1
|
Tan J, Liu PP, Cao LY, Zou Y, Zhang ZY, Huang JL, Zhang ZQ, Xu DF, Fan L, Xia LZ, Xie Q, Tian LF, Xin CL, Li ZM, Wu QF. Reduced PATL2 Impairs the Proliferation of Ovarian Granulosa Cells by Decreasing ADM2 Expression in Patients with PCOS. Reprod Sci 2024; 31:1034-1044. [PMID: 38087182 DOI: 10.1007/s43032-023-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 03/24/2024]
Abstract
It is recognized that PCOS patients are often accompanied with aberrant follicular development, which is an important factor leading to infertility in patients. However, the relevant regulatory mechanisms of abnormal follicular development are not well understood. In the present study, by collecting human ovarian granulosa cells (GCs) from PCOS patients who underwent in vitro fertilization (IVF), we found that the proliferation ability of GCs in PCOS patients was significantly reduced. Surprisingly, PATL2 and adrenomedullin 2 (ADM2) were obviously decreased in the GCs of PCOS patients. To further explore the potential roles of PATL2 and ADM2 on GC, we transfected PATL2 siRNA into KGN cells to knock down the expression of PATL2. The results showed that the growth of GCs remarkably repressed after knocking down the PATL2, and ADM2 expression was also weakened. Subsequently, to study the relationship between PATL2 and ADM2, we constructed PATL2 mutant plasmid lacking the PAT construct and transfected it into KGN cells. The cells showed the normal PATL2 expression, but attenuated ADM2 expression and impaired proliferative ability of GCs. Finally, the rat PCOS model experiments further confirmed our findings in KGN cells. In conclusion, our study suggests that PATL2 promoted the proliferation of ovarian GCs by stabilizing the expression of ADM2 through "PAT" structure, which is beneficial to follicular development, whereas, in the ovary with polycystic lesions, reduction of PATL2 could result in the decreased expression of ADM2, subsequently weakened the proliferation ability of GCs and finally led to the occurrence of aberrant follicles.
Collapse
Affiliation(s)
- Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China.
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China.
| | - Pei-Pei Liu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Li-Yun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Yang Zou
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Jia-Lyu Huang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zhi-Qin Zhang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Ding-Fei Xu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Lu Fan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Lei-Zhen Xia
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Qi Xie
- Reproductive Medicine Center, Xinyu Maternal and Child Health Care Hospital, Xinyu, Jiangxi Province, China
| | - Li-Feng Tian
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Cai-Lin Xin
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zeng-Ming Li
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Qiong-Fang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Cong J, Li M, Wang Y, Ma H, Yang X, Gao J, Wang L, Wu X. Protective effects of electroacupuncture on polycystic ovary syndrome in rats: Down-regulating Alas2 to inhibit apoptosis, oxidative stress, and mitochondrial dysfunction in ovarian granulosa cells. Tissue Cell 2023; 82:102090. [PMID: 37075681 DOI: 10.1016/j.tice.2023.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women at reproductive age. The therapeutic effect of electroacupuncture (EA) on PCOS has been revealed, while the anti-PCOS mechanisms of EA have not been fully explored. In this study, PCOS were induced in rats by daily injection with dehydroepiandrosterone (DHEA) for 20 days and EA treatment was performed for 5 weeks. The mRNA expression profiles in ovarian tissues from control, PCOS, and EA-treated rats were examined by high-throughput mRNA sequencing. 5'-aminolevulinate synthase 2 (Alas2), a vital rate-limiting enzyme of the heme synthesis pathway, was selected to be further studied. PCOS led to the upregulation of Alas2 mRNA, whereas EA treatment restored this change. In vitro, primary ovarian granulosa cells (GCs) were challenged with H2O2 to mimic the oxidative stress (OS) state in PCOS. H2O2 induced apoptosis, OS, mitochondrial dysfunction, as well as Alas2 overexpression in GCs, while lentivirus-mediated Alas2 knockdown evidently restrained the above impairments. In summary, this study highlights the crucial role of Alas2 in cell apoptosis, OS, and mitochondrial dysfunction of PCOS GCs and provides potential therapeutic candidates for further investigation on PCOS treatment.
Collapse
Affiliation(s)
- Jing Cong
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Mubai Li
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu Wang
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Hongli Ma
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xinming Yang
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Jingshu Gao
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Long Wang
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xiaoke Wu
- The First Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China; Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang Province, China.
| |
Collapse
|
3
|
Li D, Zhong C, Sun Y, Kang L, Jiang Y. Identification of genes involved in chicken follicle selection by ONT sequencing on granulosa cells. Front Genet 2023; 13:1090603. [PMID: 36712880 PMCID: PMC9877231 DOI: 10.3389/fgene.2022.1090603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
In chickens, follicle selection is an important process affecting laying traits, which is characterized by the differentiation of granulosa cells and the synthesis of progesterone by granulosa cells from hierarchical follicles. By using Oxford Nanopore Technologies (ONT) approach, we compared the transcriptomes of granulosa cells between pre-hierarchical (Pre-GCs) and hierarchical follicles (Post-GCs) to identify genes underlying chicken follicle selection. A total of 2,436 differentially expressed genes (DEGs), 3,852 differentially expressed transcripts (DETs) and 925 differentially expressed lncRNA transcripts were identified between chicken Pre-GCs and Post-GCs. For all of the significant DETs, the alternative 3'splice sites (A3) accounted for a maximum of 23.74% of all alternative splicing events. Three DETs of the 7-dehydrocholesterol reductase gene (DHCR7) named as T1, T3, and T4, differing in 5'untranslated regions (UTRs), increased in Post-GCs with different folds (T1: 1.83, T3: 2.42, T4: 5.06). The expression of the three DHCR7 transcripts was upregulated by estrogen in a dose-dependent manner, while was downregulated by bone morphogenetic protein 15 (BMP15) and transforming growth factor-beta 1 (TGF-β1). Follicle-stimulating hormone (FSH) and bone morphogenetic protein 4 (BMP4) promoted the expression of the three DHCR7 transcripts in Pre-GCs at lower concentrations, while repressed their expression at higher concentrations. The data from this study may provide a reference for better understanding of the genetic mechanisms underlying follicle selection in chicken and other poultry species.
Collapse
Affiliation(s)
- Dandan Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Conghao Zhong
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China,*Correspondence: Yunliang Jiang,
| |
Collapse
|
4
|
Cong J, Zhang Y, Yang X, Wang Y, He H, Wang M. Anti-polycystic ovary syndrome effect of electroacupuncture: IMD inhibits ER stress-mediated apoptosis and autophagy in granulosa cells. Biochem Biophys Res Commun 2022; 634:159-167. [DOI: 10.1016/j.bbrc.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022]
|
5
|
Chang CL, Lo WC, Lee TH, Sung JY, Sung YJ. Oocyte-specific disruption of adrenomedullin 2 gene enhances ovarian follicle growth after superovulation. Front Endocrinol (Lausanne) 2022; 13:1047498. [PMID: 36452323 PMCID: PMC9702065 DOI: 10.3389/fendo.2022.1047498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adrenomedullin 2 (ADM2), adrenomedullin (ADM), and calcitonin gene-related peptides (α- and β-CGRPs) signal through heterodimeric calcitonin receptor-like receptor/receptor activity-modifying protein 1, 2 and 3 (CLR/RAMP1, 2 and 3) complexes. These peptides are important regulators of neurotransmission, vasotone, cardiovascular development, and metabolic homeostasis. In rodents, ADM is essential for regulating embryo implantation, fetal-placental development, and hemodynamic adaptation during pregnancy. On the other hand, ADM2 was shown to affect vascular lumen enlargement, and cumulus cell-oocyte complex (COC) communication in rodent and bovine ovarian follicles. To investigate whether oocyte-derived ADM2 plays a physiological role in regulating ovarian folliculogenesis, we generated mice with oocyte-specific disruption of the Adm2 gene using a LoxP-flanked Adm2 transgene (Adm2 loxP/loxP) and crossed them with Zp3-Cre mice which carry a zona pellucida 3 (Zp3) promoter-Cre recombinase transgene. RESULTS While heterozygous Adm2 +/-/Zp3-Cre and homozygous Adm2 -/-/Zp3-Cre mice were fertile, Adm2 disruption in oocytes significantly increased the number of ovulated oocytes following a superovulation treatment. Oocyte-specific Adm2 disruption also significantly impaired the developmental capacity of fertilized eggs and decreased the size of the corpus luteum following superovulation, perhaps due to a reduction of ovarian cyclin D2-associated signaling. CONCLUSIONS The disruption of intrafollicular ADM2 signaling leads to follicular dysfunction. These data suggested that oocyte-derived ADM2 plays a facilitative role in the regulation of hormonal response and follicle growth independent of the closely related ADM and CGRP peptides, albeit in a subtle manner.
Collapse
|
6
|
Gérard N, Robin E. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology 2019; 130:163-176. [PMID: 30921545 DOI: 10.1016/j.theriogenology.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Terminal follicular differentiation and ovulation are essential steps of reproduction. They are induced by the increase in circulating LH, and lead to the expulsion from the ovary of oocytes ready to be fertilized. This review summarizes our current understanding of cellular and molecular pathways that control ovulation using a broad mammalian literature, with a specific focus to the mare, which is unique in some aspects of ovarian function in some cases. Essential steps and key factors are approached. The first part of this review concerns LH, receptors and signaling, addressing the description of the equine gonadotropin and cloning, signaling pathways that are activated following the binding of LH to its receptors, and implication of transcription factors which better known are CCAAT-enhancer-binding proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major part is devoted to the cellular and molecular actors within follicular cells during preovulatory maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular matrix remodelling with involvement of proteases, antiproteases and inhibitors, as well as relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive oxygen species. The third part describes our current knowledge on molecular aspect of in vivo cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine factors, and intracellular regulations that occur in cumulus cells during expansion, and in the oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall and comprehensive map of the regulatory mechanisms that intervene within the preovulatory follicle during differentiation and ovulation.
Collapse
Affiliation(s)
- Nadine Gérard
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Elodie Robin
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
7
|
Fang J, Luan J, Zhu G, Qi C, Yang Z, Zhao S, Li B, Zhang X, Guo N, Li X, Wang D. Intermedin 1-53 Inhibits Myocardial Fibrosis in Rats by Down-Regulating Transforming Growth Factor-β. Med Sci Monit 2017; 23:121-128. [PMID: 28065931 PMCID: PMC5242205 DOI: 10.12659/msm.898522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myocardial fibrosis is the result of persistent anoxia and ischemic myocardial fibers caused by coronary atherosclerotic stenosis, which lead to heart failure, threatening the patient's life. This study aimed to explore the regulatory role of intermedin 1-53 (IMD1-53) in cardiac fibrosis using neonatal rat cardiac fibroblasts and a myocardial infarction (MI) rat model both in vitro and in vivo. MATERIAL AND METHODS The Western blot method was used to detect the protein expression of collagen I and collagen III in myocardial fibroblasts. The SYBR Green I real-time quantitative polymerase chain reaction (PCR) assay was used to detect the mRNA expression of collagen type I and III, IMD1-53 calcitonin receptor-like receptor (CRLR), transforming growth factor-β (TGF-β), and matrix metalloproteinase-2 (MMP-2). Masson staining was used to detect the area changes of myocardial fibrosis in MI rats. RESULTS Results in vivo showed that IMD1-53 reduced the scar area on the heart of MI rats and inhibited the expression of collagen type I and III both in mRNA and protein. Results of an in vitro study showed that IMD1-53 inhibited the transformation of cardiomyocytes into myofibroblasts caused by angiotensin II (Ang II). The further mechanism study showed that IMD1-53 inhibited the expression of TGF-β and the phosphorylation of smad3, which further up-regulated the expression of MMP-2. CONCLUSIONS IMD1-53 is an effective anti-fibrosis hormone that inhibits cardiac fibrosis formation after MI by down-regulating the expression of TGF-β and the phosphorylation of smad3, blocking fibrous signal pathways, and up-regulating the expression of MMP-2, thereby demonstrating its role in regression of myocardial fibrosis.
Collapse
Affiliation(s)
- Jian Fang
- Department of Nephrology, Wuhan Medical
| | | | | | - Chang Qi
- Department of Nephrology, Wuhan Medical
| | | | | | - Bin Li
- Department of Nephrology, Wuhan Medical
| | | | | | | | - Dandan Wang
- Department of Internal Medicine-Cardiovascular, Wuhan Medical
| |
Collapse
|
8
|
Madden JA, Thomas PQ, Keating AF. Phosphoramide mustard induces autophagy markers and mTOR inhibition prevents follicle loss due to phosphoramide mustard exposure. Reprod Toxicol 2016; 67:65-78. [PMID: 27888070 DOI: 10.1016/j.reprotox.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/07/2023]
Abstract
Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide. Postnatal day 4 Fisher 344 rat ovaries were exposed to vehicle control (1% DMSO) or PM (60μM)±LY294002 or rapamycin for 2 or 4 d. Transmission election microscopy revealed abnormally large golgi apparatus and electron dense mitochondria in PM-exposed ovaries prior to and at the time of follicle depletion. PM exposure increased (P<0.05) mRNA abundance of Bbc3, Cdkn1a, Ctfr, Edn1, Gstp1, Nqo1, Tlr4, Tnfrsfla, Txnrd1 and decreased (P<0.05) Casp1 and Il1b after 4d. PM exposure increased (P<0.1) BECN1 and LAMP, decreased (P<0.1) ABCB1 and did not alter ABCC1 protein. LY294002 did not impact PM-induced ovotoxicity, but decreased ABCC1 and ABCB1 protein. Rapamycin prevented PM-induced follicle loss. These data suggest that the mammalian target of rapamycin, mTOR, may be a gatekeeper of PM-induced follicle loss.
Collapse
Affiliation(s)
- Jill A Madden
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States
| | - Porsha Q Thomas
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|