1
|
Amaral A, Sadowska A, Cerveira-Pinto M, Kordowitzki P, Skarzynski D, Ferreira-Dias G, Szóstek-Mioduchowska A. Ovarian steroids modulate mRNA expression of ECM associated genes and collagen deposition induced by TGF β1 in equine endometrium in vitro. Sci Rep 2025; 15:538. [PMID: 39747561 PMCID: PMC11697027 DOI: 10.1038/s41598-024-84250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Equine endometrosis is a major cause of infertility in mares and is characterized by degenerative, functional and fibrotic changes in the endometrium with increased collagen (COL) deposition. Transforming growth factor (TGF)-β1 is one of the major pro-fibrotic factors involved in the excessive deposition of extracellular matrix (ECM) components in the equine endometrium. It has been demonstrated that ovarian steroids, specifically 17β-estradiol (E2) and progesterone (P4), not only regulate the cyclicity of the estrous cycle, but also have been implicated as anti- or pro-fibrotic factors. This study aimed to evaluate (i) the effect of E2 and P4 on the expression of ECM-associated genes including COL1A1, COL3A1, matrix metalloproteases (MMPs): MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13, and tissue inhibitors of MMPs (TIMPs): TIMP-1 and TIMP-2 in equine endometrial fibroblasts, and (ii) the effect of ovarian steroids on TGF-β1-induced COL1 expression in equine endometrial explants from the follicular and mid-luteal phases of the estrous cycle. The mRNA expression of ECM-associated genes in endometrial fibroblasts and TGF-β1-induced COL1 expression in endometrial explants was modulated by ovarian steroids, with variations depending on the type of steroid and the duration of treatment. Moreover, P4 decreased TGF-β1-induced COL1 protein abundance in the mid-luteal phase of the estrous cycle after 48 h (p < 0.05). The results of our study indicate that during the estrous cycle, the ovarian steroids E2 or P4 may act directly on endometrial fibroblasts, thereby affecting the expression of genes involved in tissue remodeling, namely MMPs and TIMPs. Furthermore, P4 appears to affect not only the ECM-associated genes in endometrial fibroblasts, but also to attenuate the pro-fibrotic action of TGF-β1 in the mid-luteal stage of the estrous cycle.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Lisbon, 1300-477, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, 1300-477, Portugal.
- Comprehensive Health Research Centre (CHRC), Évora, 7000-811, Portugal.
| | - Agnieszka Sadowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Marta Cerveira-Pinto
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Lisbon, 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, 1300-477, Portugal
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, ul. Gagarina 1, Torun, 87-100, Poland
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 25 Shattuck Street, Boston, 02115240, USA
| | - Dariusz Skarzynski
- Department of Reproduction and Farm Animals Clinic, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Live Sciences, Wroclaw, Poland
| | - Graça Ferreira-Dias
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Lisbon, 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, 1300-477, Portugal
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| |
Collapse
|
2
|
Gonçalves JD, Dias JH, Machado-Neves M, Vergani GB, Ahmadi B, Pereira Batista RIT, Souza-Fabjan JMG, Oliveira MEF, Bartlewski PM, da Fonseca JF. Transcervical uterine flushing and embryo transfer in sheep: Morphophysiological basis for approaches currently used, major challenges, potential improvements, and new directions (alas, including some old ideas). Reprod Biol 2024; 24:100920. [PMID: 38970979 DOI: 10.1016/j.repbio.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90-95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.
Collapse
Affiliation(s)
- Joedson Dantas Gonçalves
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Jenniffer Hauschildt Dias
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Mariana Machado-Neves
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Gabriel Brun Vergani
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Bahareh Ahmadi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Pawel Mieczyslaw Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
3
|
Wei M, Jeevithan L, Li N, Liu L, Xu J, Wu W, Elango J. Stem-Cell-Regenerative and Protective Effects of Squid ( Symplectoteuthis oualaniensis) Skin Collagen Peptides against H 2O 2-Induced Fibroblast Injury. Mar Drugs 2024; 22:255. [PMID: 38921566 PMCID: PMC11204806 DOI: 10.3390/md22060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, thermal, structural, stem-cell-regenerative, and skin-cell-protective effects, in comparison to commercial collagen peptides. The acid-soluble (ASC) and pepsin-soluble (PSC) collagens exhibited three distinct bands on SDS-PAGE, namely α (α1 and α2), β, and γ chains, confirming a type I pattern. The thermal profiles obtained from TG and DSC analyses confirmed the denaturation of PSC and ASC at temperatures ranging from 51.94 to 56.4 °C and from 52.07 to 56.53 °C, respectively. The purified collagen peptides were analyzed using SDS-PAGE and MALDI-TOF mass spectrometry, revealing a mass range of 900-15,000 Da. Furthermore, the de novo peptide sequence analysis confirmed the presence of the Gly-X-Y repeating sequence in collagen peptides. Collagen peptide treatments significantly enhanced HFF-1 cell proliferation and migration compared to the control group. ELISA results confirmed the potential interactions between collagen peptides and HFF-1 cells through α2β1, α10β1, and α11β1 integrin receptors. Notably, collagen peptide treatment effectively restored the proliferation of HFF-1 cells damaged by H2O2. Consequently, the advantageous characteristics of squid skin collagen peptides highlight their promising role in regenerative medicine.
Collapse
Affiliation(s)
- Mingjun Wei
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Na Li
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Lixin Liu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
| | - Jiren Xu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
4
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Yoshida K. Bioengineering and the cervix: The past, current, and future for addressing preterm birth. Curr Res Physiol 2023; 6:100107. [PMID: 38107784 PMCID: PMC10724223 DOI: 10.1016/j.crphys.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The uterine cervix plays two important but opposing roles during pregnancy - as a mechanical barrier that maintains the fetus for nine months and as a compliant structure that dilates to allow for the delivery of a baby. In some pregnancies, however, the cervix softens and dilates prematurely, leading to preterm birth. Bioengineers have addressed and continue to address the lack of reduction in preterm birth rates by developing novel technologies to diagnose, prevent, and understand premature cervical remodeling. This article highlights these existing and emerging technologies and concludes with open areas of research related to the cervix and preterm birth that bioengineers are currently well-positioned to address.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
6
|
Tripathy S, Nallasamy S, Mahendroo M. Progesterone and its receptor signaling in cervical remodeling: Mechanisms of physiological actions and therapeutic implications. J Steroid Biochem Mol Biol 2022; 223:106137. [PMID: 35690241 PMCID: PMC9509468 DOI: 10.1016/j.jsbmb.2022.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanmugasundaram Nallasamy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Oyen ML. Biomaterials science and engineering to address unmet needs in women's health. MRS BULLETIN 2022; 47:864-871. [PMID: 36196217 PMCID: PMC9521852 DOI: 10.1557/s43577-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Medical conditions that primarily or disproportionately affect women have historically been poorly studied. In contrast to the musculoskeletal and cardiovascular systems, there is no lengthy record of biomaterials research addressing women's health needs. In this article, the historical reasons for this discrepancy are examined. The anatomy of both the nonpregnant and pregnant reproductive tissues is reviewed, including the ovaries, uterus, and (fetal) placenta. Examples of biomaterials-related women's health research are described, including tissue engineering, organoids, and microphysiological systems. The future of the field is considered with dual focuses. First, there is a significant need for novel approaches to advance women's health through materials and biomaterials, particularly in complex biomimetic hydrogels. Second, there is an exciting opportunity to enlarge the community of biomaterials scientists and engineers working in women's health to encourage more contributions to its rapidly emerging product development pipeline. Graphical abstract
Collapse
Affiliation(s)
- Michelle L. Oyen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
8
|
Ouellette A, Mahendroo M, Nallasamy S. Collagen and elastic fiber remodeling in the pregnant mouse myometrium†. Biol Reprod 2022; 107:741-751. [PMID: 35594450 PMCID: PMC9767674 DOI: 10.1093/biolre/ioac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The myometrium undergoes progressive tissue remodeling from early to late pregnancy to support fetal growth and transitions to the contractile phase to deliver a baby at term. Much of our effort has been focused on understanding the functional role of myometrial smooth muscle cells, but the role of extracellular matrix is not clear. This study was aimed to demonstrate the expression profile of sub-sets of genes involved in the synthesis, processing, and assembly of collagen and elastic fibers, their structural remodeling during pregnancy, and hormonal regulation. Myometrial tissues were isolated from non-pregnant and pregnant mice to analyze gene expression and protein levels of components of collagen and elastic fibers. Second harmonic generation imaging was used to examine the morphology of collagen and elastic fibers. Gene and protein expressions of collagen and elastin were induced very early in pregnancy. Further, the gene expressions of some of the factors involved in the synthesis, processing, and assembly of collagen and elastic fibers were differentially expressed in the pregnant mouse myometrium. Our imaging analysis demonstrated that the collagen and elastic fibers undergo structural reorganization from early to late pregnancy. Collagen and elastin were differentially induced in response to estrogen and progesterone in the myometrium of ovariectomized mice. Collagen was induced by both estrogen and progesterone. By contrast, estrogen induced elastin, but progesterone suppressed its expression. The current study suggests progressive extracellular matrix remodeling and its potential role in the myometrial tissue mechanical function during pregnancy and parturition.
Collapse
Affiliation(s)
- Alexis Ouellette
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanmugasundaram Nallasamy
- Correspondence: Division of Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA. Tel: +18026568668; Fax: +18026568771; E-mail:
| |
Collapse
|
9
|
Yang X, Ding Y, Mei J, Xiong W, Wang J, Huang Z, Li R. Second-Trimester Cervical Shear Wave Elastography Combined With Cervical Length for the Prediction of Spontaneous Preterm Birth. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:820-829. [PMID: 35272890 DOI: 10.1016/j.ultrasmedbio.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The goal of this study was to explore the value of shear wave elastography (SWE) combined with cervical length (CL) in the prediction of spontaneous preterm birth (sPTB) between 18 and 24 weeks of gestation. In this study, SWE was used to evaluate four regions of the cervix: the external and anterior lip (region A1), the external and posterior lip (region A2), the internal and anterior lip (region A3) and the internal and posterior lip (region A4). The cervical Young's modulus (YM) was compared between women who spontaneously delivered prematurely (<37 wk) and those who delivered full term. Finally, the predictive power of SWE was evaluated using receiver operating characteristic analysis. Overall, 773 patients were included in this study, of whom 60 (7.8%) had a sPTB. In the univariate analysis, prior sPTB, history of spontaneous abortion, history of cervical surgery, CL and YM at the anterior portion of both the internal and external os and the posterior portion of the internal os were associated with sPTB (p < 0.05). Multiple regression analyses were performed to develop the prediction probability for sPTB. YM and CL were independent predictors of sPTB in asymptomatic women, and the combination of YM and CL improved the ability to predict sPTB (area under the receiver operating characteristic curve = 0.98, 95% confidence interval: 0.97-0.99, p < 0.001). The interventions had relatively little impact on the outcome indicators measured. Cervical YM added to the CL may improve the predictive performance of second-trimester transvaginal ultrasound for sPTB.
Collapse
Affiliation(s)
- Xiaofeng Yang
- First Affiliate Hospital of Jinan University, Guangzhou, China
| | - Yuzhen Ding
- First Affiliate Hospital of Jinan University, Guangzhou, China
| | - Jie Mei
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Wen Xiong
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jingyun Wang
- First Affiliate Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- First Affiliate Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- First Affiliate Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Tissue Engineering for Cervical Function in Pregnancy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22. [DOI: 10.1016/j.cobme.2022.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
12
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
13
|
Abstract
Impairment of uterine structure and function causes infertility, pregnancy loss, and perinatal complications in humans. Some types of uterine impairments such as Asherman’s syndrome, also known as uterine synechiae, can be treated medically and surgically in a standard clinical setting, but absolute defects of uterine function or structure cannot be cured by conventional approaches. To overcome such hurdles, partial or whole regeneration and reconstruction of the uterus have recently emerged as new therapeutic strategies. Transplantation of the whole uterus into patients with uterine agenesis results in the successful birth of children. However, it remains an experimental treatment with numerous difficulties such as the need for continuous and long-term use of immunosuppressive drugs until a live birth is achieved. Thus, the generation of the uterus by tissue engineering technologies has become an alternative but indispensable therapeutic strategy to treat patients without a functional or well-structured uterus. For the past 20 years, the bioengineering of the uterus has been studied intensively in animal models, providing the basis for clinical applications. A variety of templates and scaffolds made from natural biomaterials, synthetic materials, or decellularized matrices have been characterized to efficiently generate the uterus in a manner similar to the bioengineering of other organs and tissues. The goal of this review is to provide a comprehensive overview and perspectives of uterine bioengineering focusing on the type, preparation, and characteristics of the currently available scaffolds.
Collapse
|
14
|
House M, Kelly J, Klebanov N, Yoshida K, Myers K, Kaplan DL. Mechanical and Biochemical Effects of Progesterone on Engineered Cervical Tissue. Tissue Eng Part A 2018; 24:1765-1774. [PMID: 29855229 PMCID: PMC6302671 DOI: 10.1089/ten.tea.2018.0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Preterm birth is a leading cause of morbidity and mortality in newborns. Babies born prematurely are at increased risk of lifelong health problems, including neurodevelopmental abnormalities. Cervical shortening precedes preterm birth in many women. Cervical shortening is caused, in part, by excessive softening of the extracellular matrix (ECM) of the cervical stroma. In clinical obstetrics, cervical shortening prompts treatment with supplemental progesterone to prevent preterm birth. However, progesterone-mediated effects on the cervical ECM are not well understood. This research sought to study progesterone-mediated remodeling of ECM produced by human cervical fibroblasts in vitro. A previously developed three-dimensional (3D) engineered model of the cervical ECM was used for experiments. Cervical fibroblasts were seeded on porous scaffolds and cultured in spinner flasks to promote ECM synthesis. Scaffolds were exposed to two conditions: 10-8 M estradiol versus 10-8 M estradiol +10-6 M progesterone for 4 weeks. To measure ECM strength, two scaffolds were mounted end-to-end on a wire and cultured such that ECM filled the gap between the scaffolds. The force required to pull the scaffolds apart was measured. Collagen content and collagen crosslinks were measured with ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry. Whole-transcriptome RNA sequencing (RNA-seq) was used to quantify gene expression between the two experimental conditions. Zymography was used to study the quantity and activity of matrix metalloproteinase-2 (MMP2) in the scaffolds. The study found that exposure to progesterone increased tissue softness of the engineered ECM over 28 days. Increased tissue softness correlated with decreased collagen content. With RNA-seq, progesterone exposure resulted in gene expression changes consistent with known progesterone effects. Pathway analysis of the RNA-seq data suggested MMPs were significantly dysregulated in progesterone-exposed engineered ECM. Increased expression of active MMP2 was confirmed in the progesterone-exposed engineered ECM. In summary, progesterone increased the softness of the ECM, which was correlated with decreased collagen production and altered histology. These results are important for deciphering the role of progesterone in preventing preterm birth.
Collapse
Affiliation(s)
- Michael House
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA
| | - Jeannie Kelly
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts
| | - Nikolai Klebanov
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Kyoko Yoshida
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
15
|
Vink J, Myers K. Cervical alterations in pregnancy. Best Pract Res Clin Obstet Gynaecol 2018; 52:88-102. [PMID: 30314740 DOI: 10.1016/j.bpobgyn.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Spontaneous preterm birth (SPTB), defined as delivery before 37 weeks' gestation, remains a significant obstetric dilemma even after decades of research in this field. Although trends from 2007 to 2014 showed the rate of preterm birth slightly decreased, the CDC recently reported the rate of preterm birth has increased for two consecutive years since 2014. Currently, 1 in 10 pregnancies in the US still end prematurely. In this chapter, we focus on the "compartment" of the cervix. The goal is to outline the current knowledge of normal cervical structure and function in pregnancy and the current knowledge of how the cervix malfunctions lead to SPTB. We review the mechanisms by which our current interventions are hypothesized to work. Finally, we outline gaps in knowledge and future research directions that may lead to novel and effective interventions to prevent premature cervical failure and SPTB.
Collapse
Affiliation(s)
- Joy Vink
- Dept. of OB/GYN, Columbia University Medical Center, New York, NY, USA.
| | - Kristin Myers
- Dept. of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Nallasamy S, Yoshida K, Akins M, Myers K, Iozzo R, Mahendroo M. Steroid Hormones Are Key Modulators of Tissue Mechanical Function via Regulation of Collagen and Elastic Fibers. Endocrinology 2017; 158:950-962. [PMID: 28204185 PMCID: PMC5460796 DOI: 10.1210/en.2016-1930] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023]
Abstract
The extracellular matrix (ECM) plays an active and dynamic role that both reflects and facilitates the functional requirements of a tissue. The mature ECM of the nonpregnant cervix is drastically reorganized during pregnancy to drive changes in tissue mechanics that ensure safe birth. In this study, our research on mice deficient in the proteoglycan decorin have led to the finding that progesterone and estrogen play distinct and complementary roles to orchestrate structural reorganization of both collagen and elastic fibers in the cervix during pregnancy. Abnormalities in collagen and elastic fiber structure and tissue mechanical function evident in the cervix of nonpregnant and early pregnant decorin-null mice transiently recover for the remainder of pregnancy only to return 1 month postpartum. Consistent with the hypothesis that pregnancy levels of progesterone and estrogen may regulate ECM organization and turnover, expressions of factors required for assembly and synthesis of collagen and elastic fibers are temporally regulated, and the ultrastructure of collagen fibrils and elastic fibers is markedly altered during pregnancy in wild-type mice. Finally, utilizing ovariectomized nonpregnant decorin-null mice, we demonstrate structural resolution of collagen and elastic fibers by progesterone or estrogen, respectively, and the potential for both ECM proteins to contribute to mechanical function. These investigations advance understanding of regulatory factors that drive specialized ECM organization and contribute to an understanding of the cervical remodeling process, which may provide insight into potential complications associated with preterm birth that impact 9.6% of live births in the United States.
Collapse
Affiliation(s)
- Shanmugasundaram Nallasamy
- Department of Obstetrics and Gynecology and
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Kyoko Yoshida
- Department of Mechanical Engineering, Columbia University, New York, New York 10027; and
| | - Meredith Akins
- Department of Obstetrics and Gynecology and
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, New York 10027; and
| | - Renato Iozzo
- Department of Pathology, Anatomy, and Cell Biology
- Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology and
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
17
|
Furcron AE, Romero R, Plazyo O, Unkel R, Xu Y, Hassan SS, Chaemsaithong P, Mahajan A, Gomez-Lopez N. Vaginal progesterone, but not 17α-hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal-fetal interface. Am J Obstet Gynecol 2015; 213:846.e1-846.e19. [PMID: 26264823 DOI: 10.1016/j.ajog.2015.08.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Progestogen (vaginal progesterone or 17-alpha-hydroxyprogesterone caproate [17OHP-C]) administration to patients at risk for preterm delivery is widely used for the prevention of preterm birth (PTB). The mechanisms by which these agents prevent PTB are poorly understood. Progestogens have immunomodulatory functions; therefore, we investigated the local effects of vaginal progesterone and 17OHP-C on adaptive and innate immune cells implicated in the process of parturition. STUDY DESIGN Pregnant C57BL/6 mice received vaginal progesterone (1 mg per 200 μL, n = 10) or Replens (control, 200 μL, n = 10) from 13 to 17 days postcoitum (dpc) or were subcutaneously injected with 17OHP-C (2 mg per 100 μL, n = 10) or castor oil (control, 100 μL, n = 10) on 13, 15, and 17 dpc. Decidual and myometrial leukocytes were isolated prior to term delivery (18.5 dpc) for immunophenotyping by flow cytometry. Cervical tissue samples were collected to determine matrix metalloproteinase (MMP)-9 activity by in situ zymography and visualization of collagen content by Masson's trichrome staining. Plasma concentrations of progesterone, estradiol, and cytokines (interferon [IFN]γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, keratinocyte-activated chemokine/growth-related oncogene, and tumor necrosis factor-α) were quantified by enzyme-linked immunosorbent assays. Pregnant mice pretreated with vaginal progesterone or Replens were injected with 10 μg of an endotoxin on 16.5 dpc (n = 10 each) and monitored via infrared camera until delivery to determine the effect of vaginal progesterone on the rate of PTB. RESULTS The following results were found: (1) vaginal progesterone, but not 17OHP-C, increased the proportion of decidual CD4+ regulatory T cells; (2) vaginal progesterone, but not 17OHP-C, decreased the proportion of decidual CD8+CD25+Foxp3+ T cells and macrophages; (3) vaginal progesterone did not result in M1→M2 macrophage polarization but reduced the proportion of myometrial IFNγ+ neutrophils and cervical active MMP-9-positive neutrophils and monocytes; (4) 17OHP-C did not reduce the proportion of myometrial IFNγ+ neutrophils; however, it increased the abundance of cervical active MMP-9-positive neutrophils and monocytes; (5) vaginal progesterone immune effects were associated with reduced systemic concentrations of IL-1β but not with alterations in progesterone or estradiol concentrations; and (6) vaginal progesterone pretreatment protected against endotoxin-induced PTB (effect size 50%, P = 0.011). CONCLUSION Vaginal progesterone, but not 17OHP-C, has local antiinflammatory effects at the maternal-fetal interface and the cervix and protects against endotoxin-induced PTB.
Collapse
|
18
|
Ackerman WE, Summerfield TL, Mesiano S, Schatz F, Lockwood CJ, Kniss DA. Agonist-Dependent Downregulation of Progesterone Receptors in Human Cervical Stromal Fibroblasts. Reprod Sci 2015; 23:112-23. [PMID: 26243545 DOI: 10.1177/1933719115597787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progesterone (P(4)) maintains uterine quiescence during the majority of pregnancy, whereas diminished progesterone receptor (PR) expression and/or activity (ie, functional P(4) withdrawal) promotes parturition. To investigate the regulation of PR expression in cervical stroma, fibroblasts from premenopausal hysterectomy specimens were prepared. Greater than 99% of the cultures were vimentin positive (mesenchymal cell marker) with only occasional cytokeratin-8 positivity (epithelial cell marker) and no evidence of CD31-positive (endothelial cell marker) cells. Cells were immunolabeled with antibodies directed against PRs (PR-A and PR-B), estrogen receptor α (ER-α), and glucocorticoid receptor-α/β (GR-α/β). All cells were uniformly immunopositive for ER-α and GR-α/β but did not express PRs. Incubation of cells with 10(-8) mol/L 17β-estradiol induced a time-dependent increase in PR-A and PR-B messenger RNAs (mRNAs) by quantitative real-time polymerase chain reactions and proteins by immunoblotting and immunofluorescence. Incubation of cervical fibroblasts with PR ligands (medroxyprogesterone acetate or Org-2058) downregulated PR-A and PR-B levels. Coincubation of cells with PR ligands plus RU-486, a PR antagonist, partially abrogated agonist-induced receptor downregulation. Dexamethasone, a pure glucocorticoid, had no inhibitory effect on PR expression. These results indicate that progestins and estrogens regulate PR expression in cervical fibroblasts. We postulate that hormonal regulation of PR expression in the cervical stroma may contribute to functional P(4) withdrawal in preparation for parturition.
Collapse
Affiliation(s)
- William E Ackerman
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Taryn L Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Sam Mesiano
- Department of Obstetrics, Gynecology and Reproductive Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Frederick Schatz
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Douglas A Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Goldfien GA, Barragan F, Chen J, Takeda M, Irwin JC, Perry J, Greenblatt RM, Smith-McCune KK, Giudice LC. Progestin-Containing Contraceptives Alter Expression of Host Defense-Related Genes of the Endometrium and Cervix. Reprod Sci 2015; 22:814-28. [PMID: 25634912 DOI: 10.1177/1933719114565035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epidemiological studies indicate that progestin-containing contraceptives increase susceptibility to HIV, although the underlying mechanisms involving the upper female reproductive tract are undefined. To determine the effects of depot medroxyprogesterone acetate (DMPA) and the levonorgestrel intrauterine system (LNG-IUS) on gene expression and physiology of human endometrial and cervical transformation zone (TZ), microarray analyses were performed on whole tissue biopsies. In endometrium, activated pathways included leukocyte chemotaxis, attachment, and inflammation in DMPA and LNG-IUS users, and individual genes included pattern recognition receptors, complement components, and other immune mediators. In cervical TZ, progestin treatment altered expression of tissue remodeling and viability but not immune function genes. Together, these results indicate that progestins influence expression of immune-related genes in endometrium relevant to local recruitment of HIV target cells with potential to increase susceptibility and underscore the importance of the upper reproductive tract when assessing the safety of contraceptive products.
Collapse
Affiliation(s)
- Gabriel A Goldfien
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Fatima Barragan
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph Chen
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Takeda
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Juan C Irwin
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Perry
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth M Greenblatt
- Departments of Clinical Pharmacy, Medicine, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Karen K Smith-McCune
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda C Giudice
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|