1
|
Ji Z, Bao B, Wang Y, Wang Z, Yang Y, Xu J, Wang X, Luoreng Z. RNA Sequencing Reveals the Involvement of Serum Exosomal miRNAs in Early Pregnancy in Cattle. Animals (Basel) 2024; 14:2600. [PMID: 39272385 PMCID: PMC11394640 DOI: 10.3390/ani14172600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Low fertility is the main cause of the low productivity in beef cattle and is mainly associated with a lack of conception after fertilization. The establishment of early pregnancy in cattle is a complex physiological process, and embryo implantation is crucial for the successful establishment of pregnancy. Exosomal miRNAs play an important role in regulating mammalian embryo implantation and development. This study used synchronous estrus technology to extract exosomes from bovine serum at 0, 14, and 21 days of early pregnancy and analyzed the expression profile of exosomal miRNAs through RNA-seq technology. We identified 472 miRNA precursor sequences and 367 mature miRNA sequences in the three sample groups, with the majority of the miRNAs having high abundance. Differentially expressed miRNAs (DEmiRNAs) were screened, and 20 DEmiRNAs were obtained. The differential expression analysis results show that compared to day 0, there were 15 DEmiRNAs in the serum on day 14 and 5 on day 21 of pregnancy. Compared to the 14th day of pregnancy, there were eight DEmiRNAs in the serum on the 21st day of pregnancy. Bioinformatics analysis shows that the target genes of DEmiRNAs regulated the signaling pathways closely related to early pregnancy, including the VEGF, NF-κB, and MAPK signaling pathways. In addition, the newly discovered miRNAs were bta-miR-3604, bta-miR-2889, bta-miR-3432a, and bta-miR-409b. These results provide a theoretical reference for screening the molecular markers for early pregnancy establishment and maternal recognition of pregnancy (MRP) in cattle and new ideas for shortening the calving interval in cows.
Collapse
Affiliation(s)
- Zhongxiang Ji
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Binwu Bao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yumei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengxing Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yi Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Bae H, Yang C, Lee JY, Park S, Bazer FW, Song G, Lim W. Melatonin improves uterine-conceptus interaction via regulation of SIRT1 during early pregnancy. J Pineal Res 2020; 69:e12670. [PMID: 32421880 DOI: 10.1111/jpi.12670] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Melatonin has been shown to improve in vitro fertilization and offspring survival after bacterial infection, but its role in regulating maternal-fetal communication during early pregnancy has not been investigated. Results of this study demonstrated expression of abundant melatonin receptors in conceptus and endometrium during early pregnancy. In gilts, expression of melatonin receptor 1A (MTNR1A or MT1) and melatonin receptor 1B (MTNR1B or MT2) increased in trophectoderm (Tr) and uterine luminal epithelium (LE) with advancing days during early pregnancy in a different manner. Melatonin increased proliferation and migration of porcine trophectoderm (pTr) cell, the percent pTr cells in the G2 phase of the cell cycle, and the expression of implantation-related genes by pTr cells and endometrial luminal epithelium (pLE). Melatonin also attenuated the production of LPS-induced pro-inflammatory cytokines and tunicamycin-induced endoplasmic reticulum (ER) stress-sensing proteins. The expression of sirtuin 1 (SIRT1) as a potential target of melatonin increased between Days 9 and 14 of gestation. Co-treatment with SIRT1 inhibitor EX527 and melatonin restored cell-cell interactions through PI3K and MAPK signaling. Knockdown of SIRT1 decreased the expression of implantation-related genes, as well as migration of pTr and pLE cells. The expression of microRNAs regulated by SIRT1 was suppressed in response to melatonin. Furthermore, melatonin significantly increased lipopolysaccharide (LPS)-reduced fertilization and embryogenesis in zebrafish model. These results suggest that melatonin may improve the uterine-conceptus interactions via the regulation of SIRT1 during early pregnancy.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Changwon Yang
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sunwoo Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Korea
| |
Collapse
|
3
|
Li L, Jiang H, Wei X, Geng D, He M, Du H. Bu Shen Zhu Yun Decoction Improves Endometrial Receptivity via VEGFR-2-Mediated Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3949824. [PMID: 32082394 PMCID: PMC7011400 DOI: 10.1155/2019/3949824] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) regulates the mitogen-activated protein kinase (MAPK) signaling pathway and plays an important role in angiogenesis. Bu Shen Zhu Yun decoction (BSZYD) can improve endometrial receptivity and embryo implantation rates in patients undergoing in vitro fertilization. However, whether BSZYD improves endometrial receptivity via angiogenesis remains unclear. Here, we investigated the effects of BSZYD on the proliferation, migration, and angiogenesis of human endometrial microvascular endothelial cells (HEMECs) and found that BSZYD upregulated the expression of cyclin D1, matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA) in HEMECs. Cell Counting Kit 8 assay, scratch-wound assay, and Tube Formation Assay results showed that BSZYD promoted the proliferation, migration, and angiogenesis of HEMECs. Western blot analysis results revealed the activation of the MAPK signaling pathway by BSZYD through the upregulation of VEGF and VEGFR-2 expression. Together, these findings highlight the novel mechanism underlying BSZYD-mediated improvement in endometrial receptivity through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Li Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huabo Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xuecong Wei
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dandan Geng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huilan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
4
|
Kaczynski P, Goryszewska E, Baryla M, Waclawik A. Prostaglandin F2α stimulates angiogenesis at the embryo-maternal interface during early pregnancy in the pig. Theriogenology 2019; 142:169-176. [PMID: 31600637 DOI: 10.1016/j.theriogenology.2019.09.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
Blood vessel formation is a critical process for successful pregnancy establishment and placenta formation. Angiogenic factors such as vascular endothelial growth factor (VEGF), angiopoietins (ANGPTs) or fibroblast growth factor 2 (FGF2) are known to be involved in angiogenesis. However, the mechanism regulating their expression in the porcine endometrium and trophoblast has not been described during early pregnancy establishment. Recently, we reported an important role for prostaglandin F2α (PGF2α) in supporting processes accompanying the peri-implantation period in the pig. The aim of the present study was to determine the effect of PGF2α on angiogenic factor gene and protein expression at the embryo-maternal interface and on capillary-like structure formation by endometrial endothelial cells. In the present study, we used various in vitro models involving endometrial tissue explants, primary porcine trophoblast and endometrial endothelial cells, as well as a swine umbilical vein endothelial cell line (G1410). ANGPT1, ANGPT2 and FGF2 gene expression was analyzed in porcine endometrial explants and in primary trophoblast cells incubated with PGF2α (100 nM, 1 μM). VEGFA gene expression and protein secretion by porcine primary trophoblast cells were studied in vitro using primary trophoblast cells. A network formation assay using the G1410 cell line and primary endothelial cells of endometrial origin was performed to assess the effect of PGF2α on capillary-like structure formation. We found that PGF2α stimulated VEGFA gene expression (1 μM) and secretion of this protein (100 nM) by porcine trophoblast cells (P < 0.05). In endometrial explants, PGF2α increased the expression of the ANGPT1, ANGPT2 and FGF2 genes (P < 0.05). PGF2α stimulated the formation of capillary-like structures acting on porcine endometrial endothelial cells on days 15 and 20 of pregnancy and in the G1410 cell line (P < 0.05). PGF2α-stimulated endothelial cell network formation was diminished by using a MEK kinase inhibitor in G1410 cells. Our results indicate an important role for PGF2α in the regulation of angiogenesis at the embryo-maternal interface. PGF2α promotes angiogenesis in the porcine endometrium by activating the MAPK signaling pathway. The stimulating effect of PGF2α on the formation of capillary-like structures by endothelial cells, together with our previous findings, supports the hypothesis that PGF2α is an important factor promoting the development of the placenta during early pregnancy in the pig.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ewelina Goryszewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Monika Baryla
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Agnieszka Waclawik
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
5
|
Sun X, Meng L, Qiao W, Yang R, Gao Q, Peng Y, Bian Z. Vascular endothelial growth factor A/Vascular endothelial growth factor receptor 2 axis promotes human dental pulp stem cell migration via the FAK/PI3K/Akt and p38 MAPK signalling pathways. Int Endod J 2019; 52:1691-1703. [PMID: 31267530 DOI: 10.1111/iej.13179] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/27/2019] [Indexed: 01/04/2023]
Abstract
AIM To investigate the effects of vascular endothelial growth factor A (VEGFA) and the underlying molecular mechanisms on the migration of human dental pulp stem cells (hDPSCs). METHODOLOGY The expression of VEGFA in inflammatory pulp tissue and lipopolysaccharide (LPS)-stimulated dental pulp cells was examined by immunofluorescence staining and qRT-PCR. The migration of hDPSCs was detected using transwell migration and wound healing assays. The activation of FAK, PI3K, Akt and p38 signalling was evaluated by Western blot analysis. Silence RNA (siRNA) technology was utilized to knockdown the expression of VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR). PF573228 (inhibitor of FAK), LY294002 (inhibitor of PI3K), SB203580 (inhibitor of p38) and SU5416 (inhibitor of VEGFR2) were employed to investigate the effect of VEGFA on the migratory mechanism of hDPSCs. Data were analysed statistically using the Student's t-test or one-way ANOVA. RESULTS The expression levels of VEGFA in inflammatory pulp tissue in vivo and LPS-stimulated dental pulp cells in vitro were significantly greater than those in the control groups (P < 0.05). Vascular endothelial growth factor A promoted the migration of hDPSCs in a concentration-dependent manner. Several signalling pathways, including FAK, PI3K, Akt and p38, were activated by VEGFA in a dose- and time-dependent manner in hDPSCs. The VEGFA-induced migration of hDPSCs was significantly inhibited with drug inhibitors such as PF573228, LY294002, SB203580 or SU5416 (P < 0.05). These signalling pathways activated by VEGFA stimulation were significantly suppressed by pre-treatment with inhibitor of VEGFR2 (SU5416) or transfection with siRNA of VRGFR2 (P < 0.05) but not VEGFR1 siRNA. CONCLUSIONS Vascular endothelial growth factor A/VEGFR2 axis promoted the migration of hDPSCs via the FAK/PI3K/Akt and p38 MAPK signalling pathways. These findings reveal a novel molecular mechanism for cell migration of hDPSCs, which may contribute to the remodelling of pulp tissue and dentine.
Collapse
Affiliation(s)
- X Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - W Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - R Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Q Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Dobrzyn K, Szeszko K, Kiezun M, Kisielewska K, Rytelewska E, Gudelska M, Wyrebek J, Bors K, Kaminski T, Smolinska N. In vitro effect of orexin A on the transcriptomic profile of the endometrium during early pregnancy in pigs. Anim Reprod Sci 2019; 200:31-42. [DOI: 10.1016/j.anireprosci.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023]
|
7
|
Lim W, An Y, Yang C, Bazer FW, Song G. Trichlorfon inhibits proliferation and promotes apoptosis of porcine trophectoderm and uterine luminal epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:555-564. [PMID: 30005267 DOI: 10.1016/j.envpol.2018.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Trichlorfon is an organophosphate insecticide widely used in agriculture. Additionally, it is applied to pigs for control of endo- and ectoparasites. Previous studies have shown the effects of trichlorfon in pigs during late stages of gestation; however, little is known about its effects during early pregnancy, including implantation and placentation. We investigated whether trichlorfon affects proliferation and apoptosis of porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. Trichlorfon inhibited the proliferation of pTr and pLE cells, as evidenced by cell cycle arrest, and altered the expression of proliferation-related proteins. In addition, trichlorfon induced cell death and apoptotic features, such as loss of mitochondrial membrane potential and DNA fragmentation, in pTr and pLE cells. Moreover, trichlorfon treatment decreased concentrations of Ca2+ in the cytoplasm in both cell lines and increased concentrations of Ca2+ in mitochondria of pTr cells. Trichlorfon inhibited the activation of phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase signaling pathways in pTr and pLE cells. Therefore, we suggest that trichlorfon-treated pTr and pLE cells exhibited abnormal cell physiology which might lead to early pregnancy failure.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Yikyung An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Jeong PS, Yoon SB, Choi SA, Song BS, Kim JS, Sim BW, Park YH, Yang HJ, Mun SE, Kim YH, Kang P, Jeong KJ, Lee Y, Jin YB, Huh JW, Lee SR, Koo DB, Park YI, Kim SU, Chang KT. Iloprost supports early development of in vitro-produced porcine embryos through activation of the phosphatidylinositol 3-kinase/AKT signalling pathway. Reprod Fertil Dev 2018; 29:1306-1318. [PMID: 27279419 DOI: 10.1071/rd15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/20/2016] [Indexed: 12/11/2022] Open
Abstract
Despite evidence of the presence of prostaglandin (PG) I2 in mammalian oviducts, its role in early development of in vitro-produced (IVP) embryos is largely unknown. Thus, in the present study we examined the effects of iloprost, a PGI2 analogue, on the in vitro developmental competence of early porcine embryos and the underlying mechanism(s). To examine the effects of iloprost on the development rate of IVF embryos, iloprost was added to the in vitro culture (IVC) medium and cultured for 6 days. Supplementation of the IVC medium with iloprost significantly improved developmental parameters, such as blastocyst formation rate, the trophectoderm:inner cell mass ratio and cell survival in IVF and parthenogenetically activated (PA) embryos. In addition, post-blastulation development into the expanded blastocyst stage was improved in iloprost-treated groups compared with controls. Interestingly, the phosphatidylinositol 3-kinase (PI3K)/AKT signalling pathway was significantly activated by iloprost supplementation in a concentration-dependent manner (10-1000nM), and the beneficial effects of iloprost on the early development of porcine IVF and PA embryos was completely ablated by treatment with 2.5μM wortmannin, a PI3K/AKT signalling inhibitor. Importantly, expression of the PI3K/AKT signalling pathway was significantly reduced in somatic cell nuclear transfer (SCNT) compared with IVF embryos, and iloprost supported the early development of SCNT embryos, as was the case for IVF and PA embryos, suggesting a consistent effect of iloprost on the IVC of IVP porcine embryos. Together, these results indicate that iloprost can be a useful IVC supplement for production of IVP early porcine embryos with high developmental competence.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Hae-Jun Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Seong-Eun Mun
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Philyong Kang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
| | - Young Il Park
- Graduate School Department of Digital Media, Ewha Womans University, Daehyeon-dong, Seodaemun-gu, Seoul 03760, Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| |
Collapse
|
9
|
Lim W, Bae H, Bazer FW, Song G. Characterization of C-C motif chemokine ligand 4 in the porcine endometrium during the presence of the maternal-fetal interface. Dev Biol 2018; 441:146-158. [PMID: 30056935 DOI: 10.1016/j.ydbio.2018.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 11/27/2022]
Abstract
Chemokines and their receptors play a crucial role in embryo implantation at the maternal-fetal interface during pregnancy. In this study, we investigated the role of CCL4 in development of the porcine endometrium in the early gestational period. Porcine CCL4 showed high similarity with the human counterpart, and mRNA expression of CCL4 and its receptor (CCR5) was predominantly present in the endometrium during early pregnancy. Treatment with CCL4 increased proliferation of porcine uterine luminal epithelial (pLE) cells by activation of PI3K and MAPK signal transduction. In addition, CCL4 recovered the endoplasmic-reticulum stress-reduced proliferation and decreased the unfolded protein response in pLE cells. Besides, the lipopolysaccharide-activated NF-κB pathway was suppressed in response to CCL4 in pLE cells. Inhibition of CCR5 decreased the proliferation of pLE cells and activation of the PI3K and MAPK pathways by CCL4. Furthermore, CCL4 enhanced conceptus-maternal interactions between porcine trophectoderm (pTr) cells and pLE cells during early pregnancy by activating expression of migration and implantation-related genes. Collectively, the results suggest that CCL4 may improve successful implantation in early pregnancy in pigs.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station 77843, TX, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Lim W, Bae H, Bazer FW, Song G. Stimulatory effects of fibroblast growth factor 2 on proliferation and migration of uterine luminal epithelial cells during early pregnancy. Biol Reprod 2017; 96:185-198. [PMID: 28395342 DOI: 10.1095/biolreprod.116.142331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a mitogen that induces proliferation, differentiation, and migration of cells, as well as angiogenesis and carcinogenesis via autocrine or paracrine actions. Fibroblast growth factor 2 expression is abundant in porcine conceptuses and endometrium during the estrous cycle and peri-implantation period of pregnancy. However, its intracellular actions in uterine epithelial cells have not been reported. The results of this study indicated abundant expression of FGFR1 and FGFR2 predominantly in uterine luminal and glandular epithelia during early pregnancy and that their expression decreased with increasing parity of the sows. Treatment of porcine uterine luminal epithelial (pLE) cells with FGF2 increased proliferation and DNA replication based on increases in proliferating cell nuclear antigen (PCNA) and initiation of G1/S phase progression. In addition, FGF2 increases phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, P38, and P90RSK in a time-dependent manner, and increases in their expression was suppressed by Wortmannin (a phosphatidylinositol 3-kinase [PI3K] inhibitor), U0126 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor), and SB203580 (a P38 inhibitor) based on western blot analyses. Also, the abundance of cytoplasmic p-AKT protein was decreased by Wortmannin and U0126, and p-ERK1/2 protein was reduced only by U0126. Furthermore, inhibition of each signal transduction protein reduced the ability of FGF2 to stimulate proliferation and migration of pLE cells. Collectively, these results indicate that activation of FGFR1 and FGFR2 by uterine- and endometrial-derived FGF2 stimulates PI3K/AKT and mitogen-activated protein kinase pathways for development of the porcine uterus and improvement of litter size.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyocheol Bae
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, Texas, USA
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Geisert RD, Whyte JJ, Meyer AE, Mathew DJ, Juárez MR, Lucy MC, Prather RS, Spencer TE. Rapid conceptus elongation in the pig: An interleukin 1 beta 2 and estrogen‐regulated phenomenon. Mol Reprod Dev 2017; 84:760-774. [DOI: 10.1002/mrd.22813] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/14/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Jeffrey J. Whyte
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Ashley E. Meyer
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Daniel J. Mathew
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - María R. Juárez
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Matthew C. Lucy
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | | | | |
Collapse
|
12
|
Lim W, Bae H, Bazer FW, Song G. Brain-derived neurotrophic factor improves proliferation of endometrial epithelial cells by inhibition of endoplasmic reticulum stress during early pregnancy. J Cell Physiol 2017; 232:3641-3651. [PMID: 28150859 DOI: 10.1002/jcp.25834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family binds to two transmembrane receptors; neurotrophic receptor tyrosine kinase 2 (NTRK2) with high affinity and p75 with low affinity. Although BDNF-NTRK2 signaling in the central nervous system is known, signaling in the female reproductive system is unknown. Therefore, we determined effects of BDNF on porcine endometrial luminal epithelial (pLE) cells isolated from Day 12 of pregnancy, as well as expression of BDNF and NTRK2 in endometria of cyclic and pregnant pigs. BDNF-NTRK2 genes were expressed in uterine glandular (GE) and luminal (LE) epithelia during early pregnancy. In addition, their expression in uterine GE and LE decreased with increasing parity of sows. Recombinant BDNF increased proliferation in pLE cells in a dose-dependent, as well as expression of PCNA and Cyclin D1 in nuclei of pLE cells. BDNF also activated phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, P38 proteins in pLE cells. In addition, cell death resulting from tunicamycin-induced ER stress was prevented when pLE cells were treated with the combination of tunicamycin and BDNF which also decreased cells in the Sub-G1 phase of the cell cycle. Furthermore, tunicamycin-induced unfolded protein response genes were mostly down-regulated to the basal levels as compared to non-treated pLE cells. Our finding suggests that BDNF acts via NTRK2 to induce development of pLE cells for maintenance of implantation and pregnancy by activating cell signaling via the PI3K and MAPK pathways and by inhibiting ER stress.
Collapse
Affiliation(s)
- Whasun Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbok-gu, Seoul, Republic of Korea.,Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbok-gu, Seoul, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbok-gu, Seoul, Republic of Korea
| |
Collapse
|
13
|
Zhou Y, Wu Y, Ma W, Jiang X, Takemra A, Uemura M, Xia L, Lin K, Xu Y. The effect of quercetin delivery system on osteogenesis and angiogenesis under osteoporotic conditions. J Mater Chem B 2017; 5:612-625. [DOI: 10.1039/c6tb02312f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bone regeneration under osteoporotic conditions with impaired angiogenesis, osteogenesis and remodeling represents a great challenge.
Collapse
Affiliation(s)
- Yuning Zhou
- Department of Oral Surgery
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai
| | - Yuqiong Wu
- Department of Prosthodontics
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Wudi Ma
- Department of Oral Surgery
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai
| | - Xinquan Jiang
- Department of Prosthodontics
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | | | - Mamoru Uemura
- Department of Anatomy
- Osaka Dental University
- Osaka
- Japan
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
| | - Kaili Lin
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai, 200072
- China
| | - Yuanjin Xu
- Department of Oral Surgery
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai
| |
Collapse
|
14
|
Teng L, Hong L, Liu R, Chen R, Li X, Yu M. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta. Int J Mol Sci 2016; 17:ijms17122048. [PMID: 27941613 PMCID: PMC5187848 DOI: 10.3390/ijms17122048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/24/2022] Open
Abstract
The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs.
Collapse
Affiliation(s)
- Liu Teng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Linjun Hong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ran Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
15
|
Hammoud L, Adams JR, Loch AJ, Marcellus RC, Uehling DE, Aman A, Fladd C, McKee TD, Jo CEB, Al-Awar R, Egan SE, Rossant J. Identification of RSK and TTK as Modulators of Blood Vessel Morphogenesis Using an Embryonic Stem Cell-Based Vascular Differentiation Assay. Stem Cell Reports 2016; 7:787-801. [PMID: 27618721 PMCID: PMC5063585 DOI: 10.1016/j.stemcr.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/05/2022] Open
Abstract
Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens. Development of ESC-based vascular differentiation assay amenable to drug screening Screening a kinase library identified RSK and TTK as angiogenic modulators RSK and TTK inhibition disrupted angiogenesis in vitro RSK and TTK inhibition inhibited Lewis lung tumor growth and angiogenesis in vivo
Collapse
Affiliation(s)
- Lamis Hammoud
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Richard C Marcellus
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David E Uehling
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Ahmed Aman
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Christopher Fladd
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Trevor D McKee
- Radiation Medicine Program, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Christine E B Jo
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Rima Al-Awar
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Lim W, Song G. Naringenin-induced migration of embrynoic trophectoderm cells is mediated via PI3K/AKT and ERK1/2 MAPK signaling cascades. Mol Cell Endocrinol 2016; 428:28-37. [PMID: 26994515 DOI: 10.1016/j.mce.2016.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Abstract
For successful pregnancy, a well-coordinated network of growth factors, nutrients and hormones is required for fetal-maternal interactions. Naringenin, as a weak phytoestrogen, improves diabetes, inflammation, neuronal diseases, cardiovascular diseases and cancers. However, the role of naringenin in migration mechanism(s) of peri-implantation conceptuses is unknown. Therefore, in the present study, we determined the effects of naringenin on migration of porcine trophectoderm (pTr) cells, which is a known in vitro model for research on trophectoderm cell biology and placental-fetal developmental biology, in order to assess intracellular signal transduction pathways activated by naringenin. Migration of pTr cells increased in a dose-dependent manner in response to naringenin. Also, naringenin activated the phosphorylation of AKT and ERK1/2 proteins in a dose-dependent manner and those proteins were abundant mainly in the cytoplasm of naringenin-treated pTr cells. Within 30 min after treatment with 20 μM naringenin, the abundance of phosphorylated EKR1/2, P70S6K, P90RSK and S6K proteins increased, and then returned to basal levels by 120 min whereas the abundance of AKT increased gradually to 120 min post-treatment. However, the phosphorylation of AKT, P70S6K, P90RSK and S6K was reduced in naringenin-induced pTr cells pre-treated with a PI3K inhibitor (LY294002). Also, a MEK1/2 inhibitor (U0126) significantly decreased naringenin-induced phosphorylation of ERK1/2, P70S6K and S6K proteins in pTr cells. Moreover, the naringenin-stimulated migration of pTr cells was suppressed by LY294002 and U0126. Collectively, results of the present study suggest that naringenin supports migration of pTr cells through PI3K/AKT and ERK1/2 MAPK signaling pathways crucial for orchestrating conceptus-uterine interactions.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
17
|
Kaczynski P, Kowalewski MP, Waclawik A. Prostaglandin F2α promotes angiogenesis and embryo-maternal interactions during implantation. Reproduction 2016; 151:539-52. [PMID: 26908918 DOI: 10.1530/rep-15-0496] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/22/2016] [Indexed: 11/08/2022]
Abstract
Implantation in humans and other mammals is a critical period during which high embryonic mortality rates occur. Prostaglandins (PGs) are key mediators regulating interactions between the reproductive tract and the conceptus (embryo with extraembryonic membranes). Although the significance of PGF2α as a regulator of corpus luteum regression is well established, the role of its high amounts in the uterine lumen in most mammals, regardless of placentation type, during the implantation period remains unresolved. We hypothesized that PGF2α acting as an embryonic signal mediator contributes to pregnancy establishment. Using a porcine model, we demonstrated that the conceptus and its signal (estradiol-17β) elevated endometrial expression of PGF2α receptor (PTGFR) in vivo and in vitro PTGFR protein was expressed mainly in luminal epithelial (LE) and glandular epithelial cells and blood vessels in the endometrium. PGF2α stimulated the MAPK1/3 pathway in endometrial LE cells that coincided with elevated gene expression and secretion of endometrial vascular endothelial growth factor A (VEGFA) protein. PGF2α-PTGFR and adenylyl cyclase signaling were involved in this process. PGF2α-induced VEGFA acting through its receptors stimulated proliferation of endometrial endothelial cells. Moreover, PGF2α elevated gene expression of biglycan, matrix metalloproteinase 9, transforming growth factor β3, and interleukin 1α in the endometrium. In summary, our study indicates that PGF2α participates in pregnancy establishment by promoting angiogenesis and expression of genes involved in tissue remodeling and conceptus-maternal interactions in porcine endometrium during early pregnancy.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Institute of Animal Reproduction and Food Research of Polish Academy of SciencesTuwima 10, 10-748 Olsztyn, Poland
| | - M P Kowalewski
- Vetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research of Polish Academy of SciencesTuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
18
|
Hypochlorite-Modified Albumin Upregulates ICAM-1 Expression via a MAPK-NF-κB Signaling Cascade: Protective Effects of Apocynin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1852340. [PMID: 26881015 PMCID: PMC4736979 DOI: 10.1155/2016/1852340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/18/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Hypochlorite-modified albumin (HOCl-alb) has been linked to endothelial dysfunction, which plays an important role in the development of hypertension, diabetes, and chronic kidney disease. However, whether HOCl-alb induces endothelial dysfunction via vascular inflammation and whether a signaling pathway is involved are unknown and have not been investigated. HOCl-alb was found to upregulate ICAM-1 expression in human umbilical vein endothelial cells (HUVECs) in a time- and dose-dependent manner. HOCl-alb time-dependently phosphorylated ERK1/2 and p38(MAPK). HOCl-alb also activated NF-κB. ICAM-1 expression was dose-dependently inhibited by U0126 (a specific inhibitor of MEK1/2, a signal upstream from ERK1/2), SB203580 (a specific inhibitor of p38(MAPK)), and SN50 (a specific inhibitor of NF-κB). U0126 and SB203580 both counteracted the activation of NF-κB, whereas the phosphorylation of ERK1/2 and p38(MAPK) was not blocked by SN50. ERK1/2 phosphorylation was blocked by U0126 but not by SB203580, and p38(MAPK) activity was reduced by SB203580 but not by U0126. Apocynin, a specific NADPH oxidase (NOX) inhibitor, inhibited ICAM-1 expression and the activity of ERK1/2, p38(MAPK), and NF-κB. These results indicate that HOCl-alb-induced ICAM-1 expression is caused by the activation of a redox-sensitive intracellular signal cascade involving ERK1/2 and p38(MAPK), culminating in the activation of NF-κB and involving NOXs among the upstream signals.
Collapse
|
19
|
Jeong W, Lee J, Bazer FW, Song G, Kim J. Fibroblast growth factor 4-induced migration of porcine trophectoderm cells is mediated via the AKT cell signaling pathway. Mol Cell Endocrinol 2016; 419:208-16. [PMID: 26520032 DOI: 10.1016/j.mce.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/18/2015] [Accepted: 10/23/2015] [Indexed: 11/15/2022]
Abstract
During early pregnancy, a well-coordinated communication network between the conceptus and maternal uterus is especially crucial in pigs in which there is a protracted pre-attachment phase prior to implantation. This network is regulated by an astonishing number of molecules such as growth factors. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor that elicits diverse biological actions on various types of cells and tissues. In pigs, FGF4 and its receptors are expressed in the uterine endometrium and conceptus during early pregnancy, but less is known about the FGF4-mediated regulation of conceptus growth during peri-implantation period of pregnancy. Therefore, the aims of the present study were to investigate: 1) expression of endometrial FGF4 mRNA during early pregnancy; 2) up-regulation of FGF receptor expression in porcine trophectoderm (pTr) cells in response to FGF4; and 3) FGF-induced intracellular signaling and cellular activities in pTr cells. In vitro cultured pTr cells incubated with different concentrations of recombinant FGF4 (0-50 ng/ml) responded with a dose-dependent increase in AKT phosphorylation of 2.9-fold at 20 ng/ml FGF4. Within 30 min after treatment with 20 ng/ml FGF4, the abundances of p-AKT, p-P90RSK and p-RPS6 proteins increased 2.1-, 5.2- and 3.2-fold, respectively, and then returned to basal levels by 120 min. To ensure that the stimulatory effect of FGF4 on AKT signaling was p-AKT-dependent, pTr cells were pre-incubated with an AKT inhibitor (LY294002) for 1 h prior to FGF4 treatment. 20 μM of LY294002 decreased FGF4-induced p-AKT, p-P90RSK and p-RPS6 proteins. Immunofluorescence analyses revealed that p-RPS6 proteins were abundant within the cytoplasm of FGF4-treated cells, but present at basal levels in the presence of LY294002. Furthermore, FGF4 increased migration of pTr cells and LY294002 significantly reduced this effect. Results of the present study suggest that activation of the FGF receptor(s) on trophectoderm cells by FGF4 secreted by conceptus/endometrium transduces its signal through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway which is linked to migration of trophectoderm cells that is critical to development of the porcine conceptus.
Collapse
Affiliation(s)
- Wooyoung Jeong
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jieun Lee
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
20
|
Chichger H, Braza J, Duong H, Stark M, Harrington EO. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol 2015; 309:L700-9. [PMID: 26254426 DOI: 10.1152/ajplung.00235.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Neovascularization, the formation of new blood vessels, requires multiple processes including vascular leak, migration, and adhesion. Endosomal proteins, such as Rabs, regulate trafficking of key signaling proteins involved in neovascularization. The novel endosome protein, p18, enhances vascular endothelial (VE)-cadherin recycling from early endosome to cell junction to improve pulmonary endothelial barrier function. Since endothelial barrier integrity is vital in neovascularization, we sought to elucidate the role for endosome proteins p18 and Rab4, Rab7, and Rab9 in the process of vessel formation within the pulmonary vasculature. Overexpression of wild-type p18 (p18(wt)), but not the nonendosomal-binding mutant (p18(N39)), significantly increased lung microvascular endothelial cell migration, adhesion, and both in vitro and in vivo tube formation. Chemical inhibition of mTOR or p38 attenuated the proneovascularization role of p18(wt). Similar to the effect of p18(wt), overexpression of prorecycling wild-type (Rab4(WT)) and endosome-anchored (Rab4(Q67L)) Rab4 enhanced neovascularization processes, whereas molecular inhibition of Rab4, by using the nonendosomal-binding mutant (Rab4(S22N)) attenuated VEGF-induced neovascularization. Unlike p18, Rab4-induced neovascularization was independent of mTOR or p38 inhibition but was dependent on p18 expression. This study shows for the first time that neovascularization within the pulmonary vasculature is dependent on the prorecycling endocytic proteins Rab4 and p18.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Myranda Stark
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
21
|
Liu R, Wang M, Su L, Li X, Zhao S, Yu M. The Expression Pattern of MicroRNAs and the Associated Pathways Involved in the Development of Porcine Placental Folds That Contribute to the Expansion of the Exchange Surface Area. Biol Reprod 2015; 93:62. [PMID: 26157073 DOI: 10.1095/biolreprod.114.126540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/06/2015] [Indexed: 01/12/2023] Open
Abstract
The development of the microscopically folded structure of the diffuse epitheliochorial placenta in pigs is important because it expands the surface area for maternal-fetal exchange, resulting in an increase in placental efficiency. To better understand the regulatory mechanisms involved in this process, we characterized miRNA expression profiles in porcine placentas during the initiation and establishment of placental fold development. A total of 42 miRNAs were found to be differentially expressed, and their putative target genes were predicted using four target prediction programs. Following a comparative analysis with published gene expression pattern data obtained from porcine placentas in the corresponding stages of placental fold development, only those genes that were negatively correlated with miRNA expression were retained for further function and pathway enrichment analysis. The results showed that the up-regulated miRNAs were associated mainly with extracellular matrix remodeling and tissue morphogenesis, while the down-regulated miRNAs were related to cell proliferation and signal transduction. Furthermore, we provide evidence that miR-130b may facilitate the expression of HPSE, which has been reported to be a regulator of the folding of the pig placenta, by suppressing the expression of PPARG. In addition, we also reveal that the miRNA-target pairs expressed in the pig placenta may trigger the degradation of the stromal matrix and basement membrane (miR-29a-COL1A2, COL3A1, and LAMC1) and regulate trophoblast epithelial cell adherens junctions (the miR-200 family and miR-205-ZEB2-CDH1) and proliferation (miR-17-92 cluster-HBP1 and ULK1). Taken together, these results indicate that miRNAs and related pathways may have potential roles in porcine placental fold development.
Collapse
Affiliation(s)
- Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Min Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lijie Su
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China College of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
22
|
Schubert C. Signals Crossed in Preeclampsia. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.126342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
23
|
Geisert RD, Lucy MC, Whyte JJ, Ross JW, Mathew DJ. Cytokines from the pig conceptus: roles in conceptus development in pigs. J Anim Sci Biotechnol 2014; 5:51. [PMID: 25436109 PMCID: PMC4247618 DOI: 10.1186/2049-1891-5-51] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
Establishment of pregnancy in pigs involves maintaining progesterone secretion from the corpora lutea in addition to regulating a sensitive interplay between the maternal immune system and attachment of the rapidly expanding trophoblast for nutrient absorption. The peri-implantation period of rapid trophoblastic elongation followed by attachment to the maternal uterine endometrium is critical for establishing a sufficient placental-uterine interface for subsequent nutrient transport for fetal survival to term, but is also marked by the required conceptus release of factors involved with stimulating uterine secretion of histotroph and modulation of the maternal immune system. Many endometrial genes activated by the conceptus secretory factors stimulate a tightly controlled proinflammatory response within the uterus. A number of the cytokines released by the elongating conceptuses stimulate inducible transcription factors such as nuclear factor kappa B (NFKB) potentially regulating the maternal uterine proinflammatory and immune response. This review will establish the current knowledge for the role of conceptus cytokine production and release in early development and establishment of pregnancy in the pig.
Collapse
Affiliation(s)
- Rodney D Geisert
- />Animal Sciences Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Matthew C Lucy
- />Animal Sciences Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jeffrey J Whyte
- />Animal Sciences Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jason W Ross
- />Department of Animal Science, Iowa State University, 2356 Kildee Hall, Ames, IA 50011 USA
| | - Daniel J Mathew
- />Animal Sciences Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
24
|
Fabi F, Asselin E. Expression, activation, and role of AKT isoforms in the uterus. Reproduction 2014; 148:R85-95. [DOI: 10.1530/rep-14-0270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The three isoforms of AKT: AKT1, AKT2, and AKT3, are crucial regulators of both normal and pathological cellular processes. Each of these isoforms exhibits a high level of homology and functional redundancy with each other. However, while being highly similar and structurally homologous, a rising amount of evidence is showing that each isoform possesses specific targets as well as preferential subcellular localization. The role of AKT has been studied extensively in reproductive processes, but isoform-specific roles are yet to be fully understood. This review will focus on the role of AKT in the uterus and its function in processes related to cell death and proliferation such as embryo implantation, decidualization, endometriosis, and endometrial cancer in an isoform-centric manner. In this review, we will cover the activation of AKT in various settings, localization of isoforms in subcellular compartments, and the effect of isoform expression on cellular processes. To fully understand the dynamic molecular processes taking place in the uterus, it is crucial that we better understand the physiological role of AKT isoforms as well as their function in the emergence of diseases.
Collapse
|
25
|
Knuth A, Liu L, Nielsen H, Merril D, Torry DS, Arroyo JA. Placenta growth factor induces invasion and activates p70 during rapamycin treatment in trophoblast cells. Am J Reprod Immunol 2014; 73:330-40. [PMID: 25271148 DOI: 10.1111/aji.12327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022] Open
Abstract
PROBLEM Aberrant trophoblast invasion has been associated with human intrauterine growth restriction (IUGR) and preeclampsia (PE). Our objective was to determine placenta growth factor (PlGF)-mediated regulation of cell invasion in trophoblast cells with reduced mammalian target of Rapamycin (mTOR) signaling. METHOD OF STUDY First trimester SW 71 trophoblast cells were subjected to invasion assays with the following conditions: 10% FBS, 10% FBS with Rapamycin, and 10% FBS with Rapamycin and PlGF. mTOR siRNA was also done in these cells. Western blots were performed on cell lysates with antibodies against phospho- and total mTOR, 70-kDa ribosomal protein kinase I (p70), 4EBP1, extracellular regulated kinase (ERK), and phosphatidylinositol-3 kinase (AKT). RESULTS Compared to controls, trophoblast cells showed: (i) a 33% decrease in invasion following Rapamycin treatment, (ii) protection from decreased invasion following Rapamycin and PlGF treatment, (iii) a 31% decrease in mTOR phosphorylation with Rapamycin, (iv) increased phosphorylation of p70 (43%) with Rapamycin and PlGF, and (v) a 76% decrease in invasion following mTOR depletion. CONCLUSION We conclude that first trimester trophoblast invasion is functionally decreased when phosphorylation of mTOR is prevented and this decrease is recovered with the addition of PlGF. Mechanistically, this recovery involves the phosphorylation of p70 independent of mTOR.
Collapse
Affiliation(s)
- Allison Knuth
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Zhu S, Wang Y, Hu J, Xu L, Ding L, Liu G. Neuroprotective effect of ischemic preconditioning in focal cerebral infarction: relationship with upregulation of vascular endothelial growth factor. Neural Regen Res 2014; 9:1117-21. [PMID: 25206770 PMCID: PMC4146099 DOI: 10.4103/1673-5374.135313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/14/2022] Open
Abstract
Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic preconditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reperfusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after occlusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfu Wang
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jingquan Hu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lili Xu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Ding
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Guangjian Liu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|