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development. In some species, semen is composed of well-separated fractions that vary in concentration of spermatozoa and SP composition and volume. This study aimed to investigate the impact of different accumulative fractions of the porcine ejaculate (F1, composed of the sperm-rich fraction, SRF; F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF) on oEVs and uEVs protein cargo. Six days after the onset of estrus, we determined the oEVs and uEVs size and protein concentration in pregnant sows by artificial insemination (AI-sows) and in non-inseminated sows as control (C-sows). We also identified the main proteins in oEVs and uEVs, in AI-F1, AI-F2, AI-F3, and C-sows. Our results indicated that although the size of EVs is similar between AI- and C-sows, the protein concentration of both oEVs and uEVs was significantly lower in AI-sows (p < 0.05). Proteomic analysis identified 38 unique proteins in oEVs from AI-sows, mainly involved in protein stabilization, glycolytic and carbohydrate processes. The uEVs from AI-sows showed the presence of 43 unique proteins, including already-known fertility-related proteins (EZR, HSPAA901, PDS). We also demonstrated that the protein composition of oEVs and uEVs differed depending on the seminal fraction(s) inseminated (F1, F2, or F3). In conclusion, we found specific protein cargo in oEVs and uEVs according to the type of semen fraction the sow was inseminated with and whose functions these specific EVs proteins are closely associated with reproductive processes.
Collapse
Affiliation(s)
- S. M. Toledo-Guardiola
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - C. Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - L. Abril-Parreño
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - C. Soriano-Úbeda
- Departamento de Medicina, Cirugía y Anatomía Veterinaria, Universidad de Léon, León, Spain
| | - C. Matás
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
6
|
Mahé C, Lavigne R, Com E, Pineau C, Zlotkowska AM, Tsikis G, Mermillod P, Schoen J, Saint-Dizier M. The sperm-interacting proteome in the bovine isthmus and ampulla during the periovulatory period. J Anim Sci Biotechnol 2023; 14:30. [PMID: 36797800 PMCID: PMC9936689 DOI: 10.1186/s40104-022-00811-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/24/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown. Our objectives were to identify an exhaustive list of sperm-interacting proteins (SIPs) in the bovine oviduct fluid and to evaluate the impact of the oviduct anatomical region (isthmus vs. ampulla) and time relative to ovulation (pre-ovulatory vs. post-ovulatory) on SIPs number and abundance. METHODS Pools of oviduct fluid (OF) from the pre-ovulatory ampulla, pre-ovulatory isthmus, post-ovulatory ampulla, and post-ovulatory isthmus in the side of ovulation were collected from the slaughterhouse. Frozen-thawed bull sperm were incubated with OF or phosphate-buffered saline (control) for 60 min at 38.5 °C. After protein extraction and digestion, sperm and OF samples were analyzed by nanoLC-MS/MS and label-free protein quantification. RESULTS A quantitative comparison between proteins identified in sperm and OF samples (2333 and 2471 proteins, respectively) allowed for the identification of 245 SIPs. The highest number (187) were found in the pre-ovulatory isthmus, i.e., time and place of the sperm reservoir. In total, 41 SIPs (17%) were differentially abundant between stages in a given region or between regions at a given stage and 76 SIPs (31%) were identified in only one region × stage condition. Functional analysis of SIPs predicted roles in cell response to stress, regulation of cell motility, fertilization, and early embryo development. CONCLUSION This study provides a comprehensive list of SIPs in the bovine oviduct and evidences dynamic spatio-temporal changes in sperm-oviduct interactions around ovulation time. Moreover, these data provide protein candidates to improve sperm conservation and in vitro fertilization media.
Collapse
Affiliation(s)
- Coline Mahé
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Régis Lavigne
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR-S 1085, F-35000 Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Emmanuelle Com
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR-S 1085, F-35000 Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Charles Pineau
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR-S 1085, F-35000 Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Aleksandra Maria Zlotkowska
- grid.418188.c0000 0000 9049 5051Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, FBN, Dummerstorf, Germany ,grid.418779.40000 0001 0708 0355Present Address: Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Guillaume Tsikis
- grid.464126.30000 0004 0385 4036CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Pascal Mermillod
- grid.464126.30000 0004 0385 4036CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Jennifer Schoen
- grid.418188.c0000 0000 9049 5051Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, FBN, Dummerstorf, Germany ,grid.418779.40000 0001 0708 0355Present Address: Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Marie Saint-Dizier
- grid.464126.30000 0004 0385 4036CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| |
Collapse
|
7
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
8
|
Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation. Sci Rep 2022; 12:4135. [PMID: 35264682 PMCID: PMC8907256 DOI: 10.1038/s41598-022-07929-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the composition of the oviduct fluid (OF) is crucial to better comprehend the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n = 32 OF pools for all region × stage × side conditions). A total of 3760 proteins were identified in the OF, of which 65% were predicted to be potentially secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.
Collapse
|
9
|
Cajas YN, Cañón-Beltrán K, de la Blanca MGM, Sánchez JM, Fernandez-Fuertes B, González EM, Rizos D. Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod Fertil Dev 2021; 34:117-138. [PMID: 35231231 DOI: 10.1071/rd21275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The coordinated interaction between the developing embryo and the maternal reproductive tract is essential for the establishment and maintenance of pregnancy in mammals. An early cross-talk is established between the oviduct/uterus and the gametes and embryo. This dialogue will shape the microenvironment in which gamete transport, fertilisation, and early embryonic development occur. Due to the small size of the gametes and the early embryo relative to the volume of the oviductal and uterine lumina, collection of tissue and fluid adjacent to these cells is challenging in cattle. Thus, the combination of in vivo and in vitro models seems to be the most appropriate approach to better understand this fine dialogue. In this respect, the aim of this review is to summarise the recent findings in relation to gamete/embryo-maternal interaction during the pre-elongation period.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos (JdC), 150001 Tunja, Colombia
| | - María Gemma Millán de la Blanca
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - José M Sánchez
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Bragança GM, Alcântara-Neto AS, Batista RITP, Brandão FZ, Freitas VJF, Mermillod P, Souza-Fabjan JMG. Oviduct fluid during IVF moderately modulates polyspermy in in vitro-produced goat embryos during the non-breeding season. Theriogenology 2021; 168:59-65. [PMID: 33857909 DOI: 10.1016/j.theriogenology.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022]
Abstract
The present study determined i) the presence of proteins (oviduct-specific glycoprotein, OVGP1; heat shock protein-70A, HSPA1A; heat shock protein-A8, HSPA8; annexin A1, ANXA1; annexin A5, ANXA5; and myosin-9, MYH9) known to be involved in early reproduction in the oviduct fluid (OF) of anestrous goats; and ii) the functional effect of during IVF on polyspermy modulation and embryonic development. In vitro-matured oocytes were co-cultured with spermatozoa (1.0, 2.0, or 4.0 x 106 cells/mL) for 18 h in SOF medium supplemented with 5 μg/mL of heparin, 4 μg/mL gentamicin, and 10% estrus sheep serum (CTRL1, CTRL2, and CTRL4 groups) or the same medium plus 10% OF (OF1, OF2, and OF4 groups) obtained from anestrus goats. The analysis of OF by western blotting confirmed the presence of the six proteins tested for. The increase in sperm concentration had no effect (P > 0.05) on the penetration rate in any group; however, monospermy rate decreased as sperm concentration was increased in both OF and CTRL. Regardless of the concentration used, when data were pooled, OF supplementation improved (P < 0.05) monospermy and tended (P = 0.057) to enhance IVF efficiency. Additionally, IVF efficiency was higher (P < 0.05) in OF1 than in OF4 [60 ± 13 vs 37 ± 5%). The development capacity was not affected (P > 0.05) by the sperm concentration and OF treatment, and the average values were cleavage (72 ± 2.6%), blastocyst (37 ± 3.0%), blastocyst in relation to the cleaved (51 ± 4.8%), hatched (62 ± 1.2%), and number of cells per blastocyst (174 ± 1.8%). In conclusion, the six proteins analyzed are present in the OF of anestrous goats, and the supplementation of this OF during IVF may modulate the polyspermy incidence and enhance IVF efficiency, especially when 1x106 sperm per mL is used.
Collapse
Affiliation(s)
- G M Bragança
- INRA, UMR7247, Physiology and Control de Reproduction et des Comportements, INRA, CNRS, Nouzilly, France; Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil.
| | - A S Alcântara-Neto
- INRA, UMR7247, Physiology and Control de Reproduction et des Comportements, INRA, CNRS, Nouzilly, France
| | - R I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil
| | - F Z Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil
| | - V J F Freitas
- Faculdade de Veterinária, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba, 1700, 60714-903, Fortaleza, CE, Brazil
| | - P Mermillod
- INRA, UMR7247, Physiology and Control de Reproduction et des Comportements, INRA, CNRS, Nouzilly, France
| | - J M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil.
| |
Collapse
|
11
|
González-Brusi L, Algarra B, Moros-Nicolás C, Izquierdo-Rico MJ, Avilés M, Jiménez-Movilla M. A Comparative View on the Oviductal Environment during the Periconception Period. Biomolecules 2020; 10:E1690. [PMID: 33348856 PMCID: PMC7766821 DOI: 10.3390/biom10121690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The oviduct plays important roles in reproductive events: sperm reservoir formation, final gamete maturation, fertilization and early embryo development. It is well known that the oviductal environment affects gametes and embryos and, ultimately, the health of offspring, so that in vivo embryos are better in terms of morphology, cryotolerance, pregnancy rates or epigenetic profile than those obtained in vitro. The deciphering of embryo-maternal interaction in the oviduct may provide a better understanding of the embryo needs during the periconception period to improve reproductive efficiency. Here, we perform a comparative analysis among species of oviductal gene expression related to embryonic development during its journey through the oviduct, as described to date. Cross-talk communication between the oviduct environment and embryo will be studied by analyses of the secreted or exosomal proteins of the oviduct and the presence of receptors in the membrane of the embryo blastomeres. Finally, we review the data that are available to date on the expression and characterization of the most abundant protein in the oviduct, oviductin (OVGP1), highlighting its fundamental role in fertilization and embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Avilés
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| |
Collapse
|
12
|
Gegenfurtner K, Fröhlich T, Kösters M, Mermillod P, Locatelli Y, Fritz S, Salvetti P, Forde N, Lonergan P, Wolf E, Arnold GJ. Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid†. Biol Reprod 2020; 101:893-905. [PMID: 31347661 DOI: 10.1093/biolre/ioz142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Pascal Mermillod
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Yann Locatelli
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - P Salvetti
- Allice, Station de Phénotypage, Nouzilly, France
| | - Niamh Forde
- Division of Reproduction and Early Development, School of Medicine, University of Leeds, Leeds, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
García-Martínez S, Gadea J, Coy P, Romar R. Addition of exogenous proteins detected in oviductal secretions to in vitro culture medium does not improve the efficiency of in vitro fertilization in pigs. Theriogenology 2020; 157:490-497. [PMID: 32898824 DOI: 10.1016/j.theriogenology.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
This work was designed to study whether HSP70-1A, HSP90α, ezrin or PDI4, proteins previously identified in porcine oviductal secretions, have a role in zona pellucida (ZP) resistance to enzymatic digestion, in vitro fertilization (IVF) and sperm viability. In vitro matured porcine cumulus oocyte complexes were denuded and i) incubated for 1 h in TALP medium supplemented or not with each exogenous oviductal protein and in presence or absence of heparin to assess ZP digestion time by pronase; and ii) inseminated with fresh ejaculated boar spermatozoa in medium supplemented or not with each exogenous oviductal protein to assess their effect on fertilization results. Finally, spermatozoa were incubated in Tyrode's medium (0, 1 and 20 h) supplemented or not with HSP-701A, HSP-90α or ezrin, to assess simultaneously sperm viability and acrosome status by means of flow cytometry. Although all proteins increased the ZP digestion time, this increase was lower than 1 min, being ezrin the protein with a stronger effect. Presence of heparin in the medium reinforced the ZP hardening effect of ezrin and HSP-701A up to one more min, but not HSP-90α nor PDI4. Sperm penetration, but not IVF efficiency, increased when gametes were cocultured in medium containing PDIA4 whereas sperm penetration and polyspermy rates decreased in presence of ezrin and HSP proteins. This reduction was not the result of a detrimental effect of proteins on sperm viability or acrosome reaction. In conclusion, addition of exogenous proteins detected in oviductal secretions to artificial media does not reproduce the effect of adding such secretions nor improve the final efficiency of the porcine IVF system.
Collapse
Affiliation(s)
- Soledad García-Martínez
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
14
|
Luongo C, González-Brusi L, Cots-Rodríguez P, Izquierdo-Rico MJ, Avilés M, García-Vázquez FA. Sperm Proteome after Interaction with Reproductive Fluids in Porcine: From the Ejaculation to the Fertilization Site. Int J Mol Sci 2020; 21:ijms21176060. [PMID: 32842715 PMCID: PMC7570189 DOI: 10.3390/ijms21176060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Ejaculated sperm are exposed to different environments before encountering the oocyte. However, how the sperm proteome changes during this transit remains unsolved. This study aimed to identify proteomic changes in boar sperm after incubation with male (seminal plasma, SP) and/or female (uterine fluid, UF; and oviductal fluid, OF) reproductive fluids. The following experimental groups were analyzed: (1) SP: sperm + 20% SP; (2) UF: sperm + 20% UF; (3) OF: sperm + 20% OF; (4) SP + UF: sperm + 20% SP + 20% UF; and (5) SP+OF: sperm + 20% SP + 20% OF. The proteome analysis, performed by HPLC-MS/MS, allowed the identification of 265 proteins. A total of 69 proteins were detected in the UF, SP, and SP + UF groups, and 102 proteins in the OF, SP, and SP + OF groups. Our results showed a higher number of proteins when sperm were incubated with only one fluid than when they were co-incubated with two fluids. Additionally, the number of sperm-interacting proteins from the UF group was lower than the OF group. In conclusion, the interaction of sperm with reproductive fluids alters its proteome. The description of sperm-interacting proteins in porcine species after co-incubation with male and/or female reproductive fluids may be useful to understand sperm transport, selection, capacitation, or fertilization phenomena.
Collapse
Affiliation(s)
- Chiara Luongo
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain;
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
| | - Paula Cots-Rodríguez
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
| | - Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (M.A.); (F.A.G.-V.)
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain;
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (M.A.); (F.A.G.-V.)
| |
Collapse
|
15
|
Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 2019; 14:991-1004. [PMID: 31760966 DOI: 10.1017/s1751731119002775] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro production (IVP) of embryos and associated technologies in cattle have shown significant progress in recent years, in part driven by a better understanding of the full potential of these tools by end users. The combination of IVP with sexed semen (SS) and genomic selection (GS) is being successfully and widely used in North America, South America and Europe. The main advantages offered by these technologies include a higher number of embryos and pregnancies per unit of time, and a wider range of potential female donors from which to retrieve oocytes (including open cyclic females and ones up to 3 months pregnant), including high index genomic calves, a reduced number of sperm required to produce embryos and increased chances of obtaining the desired sex of offspring. However, there are still unresolved aspects of IVP of embryos that limit a wider implementation of the technology, including potentially reduced fertility from the use of SS, reduced oocyte quality after in vitro oocyte maturation and lower embryo cryotolerance, resulting in reduced pregnancy rates compared to in vivo-produced embryos. Nevertheless, promising research results have been reported, and work is in progress to address current deficiencies. The combination of GS, IVP and SS has proven successful in the commercial field in several countries assisting practitioners and cattle producers to improve reproductive performance, efficiency and genetic gain.
Collapse
|
16
|
Canha-Gouveia A, Paradela A, Ramos-Fernández A, Prieto-Sánchez MT, Sánchez-Ferrer ML, Corrales F, Coy P. Which Low-Abundance Proteins are Present in the Human Milieu of Gamete/Embryo Maternal Interaction? Int J Mol Sci 2019; 20:5305. [PMID: 31653120 PMCID: PMC6861935 DOI: 10.3390/ijms20215305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
The improvement of the embryo culture media is of high relevance due to its influence on successful implantation rates, pregnancy, neonatal outcomes, and potential effects in adult life. The ideal conditions for embryo development are those naturally occurring in the female reproductive tract, i.e., the oviductal and uterine fluids. To shed light on the differences between chemical and natural media, we performed the first comparative study of the low abundance proteins in plasma, uterine, and oviductal fluid collected, simultaneously, from healthy and fertile women that underwent a salpingectomy. The rationale for this design derives from the fact that high-abundant proteins in these fluids are usually those coming from blood serum and frequently mask the detection of low abundant proteins with a potentially significant role in specific processes related to the embryo-maternal interaction. The proteomic analysis by 1D-nano LC ESI-MSMS detected several proteins in higher amounts in oviductal fluid when compared to uterine and plasma samples (RL3, GSTA1, EZRI, DPYSL3, GARS, HSP90A). Such oviductal fluid proteins could be a target to improve fertilization rates and early embryo development if used in the culture media. In conclusion, this study presents a high-throughput analysis of female reproductive tract fluids and contributes to the knowledge of oviductal and uterine secretome.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, 30100 Murcia, Spain.
| | - A Paradela
- Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - António Ramos-Fernández
- Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Maria Teresa Prieto-Sánchez
- Department of Obstetrics & Gynecology, "Virgen de la Arrixaca" University Clinical Hospital, IMIB-Arrixaca, 30100 Murcia, Spain.
| | - Maria Luisa Sánchez-Ferrer
- Department of Obstetrics & Gynecology, "Virgen de la Arrixaca" University Clinical Hospital, IMIB-Arrixaca, 30100 Murcia, Spain.
| | - Fernando Corrales
- Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
17
|
Hamdi M, Lopera-Vasquez R, Maillo V, Sanchez-Calabuig MJ, Núnez C, Gutierrez-Adan A, Rizos D. Bovine oviductal and uterine fluid support in vitro embryo development. Reprod Fertil Dev 2019; 30:935-945. [PMID: 29167013 DOI: 10.1071/rd17286] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
In order to mimic the maternal oviductal environment, we evaluated the effect of oviductal fluid (OF) and/or uterine fluid (UF) supplementation on in vitro embryo development and quality. In vitro-produced zygotes were cultured with 1.25% OF from Day 1 to Day 4 after insemination (OF group), 1.25% OF from Day 1 to Day 4 followed by 1.25% UF from Day 4 to Day 9 (OF+UF group) or 1.25% UF only from Day 4 to Day 9 (UF group). Control groups were cultured in the presence of synthetic oviduct fluid (SOF) supplemented with 3mgmL-1 bovine serum albumin (BSA) or 5% fetal calf serum (FCS). Supplementation of the culture medium with OF and/or UF (both at 1.25%) supported embryo development (Day 9 blastocyst rate 28.2-30.6%). At 72h after vitrification-warming, the survival of blastocysts from the OF and OF+UF groups was similar to that of blastocysts in the SOF+BSA group (61.0±5.7% and 62.8±6.4% vs 64.8±6.4% respectively), but significantly higher than that of blastocysts from the SOF+FCS group (31.6±4.9%; P<0.001). Blastocysts from the OF group exhibited upregulation of epigenetic genes (i.e. DNA methyltransferase 3α (DNMT3A) and insulin-like growth factor 2 receptor (IGF2R)), compared with expression in the SOF+FCS group (P<0.05). Whereas those from OF+UF and UF groups exhibited downregulation of oxidative stress genes compared to SOF+BSA and OF groups for glutathione peroxidase (GPX1) and to SOF+FCS, SOF+BSA and OF groups for chloride intracellular channel 1 (CLIC1) (P<0.05). In addition, accumulation of reactive oxygen species was lower in blastocysts from the OF, OF+UF and UF groups. In conclusion, the use of low concentrations of OF and UF in in vitro serum-free culture supports embryo development, with OF providing a better control of embryo methylation, whereas UF may have antioxidant activity.
Collapse
Affiliation(s)
- Meriem Hamdi
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Ricaurte Lopera-Vasquez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Veronica Maillo
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Maria Jesus Sanchez-Calabuig
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Carolina Núnez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Dimitrios Rizos
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| |
Collapse
|
18
|
Fontes PK, Razza EM, Pupulim AGR, Barros CM, de Souza Castilho AC. Equine chorionic gonadotropin increases estradiol levels in the bovine oviduct and drives the transcription of genes related to fertilization in superstimulated cows. Mol Reprod Dev 2019; 86:1582-1591. [PMID: 31353672 DOI: 10.1002/mrd.23243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/30/2019] [Indexed: 11/05/2022]
Abstract
In the bovine oviduct, estradiol (E2) stimulates secretion and cell proliferation, whereas progesterone (P4) suppresses them. In this study, we have evaluated the effect of two superstimulatory protocols (follicle-stimulating hormone [FSH] or FSH combined with equine chorionic gonadotropin [eCG]) on the oviductal levels of E2 and P4 and its outcome on oviductal cells. Compared with the control group (a single pre-ovulatory follicle), we have observed that the cows submitted to FSH/eCG treatment showed a higher concentration of E2 in the oviduct tissue, together with a higher abundance of messenger RNA encoding steroid receptors (ESR1 and progesterone receptor), and genes linked to gamete interactions and regulation of polyspermy (oviduct-specific glycoprotein 1, heat-shock protein family A member 5, α-l-fucosidase 1 [FUCA1], and FUCA2) in the infundibulum and ampulla segments of the oviduct. However, we did not observe any modulation of gene expression in the isthmus segment. Even though the FSH protocol upregulated some of the genes analyzed, we may infer that the steady effect of FSH combined with eCG on oviduct regulation might benefit fertilization and may potentially increase pregnancy rates.
Collapse
Affiliation(s)
- Patricia K Fontes
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eduardo M Razza
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Ciro M Barros
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
19
|
Ferraz MDAMM, Carothers A, Dahal R, Noonan MJ, Songsasen N. Oviductal extracellular vesicles interact with the spermatozoon's head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci Rep 2019; 9:9484. [PMID: 31263184 PMCID: PMC6603010 DOI: 10.1038/s41598-019-45857-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2019] [Indexed: 01/27/2023] Open
Abstract
Fertilization and early embryo development are regulated by a unique maternal-gamete/embryo cross-talk within the oviduct. Recent studies have shown that extracellular vesicles (EVs) within the oviduct play important roles in mediating this developmental process. Here, we examined the influence of oviductal EVs on sperm function in the domestic cat. We demonstrated that (1) EVs are enriched in proteins related to energy metabolism, membrane modification, and reproductive function; (2) EVs bound and fused with the membranes of the acrosome and mid piece; and (3) incubating sperm with EVs improved motility, fertilizing capacity of cat spermatozoa and prevented acrosomal exocytosis in vitro. These findings indicated that oviductal EVs mediate sperm function and fertilization in the cat and provides new insights to improve sperm cryopreservation and in vitro fertilization in the domestic and wild felids and human.
Collapse
Affiliation(s)
- M de A M M Ferraz
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA.
| | - A Carothers
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - R Dahal
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - M J Noonan
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
- Department of Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - N Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| |
Collapse
|
20
|
Yu H, Hackenbroch L, Meyer FRL, Reiser J, Razzazi-Fazeli E, Nöbauer K, Besenfelder U, Vogl C, Brem G, Mayrhofer C. Identification of Rabbit Oviductal Fluid Proteins Involved in Pre-Fertilization Processes by Quantitative Proteomics. Proteomics 2019; 19:e1800319. [PMID: 30637940 DOI: 10.1002/pmic.201800319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/28/2018] [Indexed: 01/28/2023]
Abstract
Oviductal fluid (ODF) proteins modulate and support reproductive processes in the oviduct. In the present study, proteins involved in the biological events that precede fertilization have been identified in the rabbit ODF proteome, isolated from the ampulla and isthmus of the oviduct at different time points within 8 h after intrauterine insemination. A workflow is used that integrates lectin affinity capture with stable-isotope dimethyl labeling prior to nanoLC-MS/MS analysis. In total, over 400 ODF proteins, including 214 lectin enriched glycoproteins, are identified and quantified. Selected data are validated by Western blot analysis. Spatiotemporal alterations in the abundance of ODF proteins in response to insemination are detected by global analysis. A subset of 63 potentially biologically relevant ODF proteins is identified, including extracellular matrix components, chaperones, oxidoreductases, and immunity proteins. Functional enrichment analysis reveals an altered peptidase regulator activity upon insemination. In addition to protein identification and abundance changes, N-glycopeptide analysis further identifies 281 glycosites on 199 proteins. Taken together, these results show, for the first time, the evolving oviductal milieu early upon insemination. The identified proteins are likely those that modulate in vitro processes, including spermatozoa function.
Collapse
Affiliation(s)
- Hans Yu
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lena Hackenbroch
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Florian R L Meyer
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Judith Reiser
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, 85764, Munich, Germany
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Urban Besenfelder
- Reproduction Centre Wieselburg, University of Veterinary Medicine Vienna, 3250, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gottfried Brem
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Corina Mayrhofer
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| |
Collapse
|
21
|
Genes Encoding Mammalian Oviductal Proteins Involved in Fertilization are Subjected to Gene Death and Positive Selection. J Mol Evol 2018; 86:655-667. [PMID: 30456442 PMCID: PMC6267676 DOI: 10.1007/s00239-018-9878-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Oviductal proteins play an important role in mammalian fertilization, as proteins from seminal fluid. However, in contrast with the latter, their phylogenetic evolution has been poorly studied. Our objective was to study in 16 mammals the evolution of 16 genes that encode oviductal proteins involved in at least one of the following steps: (1) sperm–oviduct interaction, (2) acrosome reaction, and/or (3) sperm–zona pellucida interaction. Most genes were present in all studied mammals. However, some genes were lost along the evolution of mammals and found as pseudogenes: annexin A5 (ANXA5) and deleted in malignant brain tumor 1 (DMBT1) in tarsier; oviductin (OVGP1) in megabat; and probably progestagen-associated endometrial protein (PAEP) in tarsier, mouse, rat, rabbit, dolphin, and megabat; prostaglandin D2 synthase (PTGDS) in microbat; and plasminogen (PLG) in megabat. Four genes [ANXA1, ANXA4, ANXA5, and heat shock 70 kDa protein 5 (HSPA5)] showed branch-site positive selection, whereas for seven genes [ANXA2, lactotransferrin (LTF), OVGP1, PLG, S100 calcium-binding protein A11 (S100A11), Sperm adhesion molecule 1 (SPAM1), and osteopontin (SPP1)] branch-site model and model-site positive selection were observed. These results strongly suggest that genes encoding oviductal proteins that are known to be important for gamete fertilization are subjected to positive selection during evolution, as numerous genes encoding proteins from mammalian seminal fluid. This suggests that such a rapid evolution may have as a consequence that two isolated populations become separate species more rapidly.
Collapse
|
22
|
Fontes PK, Ereno RL, Peixoto AR, Carvalho RF, Scarano WR, Trinca LA, Barros CM, Castilho ACDS. Can the antral follicular count modulate the gene expression of bovine oviducts in Aberdeen Angus and Nelore heifers? PLoS One 2018; 13:e0202017. [PMID: 30157205 PMCID: PMC6114296 DOI: 10.1371/journal.pone.0202017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/26/2018] [Indexed: 01/02/2023] Open
Abstract
The number of visible ovarian antral follicles (antral follicle count—AFC) is repeatable in bovine individuals, but highly variable between animals, and with differences between Bos taurus and Bos indicus breeds. Several studies have tried to determine the correlation between AFC and increased fertility in cattle. While the impacts of AFC on embryo production, hormonal levels, and pregnancy rates have been described, the molecular effects of AFC on bovine oviducts have not yet been investigated. Here, the aim was to investigate the impact of breeds, such as Aberdeen Angus and Nelore heifer with high or low AFC, on abundance of transcripts and protein related to oviductal transport, sperm reservoir formation, monospermy control, and gamete interaction in the oviducts. In summary, the ovulation side was the major factor that affected transcript abundance on bovine oviducts. However, a discreet effect among AFC and cattle breeds was also observed. Based on this, we concluded and reinforced here that differential microenvironments between ipsilateral and contralateral oviducts have a major effect on modulating the transcripts related to oviductal transport, sperm reservoir formation, monospermy control, and gamete interaction. However, we cannot exclude that there is minimal effect of AFC or breed on regulation of some genes (such as AGTR1, ACE1, FUCA1, and VEGFA) in bovine oviducts.
Collapse
Affiliation(s)
- Patricia Kubo Fontes
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ronaldo Luis Ereno
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - André Rebello Peixoto
- Departament of Morphology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Departament of Morphology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Wellerson Rodrigo Scarano
- Departament of Morphology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Luzia Aparecida Trinca
- Departament of Biostatistic, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ciro Moraes Barros
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
23
|
Algarra B, Maillo V, Avilés M, Gutiérrez-Adán A, Rizos D, Jiménez-Movilla M. Effects of recombinant OVGP1 protein on in vitro bovine embryo development. J Reprod Dev 2018; 64:433-443. [PMID: 30078833 PMCID: PMC6189566 DOI: 10.1262/jrd.2018-058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previously, our group demonstrated that recombinant porcine oviductin (pOVGP1) binds to the zona pellucida (ZP) of in vitro-matured (IVM) porcine oocytes with a positive effect on in vitro fertilization (IVF). The fact that pOVGP1 was detected inside IVM oocytes suggested that this protein had a biological role during embryo development. The aim of this study was to evaluate the effects of pOVGP1 on bovine in vitro embryo development. We applied 10 or 50 µg/ml of pOVGP1 during IVF, embryonic in vitro culture (IVC), or both, to evaluate cleavage and embryo development. Blastocyst quality was assessed by analyzing the expression of important developmental genes and the survival rates after vitrification/warming. pOVGP1 was detected in the ZP, perivitelline space, and plasma membrane of blastocysts. No significant differences (P > 0.05) were found in cleavage or blastocyst yield when 10 or 50 µg/ml of pOVGP1 was used during IVF or IVC. However, when 50 µg/ml pOVGP1 was used during IVF + IVC, the number of blastocysts obtained was half that obtained with the control and 10 µg/ml pOVGP1 groups. The survival rates after vitrification/warming of expanded blastocysts cultured with pOVGP1 showed no significant differences between groups (P > 0.05). The use of pOVGP1 during IVF, IVC, or both, increased the relative abundance of mRNA of DSC2, ATF4, AQP3, and DNMT3A, the marker-genes of embryo quality. In conclusion, the use of pOVGP1 during bovine embryo in vitro culture does not affect embryo developmental rates but produces embryos of better quality in terms of the relative abundance of specific genes.
Collapse
Affiliation(s)
- Blanca Algarra
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), University of Murcia, Murcia 30100, Spain
| | - Verónica Maillo
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), University of Murcia, Murcia 30100, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - María Jiménez-Movilla
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), University of Murcia, Murcia 30100, Spain
| |
Collapse
|
24
|
Lopera-Vasquez R, Hamdi M, Maillo V, Lloreda V, Coy P, Gutierrez-Adan A, Bermejo-Alvarez P, Rizos D. Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reprod Fertil Dev 2018; 29:621-629. [PMID: 26462440 DOI: 10.1071/rd15238] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/02/2015] [Indexed: 01/05/2023] Open
Abstract
To evaluate the effect of bovine oviductal fluid (OF) supplementation during in vitro culture of bovine embryos on their development and quality, in vitro-produced zygotes were cultured in synthetic oviductal fluid (SOF; negative control; C-) supplemented with OF or 5% fetal calf serum (positive control; C+). Embryo development was recorded on Days 7-9 after insemination and blastocyst quality was assessed through cryotolerance, differential cell counting of the inner cell mass and trophectoderm, and gene expression. OF was added to the culture medium at concentrations ranging from 0.625% to 25%. The higher OF concentrations (5%, 10% and 25%) had a detrimental effect on embryo development. Lower OF concentrations (1.25% and 0.625%) supported embryo development until Day 9 (27.5%) and produced higher-quality blastocysts, as reflected by their cryotolerance (53.6% and 57.7% survival at 72h, respectively, vs 25.9% in C+) and total cell number (mean (± s.e.m.) 165.1±4.7 and 156.2±4.2, respectively, vs 127.7±4.9 in C- and 143.1±4.9 in C+). Consistent with these data, upregulation of the water channel aquaporin 3 (AQP3) mRNA was observed in blastocysts supplemented with 1.25% OF compared with C- and C+. Serum supplementation resulted in a reduction in the expression of glucose and lipid metabolism-related genes and downregulation of the epigenetic-related genes DNA methyltransferase 3A (DNMT3A) and insulin-like growth factor 2 receptor (IGF2R). In conclusion, in vitro culture with low concentrations of OF has a positive effect on the development and quality of bovine embryos.
Collapse
Affiliation(s)
- Ricaurte Lopera-Vasquez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| | - Meriem Hamdi
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| | - Veronica Maillo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| | - Valeriano Lloreda
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| | - Pilar Coy
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, 30071, Spain
| | - Alfonso Gutierrez-Adan
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| | - Pablo Bermejo-Alvarez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain
| |
Collapse
|
25
|
Rąpała Ł, Starzyński RR, Trzeciak PZ, Dąbrowski S, Gajewska M, Jurka P, Smolarczyk R, Duszewska AM. Influence of elevated temperature on bovine oviduct epithelial cells (BOECs). PLoS One 2018; 13:e0198843. [PMID: 29906278 PMCID: PMC6003681 DOI: 10.1371/journal.pone.0198843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to evaluate the influence of elevated temperature on bovine oviduct epithelial cells (BOECs), based on the expression and localization of both heat shock protein 70 (HSP70), responsible for the cellular defence mechanism, and oviduct specific glycoprotein 1 (OVGP1) which is the most important embryotrophic protein. BOECs were cultured alone and co-cultured with cattle embryos at control (38.5°C) and elevated temperature (41°C) for 168 h. The elevated temperature had no effect on the viability of BOECs but exerted a negative effect on embryo development. The elevated temperature increased the expression of HSP70 and decreased the expression of OVGP1 at both mRNA and protein levels in BOECs cultured alone and those co-cultured with embryos. However, the presence of embryos limited the decrease in OVGP1 expression in BOECs at elevated temperature but did not alter the expression of HSP70. These results demonstrate for the first time the influence of elevated temperature on BOECs, consequently providing insights into the interactions between the embryo and the oviduct at elevated temperature.
Collapse
Affiliation(s)
- Łukasz Rąpała
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Rafał R. Starzyński
- Polish Academy of Sciences, Institute of Genetics and Animal Breeding, Jastrzębiec, Poland
| | - Piotr Z. Trzeciak
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sebastian Dąbrowski
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Jurka
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna M. Duszewska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
26
|
Körschgen H, Kuske M, Karmilin K, Yiallouros I, Balbach M, Floehr J, Wachten D, Jahnen-Dechent W, Stöcker W. Intracellular activation of ovastacin mediates pre-fertilization hardening of the zona pellucida. Mol Hum Reprod 2018; 23:607-616. [PMID: 28911209 DOI: 10.1093/molehr/gax040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION How and where is pro-ovastacin activated and how does active ovastacin regulate zona pellucida hardening (ZPH) and successful fertilization? STUDY FINDING Ovastacin is partially active before exocytosis and pre-hardens the zona pellucida (ZP) before fertilization. WHAT IS KNOWN ALREADY The metalloproteinase ovastacin is stored in cortical granules, it cleaves zona pellucida protein 2 (ZP2) upon fertilization and thereby destroys the ZP sperm ligand and triggers ZPH. Female mice deficient in the extracellular circulating ovastacin-inhibitor fetuin-B are infertile due to pre-mature ZPH. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We isolated oocytes from wild-type and ovastacin-deficient (Astlnull) FVB mice before and after fertilization (in vitro and in vivo) and quantified ovastacin activity and cleavage of ZP2 by immunoblot. We assessed ZPH by measuring ZP digestion time using α-chymotrypsin and by determining ZP2 cleavage. We determined cellular distribution of ovastacin by immunofluorescence using domain-specific ovastacin antibodies. Experiments were performed at least in triplicate with a minimum of 20 oocytes. Data were pre-analyzed using Shapiro-Wilk test. In case of normal distribution, significance was determined via two-sided Student's t-test, whereas in case of non-normal distribution via Mann-Whitney U-test. MAIN RESULTS AND THE ROLE OF CHANCE Metaphase II (MII) oocytes contained both inactive pro-ovastacin and activated ovastacin. Immunoblot and ZP digestion assays revealed a partial cleavage of ZP2 even before fertilization in wild-type mice. Partial cleavage coincided with germinal-vesicle breakdown and MII, despite the presence of fetuin-B protein, an endogenous ovastacin inhibitor, in the follicular and oviductal fluid. Upon exocytosis, part of the C-terminal domain of ovastacin remained attached to the plasmalemma, while the N-terminal active ovastacin domain was secreted. This finding may resolve previously conflicting data showing that ovastacin acts both as an oolemmal receptor termed SAS1B (sperm acrosomal SLLP1 binding protein; SLLP, sperm lysozyme like protein) and a secreted protease mediating ZP2 cleavage. LIMITATIONS, REASONS FOR CAUTION For this study, only oocytes isolated from wild-type and ovastacin-deficient FVB mice were investigated. Some experiments involved oocyte activation by the Ca2+ ionophore A23187 to trigger ZPH. WIDER IMPLICATIONS OF THE FINDINGS This study provides a detailed spatial and temporal view of pre-mature cleavage of ZP2 by ovastacin, which is known to adversely affect IVF rate in mice and humans. LARGE SCALE DATA None. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by the Center of Natural Sciences and Medicine and by a start-up grant of the Johannes Gutenberg University Mainz to W.S., and by a grant from Deutsche Forschungsgemeinschaft and by the START program of the Medical Faculty of RWTH Aachen University to J.F. and W.J.D. There are no competing interests to declare.
Collapse
Affiliation(s)
- Hagen Körschgen
- Institute of Molecular Physiology, Department of Biology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Department of Biology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Konstantin Karmilin
- Institute of Molecular Physiology, Department of Biology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Department of Biology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Melanie Balbach
- Max-Planck Research Group Molecular Physiology, Center of Advanced European Studies And Research (CAESAR), 53175 Bonn, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz-Institute for Biomedical Engineering, 52074 Aachen, Germany
| | - Dagmar Wachten
- Max-Planck Research Group Molecular Physiology, Center of Advanced European Studies And Research (CAESAR), 53175 Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, 53175 Bonn, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz-Institute for Biomedical Engineering, 52074 Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Department of Biology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| |
Collapse
|
27
|
Goodale LF, Hayrabedyan S, Todorova K, Roussev R, Ramu S, Stamatkin C, Coulam CB, Barnea ER, Gilbert RO. PreImplantation factor (PIF) protects cultured embryos against oxidative stress: relevance for recurrent pregnancy loss (RPL) therapy. Oncotarget 2018; 8:32419-32432. [PMID: 28423690 PMCID: PMC5464799 DOI: 10.18632/oncotarget.16028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Recurrent pregnancy loss (RPL) affects 2-3% of couples. Despite a detailed work-up, the etiology is frequently undefined, leading to non-targeted therapy. Viable embryos and placentae express PreImplantation Factor (PIF). Maternal circulating PIF regulates systemic immunity and reduces circulating natural killer cells cytotoxicity in RPL patients. PIF promotes singly cultured embryos' development while anti-PIF antibody abrogates it. RPL serum induced embryo toxicity is negated by PIF. We report that PIF rescues delayed embryo development caused by <3 kDa RPL serum fraction likely by reducing reactive oxygen species (ROS). We reveal that protein disulfide isomerase/thioredoxin (PDI/TRX) is a prime PIF target in the embryo, rendering it an important ROS scavenger. The 16F16-PDI/TRX inhibitor drastically reduced blastocyst development while exogenous PIF increased >2 fold the number of embryos reaching the blastocyst stage. Mechanistically, PDI-inhibitor preferentially binds covalently to oxidized PDI over its reduced form where PIF avidly binds. PIF by targeting PDI/TRX at a distinct site limits the inhibitor's pro-oxidative effects. The >3kDa RPL serum increased embryo demise by three-fold, an effect negated by PIF. However, embryo toxicity was not associated with the presence of putative anti-PIF antibodies. Collectively, PIF protects cultured embryos both against ROS, and higher molecular weight toxins. Using PIF for optimizing in vitro fertilization embryos development and reducing RPL is warranted.
Collapse
Affiliation(s)
- Lindsay F Goodale
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Krassimira Todorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Sivakumar Ramu
- CARI Reproductive Institute, Chicago, IL, USA.,Promigen Life Sciences, Downers Grove, IL, USA
| | - Christopher Stamatkin
- CARI Reproductive Institute, Chicago, IL, USA.,Therapeutic Validation Core, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Eytan R Barnea
- BioIncept, LLC, Cherry Hill, NJ, USA.,Society for the Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ, USA
| | - Robert O Gilbert
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
28
|
Lamy J, Nogues P, Combes-Soia L, Tsikis G, Labas V, Mermillod P, Druart X, Saint-Dizier M. Identification by proteomics of oviductal sperm-interacting proteins. Reproduction 2018. [PMID: 29540510 DOI: 10.1530/rep-17-0712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interactions between oviductal fluid (OF) proteins and spermatozoa play major roles in sperm selection, storage and capacitation before fertilization. However, only a few sperm-interacting proteins in the OF has been identified and very little is known about the regulation of sperm-oviduct interactions across the estrous cycle. Samples of bovine frozen-thawed sperm from three bulls were incubated with OF at pre-, post-ovulatory stages (Pre-/Post-ov) or luteal phase (LP) of the estrous cycle (7 mg/mL proteins, treated groups) or with a protein-free media (control). The proteomes of sperm cells were assessed by nanoLC-MS/MS and quantified by label-free methods. A total of 27 sperm-interacting proteins originating in the OF were identified. Among those, 14 were detected at all stages, eight at Post-ov and LP and five only at LP. The sperm-interacting proteins detected at all stages or at LP and Post-ov were on average more abundant at LP than at other stages (P < 0.05). At Pre-ov, OVGP1 was the most abundant sperm-interacting protein while at Post-ov, ACTB, HSP27, MYH9, MYH14 and OVGP1 were predominant. Different patterns of abundance of sperm-interacting proteins related to the stage were evidenced, which greatly differed from those previously reported in the bovine OF. In conclusion, this study highlights the important regulations of sperm-oviduct interactions across the estrous cycle and provides new protein candidates that may modulate sperm functions.
Collapse
Affiliation(s)
- Julie Lamy
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Perrine Nogues
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Lucie Combes-Soia
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France.,INRACIRE (Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement), PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France.,INRACIRE (Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement), PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France .,University of ToursFaculty of Sciences and Techniques, Tours, France
| |
Collapse
|
29
|
Pavani KC, Alminana C, Wydooghe E, Catteeuw M, Ramírez MA, Mermillod P, Rizos D, Van Soom A. Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reprod Fertil Dev 2017; 29:66-83. [PMID: 28278795 DOI: 10.1071/rd16318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro, efficient communication between mammalian embryos in groups or between embryos and cocultured somatic cells implies that there is a sender, a message and a receiver that is able to decode the message. Embryos secrete a variety of autocrine and paracrine factors and, of these, extracellular vesicles have recently been implicated as putative messengers in embryo-embryo communication, as well as in communication of the embryo with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles that are found in biofluids and in culture media conditioned by the presence of embryos or cells. EVs carry and transfer regulatory molecules, such as microRNAs, mRNAs, lipids and proteins. We conducted a systematic search of the literature to review and present the currently available evidence regarding the possible roles of EVs in in vitro embryo communication and embryo development. It is important to note that there is limited information available on the molecular mechanisms and many of the biologically plausible functions of EVs in embryo communication have not yet been substantiated by conclusive experimental evidence. However, indirect evidence, such as the use of media conditioned by embryos or by somatic cells with improved embryo development as a result, may indicate that EVs can be an important asset for the development of tailor-made media, allowing better embryo development in vitro, even for single embryo culture.
Collapse
Affiliation(s)
- Krishna C Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Carmen Alminana
- INRA, Reproductive Physiology and Behavior, UMR085, INRA, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Maaike Catteeuw
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Miguel A Ramírez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Pascal Mermillod
- INRA, Reproductive Physiology and Behavior, UMR085, INRA, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Dimitrios Rizos
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
30
|
Ferraz MAMM, Henning HHW, Costa PF, Malda J, Melchels FP, Wubbolts R, Stout TAE, Vos PLAM, Gadella BM. Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. LAB ON A CHIP 2017; 17:905-916. [PMID: 28194463 DOI: 10.1039/c6lc01566b] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The oviduct provides the natural micro-environment for gamete interaction, fertilization and early embryo development in mammals, such as the cow. In conventional culture systems, bovine oviduct epithelial cells (BOEC) undergo a rapid loss of essential differentiated cell properties; we aimed to develop a more physiological in vitro oviduct culture system capable of supporting fertilization. U-shaped chambers were produced using stereo-lithography and mounted with polycarbonate membranes, which were used as culture inserts for primary BOECs. Cells were grown to confluence and cultured at an air-liquid interface for 4 to 6 weeks and subsequently either fixed for immune staining, incubated with sperm cells for live-cell imaging, or used in an oocyte penetration study. Confluent BOEC cultures maintained polarization and differentiation status for at least 6 weeks. When sperm and oocytes were introduced into the system, the BOECs supported oocyte penetration in the absence of artificial sperm capacitation factors while also preventing polyspermy and parthenogenic activation, both of which occur in classical in vitro fertilization systems. Moreover, this "oviduct-on-a-chip" allowed live imaging of sperm-oviduct epithelium binding and release. Taken together, we describe for the first time the use of 3D-printing as a step further on bio-mimicking the oviduct, with polarized and differentiated BOECs in a tubular shape that can be perfused or manipulated, which is suitable for live imaging and supports in vitro fertilization.
Collapse
Affiliation(s)
- Marcia A M M Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Heiko H W Henning
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pedro F Costa
- Department of Orthopedics, Utrecht Medical Center, Utrecht, The Netherlands and Utrecht Biofabrication Facility, Utrecht Medical Center, Utrecht, The Netherlands
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands and Department of Orthopedics, Utrecht Medical Center, Utrecht, The Netherlands and Utrecht Biofabrication Facility, Utrecht Medical Center, Utrecht, The Netherlands
| | - Ferry P Melchels
- Department of Orthopedics, Utrecht Medical Center, Utrecht, The Netherlands and Utrecht Biofabrication Facility, Utrecht Medical Center, Utrecht, The Netherlands
| | - R Wubbolts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. and Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. and Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Ramírez MÁ, Yáñez-Mó M, Rizos D. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction 2017; 153:461-470. [PMID: 28104825 DOI: 10.1530/rep-16-0384] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/04/2017] [Accepted: 01/19/2017] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the effect of extracellular vesicles (EV) from oviductal fluid (OF), either from the ampulla or isthmus, on the development and quality of in vitro-cultured bovine embryos. Zygotes were cultured in synthetic oviduct fluid (SOF + 3 mg/mL BSA) without calf serum (C- group), in the presence of 3 × 105 EV/mL from ampullary or isthmic OF at either 1 × 104 g (10 K) or 1 × 105 g (100 K), and compared with SOF + 5% FCS (C+ group). OF-EV size and concentration were assessed by electron microscopy and nanotracking analysis system. Embryo development was recorded on Days 7-9, and blastocyst quality was assessed through cryotolerance and gene expression analysis. Lower blastocyst yield was observed on Day 7 in the C- and OF-EV groups (12.0-14.3%) compared with C+ (20.6%); however, these differences were compensated at Days 8 and 9 (Day 9: 28.5-30.8%). Importantly, the survival rate of blastocysts produced with isthmic 100 K OF-EV was higher than that of C+ and C- group at 72 h after vitrification and warming (80.1 vs 34.5 and 50.5% respectively, P < 0.05). In terms of gene expression, blastocysts produced in the presence of 100 K isthmic OF-EV upregulated the water channel AQP3 and DNMT3A and SNRPN transcripts compared with the C+, with the expression in C- being intermediate. The lipid receptor LDLR was downregulated in C+ compared with all other groups. In conclusion, the addition of oviductal fluid extracellular vesicles from isthmus, to in vitro culture of bovine embryos in the absence of serum improves the development and quality of the embryos produced.
Collapse
Affiliation(s)
- Ricaurte Lopera-Vasquez
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Meriem Hamdi
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Veronica Maillo
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Pablo Bermejo-Alvarez
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - María Yáñez-Mó
- Unidad de Investigacion Hospital Santa CristinaInstituto de Investigaciones Sanitarias Princesa (IIS-IP), Madrid, Spain.,Departamento de Biologia MolecularUAM/CBM-SO, Madrid, Spain
| | - Dimitrios Rizos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
32
|
Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232:R1-R26. [PMID: 27875265 DOI: 10.1530/joe-16-0302] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Animal oviducts and human Fallopian tubes are a part of the female reproductive tract that hosts fertilization and pre-implantation development of the embryo. With an increasing understanding of roles of the oviduct at the cellular and molecular levels, current research signifies the importance of the oviduct on naturally conceived fertilization and pre-implantation embryo development. This review highlights the physiological conditions within the oviduct during fertilization, environmental regulation, oviductal fluid composition and its role in protecting embryos and supplying nutrients. Finally, the review compares different aspects of naturally occurring fertilization and assisted reproductive technology (ART)-achieved fertilization and embryo development, giving insight into potential areas for improvement in this technology.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
33
|
Acuña OS, Avilés M, López-Úbeda R, Guillén-Martínez A, Soriano-Úbeda C, Torrecillas A, Coy P, Izquierdo-Rico MJ. Differential gene expression in porcine oviduct during the oestrous cycle. Reprod Fertil Dev 2017; 29:2387-2399. [DOI: 10.1071/rd16457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/03/2017] [Indexed: 12/29/2022] Open
Abstract
The oviduct undergoes changes under the influence of steroid hormones during the oestrous cycle. However, the molecular mechanisms underlying oviductal regulation are not fully understood. The aim of the present study was to identify the gene expression profile of the porcine oviduct in different stages of the cycle using microarray technology. A systematic study was performed on animals at four different stage: prepubertal gilts, and sows in the preovulatory, postovulatory and luteal phase of the oestrous cycle. The porcine oviduct expressed a total of 4929 genes. Moreover, significant differences in the expression of several genes were detected as the oestrous cycle progressed. Analysis of the differentially expressed genes indicated that a total of 86, 89 and 15 genes were upregulated in prepubertal gilts, preovulatory and luteal sows respectively compared with levels observed in postovulatory sows. Moreover, 80, 51 and 64 genes were downregulated in prepubertal, preovulatory and luteal animals respectively compared with the postovulatory sows. The concentrations of 10 selected transcripts were quantified by real-time reverse transcription–polymerase chain reaction to validate the cDNA array hybridisation data. Conversely, for some genes, localisation of corresponding protein expression in the oviduct was analysed by immunohistochemistry (i.e. cholecystokinin, glutathione peroxidase 2, mucin 1, phosphatidylethanolamine binding protein 4 and tachykinin 3) and mass spectrometry analysis of oviductal fluid allowed identification of peptides from all five proteins. The results of the present study demonstrate that gene expression in the porcine oviduct is clearly regulated during the oestrous cycle, with some oviductal proteins that could be related to several reproductive processes described here for the first time.
Collapse
|
34
|
Kawamoto T, Amorim L, Oliveira L, Shiomi H, Costa E, Guimarães J. Adição da proteína específica do oviduto de porcas (pOSP) e da melatonina em meios de maturação e o efeito na clivagem in vitro de embriões suínos. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO No presente estudo, utilizou-se a melatonina e a proteína específica do oviduto (pOSP) nos meios de maturação in vitro. Foram avaliadas a expansão do complexo cumulus-ovócito (CCOs), as concentrações intracelulares de espécies reativas de oxigênio (ROS) e o desenvolvimento embrionário nos diferentes grupos (C = controle; T1 = somente com melatonina; T2 = com melatonina e pOSP e T3 somente com pOSP). No tocante à expansão do CCOs, houve diferença (P<0,05) dos valores obtidos no grupo C em relação aos valores médios dos grupos T1, T2 e T3, porém não houve diferença entre os valores obtidos nos tratamentos (P>0,05). Na dosagem de ROS, não houve diferença entre os valores médios obtidos no grupo C (26,4±10,9) e o valor verificado no grupo T1 (23,4±7,8), porém no grupo T2 (21,3±9,7) o valor médio mostrou-se satisfatório em relação ao valor do grupo C. No entanto, o valor médio do grupo T3 (16,6±10,5) foi o que demonstrou resultado mais satisfatório quando comparado aos demais grupos (P<0,05). A produção de embriões foi avaliada por meio da taxa de clivagem. Não houve diferença (P>0,05) entre os valores obtidos entre o grupo C (48,9 %) e os valores verificados nos grupos T1 (51,5 %), T2 (50 %), T3 (57,7 %), nem destes entre si. Este estudo permitiu concluir que a proteína específica do oviduto recombinante e a melatonina foram eficientes em melhorar a expansão dos CCOs. Além disso, as células tratadas com pOSP mostraram-se com menor quantidade de ROS, podendo a pOSP ser considerada um antioxidante proteico.
Collapse
|
35
|
Lamy J, Labas V, Harichaux G, Tsikis G, Mermillod P, Saint-Dizier M. Regulation of the bovine oviductal fluid proteome. Reproduction 2016; 152:629-644. [DOI: 10.1530/rep-16-0397] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 01/20/2023]
Abstract
Our objective was to investigate the regulation of the proteome in the bovine oviductal fluid according to the stage of the oestrous cycle, to the side relative to ovulation and to local concentrations of steroid hormones. Luminal fluid samples from both oviducts were collected at four stages of the oestrous cycle: pre-ovulatory (Pre-ov), post-ovulatory (Post-ov), and mid- and late luteal phases from adult cyclic cows (18–25 cows/stage). The proteomes were assessed by nanoLC–MS/MS and quantified by label-free method. Totally, 482 proteins were identified including a limited number of proteins specific to one stage or one side. Proportions of differentially abundant proteins fluctuated from 10 to 24% between sides at one stage and from 4 to 20% among stages in a given side of ovulation. In oviductal fluids ipsilateral to ovulation, Annexin A1 was the most abundant protein at Pre-ov compared with Post-ov while numerous heat shock proteins were more abundant at Post-ov compared with Pre-ov. Among differentially abundant proteins, seven tended to be correlated with intra-oviductal concentrations of progesterone. A wide range of biological processes was evidenced for differentially abundant proteins, of which metabolic and cellular processes were predominant. This work identifies numerous new candidate proteins potentially interacting with the oocyte, spermatozoa and embryo to modulate fertilization and early embryo development.
Collapse
|
36
|
Ferraz MAMM, Henning HHW, Stout TAE, Vos PLAM, Gadella BM. Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production. Ann Biomed Eng 2016; 45:1731-1744. [PMID: 27844174 PMCID: PMC5489612 DOI: 10.1007/s10439-016-1760-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022]
Abstract
The oviduct was long considered a largely passive conduit for gametes and embryos. However, an increasing number of studies into oviduct physiology have demonstrated that it specifically and significantly influences gamete interaction, fertilization and early embryo development. While oviduct epithelial cell (OEC) function has been examined during maintenance in conventional tissue culture dishes, cells seeded into these two-dimensional (2-D) conditions suffer a rapid loss of differentiated OEC characteristics, such as ciliation and secretory activity. Recently, three-dimensional (3-D) cell culture systems have been developed that make use of cell inserts to create basolateral and apical medium compartments with a confluent epithelial cell layer at the interface. Using such 3-D culture systems, OECs can be triggered to redevelop typical differentiated cell properties and levels of tissue organization can be developed that are not possible in a 2-D culture. 3-D culture systems can be further refined using new micro-engineering techniques (including microfluidics and 3-D printing) which can be used to produce ‘organs-on-chips’, i.e. live 3-D cultures that bio-mimic the oviduct. In this review, concepts for designing bio-mimic 3-D oviduct cultures are presented. The increased possibilities and concomitant challenges when trying to more closely investigate oviduct physiology, gamete activation, fertilization and embryo production are discussed.
Collapse
Affiliation(s)
- Marcia A M M Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Heiko H W Henning
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands. .,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 79, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
37
|
The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters. Sci Rep 2016; 6:32556. [PMID: 27601270 PMCID: PMC5013273 DOI: 10.1038/srep32556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg.
Collapse
|
38
|
Schrimpf R, Gottschalk M, Metzger J, Martinsson G, Sieme H, Distl O. Screening of whole genome sequences identified high-impact variants for stallion fertility. BMC Genomics 2016; 17:288. [PMID: 27079378 PMCID: PMC4832559 DOI: 10.1186/s12864-016-2608-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/30/2016] [Indexed: 02/07/2023] Open
Abstract
Background Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Methods Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). Results We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant g.37455302G>A in NOTCH1 with the de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). For 9 high-impact variants within the genes CFTR, OVGP1, FBXO43, TSSK6, PKD1, FOXP1, TCP11, SPATA31E1 and NOTCH1 (g.37453246G>C) absence of the homozygous mutant genotype in the validation sample of all 337 fertile stallions was obvious. Therefore, these variants were considered as potentially deleterious factors for stallion fertility. Conclusions In conclusion, this study revealed 17 genetic variants with a predicted high damaging effect on protein structure and missing homozygous mutant genotype. The g.37455302G>A NOTCH1 variant was identified as a significant stallion fertility locus in Hanoverian stallions and further 9 candidate fertility loci with missing homozygous mutant genotypes were validated in a panel including 19 horse breeds. To our knowledge this is the first study in horses using next generation sequencing data to uncover strong candidate factors for stallion fertility. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2608-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rahel Schrimpf
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany
| | - Maren Gottschalk
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany
| | - Gunilla Martinsson
- State Stud Celle of Lower Saxony, Spörckenstraße 10, 29221, Celle, Germany
| | - Harald Sieme
- Clinic for Horses, Unit for Reproduction Medicine, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559, Hannover, Germany.
| |
Collapse
|
39
|
In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years. Theriogenology 2015; 85:125-34. [PMID: 26271164 DOI: 10.1016/j.theriogenology.2015.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 12/22/2022]
Abstract
Assisted reproduction technology (ART) protocols are used in livestock for the improvement and preservation of their genetics and to enhance reproductive efficiency. In the case of pigs, the potential use of embryos for biomedicine is being followed with great interest by the scientific community. Owing to the physiological similarities with humans, embryos produced in vitro and many of those produced in vivo are used in research laboratories for the procurement of stem cells or the production of transgenic animals, sometimes with the purpose of using their organs for xenotransplantation. Several techniques are required for the production of an in vitro-derived embryo. These include in vitro oocyte maturation, sperm preparation, IVF, and further culture of the putative zygotes. Without doubt, among these technologies, IVF is still a critical limiting factor because of the well-known, but still unsolved, question of polyspermy. Despite the improvements made in the past decade, current IVF systems hardly reach 50% to 60% efficiency and any progression in porcine ARTs requires an unavoidable improvement in the monospermy rate. It is time, then, to learn from what happens under in vivo physiological conditions and to transfer this knowledge into ART. This review describes the latest advances in porcine IVF, from sperm preparation procedures to culture media supplements with special attention paid to molecules with a known or potential role in in vivo fertilization. Oviductal fluid is the natural medium in which fertilization takes place, and, in the near future, could become the definitive supplement for culture media, where it would help to solve many of the problems inherent in ARTs in swine and improve the quality of in vitro-derived porcine embryos.
Collapse
|
40
|
Abstract
Experimental evidence from the last 30 years supports the fact that the oviduct is involved in the modulation of the reproductive process in eutherian mammals. Oviductal secretion contains molecules that contribute to regulation of gamete function, gamete interaction, and the early stages of embryo development. The oviductal environment would act as a sperm reservoir, maintaining sperm viability, and modulating the subpopulation of spermatozoa that initiates the capacitation process. It could also contribute to prevent the premature acrosome reaction and to reduce polyspermy. Many studies have reported the beneficial effects of the oviductal environment on fertilization and on the first stages of embryo development. Some oviductal factors have been identified in different mammalian species. The effects of oviductal secretion on the reproductive process could be thought to result from the dynamic combined action (inhibitory or stimulatory) of multiple factors present in the oviductal lumen at different stages of the ovulatory cycle and in the presence of gametes or embryos. It could be hypothesized that the absence of a given molecule would not affect fertility as its action could be compensated by another factor with similar functions. However, any alteration in this balance could affect certain events of the reproductive process and could perhaps impair fertility. Thus, the complexity of the reproductive process warrants a continuous research effort to unveil the mechanisms and factors behind its regulation in the oviductal microenvironment.
Collapse
|
41
|
Ballester L, Romero-Aguirregomezcorta J, Soriano-Úbeda C, Matás C, Romar R, Coy P. Timing of oviductal fluid collection, steroid concentrations, and sperm preservation method affect porcine in vitro fertilization efficiency. Fertil Steril 2014; 102:1762-8.e1. [PMID: 25241366 DOI: 10.1016/j.fertnstert.2014.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine optimal conditions for the inclusion of oviductal fluid (OF) in IVF protocols. DESIGN Experimental prospective study. SETTING Mammalian reproduction research laboratory. ANIMAL(S) Oviducts and ovaries from porcine females were collected at a slaughterhouse. A total of 30 oviducts and 1,285 oocytes were used. Boar-ejaculated spermatozoa were also used. INTERVENTION(S) In vitro-matured porcine oocytes were preincubated with OF collected from animals before or after ovulation and later fertilized in vitro. Zona pellucida digestion time in oocytes after preincubation in OF was assessed. Concentrations of E2 and P4 in OF were measured. IVF was performed, including within the culture media the E2 and P4 concentrations found in the preovulatory OF. The effect of preovulatory OF on IVF efficiency was compared between fresh and frozen-thawed spermatozoa. MAIN OUTCOME MEASURE(S) E2 and P4 concentrations in OF; penetration and monospermy rates; number of spermatozoa within the ooplasm and on the zona pellucida after IVF under different experimental conditions; zona pellucida resistance to protease digestion. RESULT(S) Preincubation of oocytes in OF collected before ovulation enhances IVF efficiency in the pig compared with OF collected after ovulation (29.58 ± 3.84 vs. 11.03 ± 2.69). When frozen-thawed spermatozoa are used for the IVF of these OF-treated oocytes, their fertilization ability increases compared with fresh semen. OF collected before and after ovulation shows significantly different concentrations of E2 (99.00 ± 8.72 vs. <10 pg/mL) and P4 (2.53 ± 0.66 vs. 12.27 ± 2.33 ng/mL), respectively. Addition of E2 and P4 at concentrations similar to those in the OF before ovulation partially simulates the effect of the fluid on IVF outcome. CONCLUSION(S) Preincubation of oocytes in OF collected before ovulation is a suitable protocol for increasing the efficiency of IVF with fresh semen in the pig model and could be a useful tool to increase the fertilization ability of frozen-thawed spermatozoa in other species. E2 concentrations in preovulatory OF are higher than those reported in blood serum at the same phase of the estrous cycle.
Collapse
Affiliation(s)
- Laura Ballester
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain
| | - Jon Romero-Aguirregomezcorta
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain.
| |
Collapse
|
42
|
Xia P. Biology of Polyspermy in IVF and its Clinical Indication. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2013. [DOI: 10.1007/s13669-013-0059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|