1
|
Santos GS, Martins MP, Luedke FE, Tanaka Y, Carreiro LE, Mendes CM, Goissis MD. Inhibition of FGF receptor impairs primitive endoderm differentiation in bovine embryos. Reprod Domest Anim 2023; 58:333-341. [PMID: 36336984 DOI: 10.1111/rda.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The first cellular differentiation event in the pre-implantation embryo results in the trophectoderm (TE) and the inner cell mass (ICM). A second event occurs in the latter, resulting in the epiblast and the primitive endoderm (PE). This second differentiation is still not fully characterized in bovine development, although it is likely to involve FGF signalling. Thus, in this study, we tested the hypothesis that stimulation or inhibition of the FGF pathway during bovine embryo in vitro culture would only interfere with PE differentiation if maintained until later blastocyst stages. At first, we characterized the expression of PE marker SOX17 at different blastocyst stages. Then, we treated in vitro produced embryos during different windows of time: days 5.0-7.0 (D5-D7), D7-D9, and D5-D9 with 1 μg/ml FGF4 and 1 μg/ml heparin or 1 mM FGFR inhibitor, AZD4547. We observed that the SOX17-positive cell number only increases in late-stage blastocysts compared to early stages. Treatment of embryos with FGF4 did not change the number of SOX17-positive cells, while inhibition of FGFR signalling reduced SOX17-positive cells from D5-D7 and completely ablated SOX17 expression when kept until D9. In conclusion, FGFR inhibition repressed PE differentiation in bovine embryos at all time points, although stimulation with FGF4 did not interfere with PE cell numbers.
Collapse
Affiliation(s)
- Gabriel S Santos
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Matheus P Martins
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Felipe E Luedke
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Yuki Tanaka
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Letícia E Carreiro
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Camilla Mota Mendes
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Dos Santos AC, Joaquim DC, Nociti RP, Macabelli CH, Sampaio RV, Oliveira AS, Pita MO, de Oliveira RAM, da Silveira JC, Meirelles FV, Watanabe OY, Watanabe YF, Chiaratti MR. Micro-vibration results in vitro-derived bovine blastocysts with greater cryotolerance, epigenetic abnormalities, and a massive transcriptional change. Theriogenology 2023; 196:214-226. [PMID: 36427390 DOI: 10.1016/j.theriogenology.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Much effort has been employed to improve the quality of embryos obtained by in vitro production (IVP) given the relevance of this technology to current livestock systems. In this context, dynamic IVP systems have proved beneficial to the embryo once they mimic fluid flows and mechanical forces resulting from the movement of ciliated cells and muscle contraction in the reproductive tract. In the present study, we sought to confirm these initial findings as well as assess potential molecular consequences to the embryo by applying micro-vibration (45 Hz for 5 s once per 60 min) during both oocyte maturation and embryo culture in cattle. As a result, micro-vibration led to lower incidence of apoptosis in blastocysts following vitrification-thawing. Further analyses revealed epigenetic and transcriptional changes in blastocysts derived from the micro-vibration treatment, with a total of 502 differentially expressed genes. Enrichment analyses linked differentially expressed genes to 'Oxidative phosphorylation', 'Cytokine-cytokine receptor interaction', and 'Signaling pathways regulating pluripotency of stem cells'. Yet, a meta-analysis indicated that the transcriptional changes induced by micro-vibration were not toward that of in vivo-derived embryos. In conclusion, micro-vibration increases the cryoresistance of bovine embryos, but caution should be taken given the unclear consequences of epigenetic and transcriptional abnormalities induced by the treatment.
Collapse
Affiliation(s)
- Angélica C Dos Santos
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Daniel C Joaquim
- Vitrogen - Biotecnologia em Reprodução Animal, Cravinhos, SP, Brazil
| | - Ricardo P Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Carolina H Macabelli
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Rafael V Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil; ST Genetics, Navasota, TX, USA
| | - Aline S Oliveira
- Vitrogen - Biotecnologia em Reprodução Animal, Cravinhos, SP, Brazil
| | - Maico O Pita
- WTA - Watanabe Tecnologia Aplicada, Cravinhos, SP, Brazil
| | | | - Juliano C da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Flávio V Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Yeda F Watanabe
- Vitrogen - Biotecnologia em Reprodução Animal, Cravinhos, SP, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Appleby SJ, Misica‐Turner P, Oback FC, Dhali A, McLean ZL, Oback B. Double cytoplast embryonic cloning improves in vitro but not in vivo development from mitotic pluripotent cells in cattle. Front Genet 2022; 13:933534. [PMID: 36246653 PMCID: PMC9563626 DOI: 10.3389/fgene.2022.933534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Cloning multiple animals from genomically selected donor embryos is inefficient but would accelerate genetic gain in dairy cattle breeding. To improve embryo cloning efficiency, we explored the idea that epigenetic reprogramming improves when donor cells are in mitosis. We derived primary cultures from bovine inner cell mass (ICM) cells of in vitro fertilized (IVF) embryos. Cells were grown feeder-free in a chemically defined medium with increased double kinase inhibition (2i+). Adding recombinant bovine interleukin 6 to 2i+ medium improved plating efficiency, outgrowth expansion, and expression of pluripotency-associated epiblast marker genes (NANOG, FGF4, SOX2, and DPPA3). For genotype multiplication by embryonic cell transfer (ECT) cloning, primary colonies were treated with nocodazole, and single mitotic donors were harvested by mechanical shake-off. Immunofluorescence against phosphorylated histone 3 (P-H3) showed 37% of nocodazole-treated cells in metaphase compared to 6% in DMSO controls (P < 1 × 10−5), with an average of 53% of P-H3-positive cells expressing the pluripotency marker SOX2. We optimized several parameters (fusion buffer, pronase treatment, and activation timing) for ECT with mitotic embryonic donors. Sequential double cytoplast ECT, whereby another cytoplast was fused to the first cloned reconstruct, doubled cloned blastocyst development and improved morphological embryo quality. However, in situ karyotyping revealed that over 90% of mitotic ECT-derived blastocysts were tetraploid or aneuploid with extra chromosomes, compared to less than 2% in the original ICM donor cells. Following the transfer of single vs. double cytoplast embryos, there was no difference between the two methods in pregnancy establishment at D35 (1/22 = 5% vs. 4/53 = 8% for single vs. double ECT, respectively). Overall, post-implantation development was drastically reduced from embryonic mitotic clones when compared to somatic interphase clones and IVF controls. We conclude that mitotic donors cause ploidy errors during in vitro development that cannot be rescued by enhanced epigenetic reprogramming through double cytoplast cloning.
Collapse
Affiliation(s)
- Sarah Jane Appleby
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | | - Zachariah Louis McLean
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Björn Oback
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Björn Oback,
| |
Collapse
|
4
|
Pluripotent Core in Bovine Embryos: A Review. Animals (Basel) 2022; 12:ani12081010. [PMID: 35454256 PMCID: PMC9032358 DOI: 10.3390/ani12081010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.
Collapse
|
5
|
Springer C, Zakhartchenko V, Wolf E, Simmet K. Hypoblast Formation in Bovine Embryos Does Not Depend on NANOG. Cells 2021; 10:cells10092232. [PMID: 34571882 PMCID: PMC8466907 DOI: 10.3390/cells10092232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the pluripotency factor NANOG during the second embryonic lineage differentiation has been studied extensively in mouse, although species-specific differences exist. To elucidate the role of NANOG in an alternative model organism, we knocked out NANOG in fibroblast cells and produced bovine NANOG-knockout (KO) embryos via somatic cell nuclear transfer (SCNT). At day 8, NANOG-KO blastocysts showed a decreased total cell number when compared to controls from SCNT (NT Ctrl). The pluripotency factors OCT4 and SOX2 as well as the hypoblast (HB) marker GATA6 were co-expressed in all cells of the inner cell mass (ICM) and, in contrast to mouse Nanog-KO, expression of the late HB marker SOX17 was still present. We blocked the MEK-pathway with a MEK 1/2 inhibitor, and control embryos showed an increase in NANOG positive cells, but SOX17 expressing HB precursor cells were still present. NANOG-KO together with MEK-inhibition was lethal before blastocyst stage, similarly to findings in mouse. Supplementation of exogenous FGF4 to NANOG-KO embryos did not change SOX17 expression in the ICM, unlike mouse Nanog-KO embryos, where missing SOX17 expression was completely rescued by FGF4. We conclude that NANOG mediated FGF/MEK signaling is not required for HB formation in the bovine embryo and that another—so far unknown—pathway regulates HB differentiation.
Collapse
Affiliation(s)
- Claudia Springer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Kilian Simmet
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Correspondence:
| |
Collapse
|
6
|
Ávila-González D, Portillo W, García-López G, Molina-Hernández A, Díaz-Martínez NE, Díaz NF. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Front Cell Dev Biol 2021; 9:676998. [PMID: 34249929 PMCID: PMC8262797 DOI: 10.3389/fcell.2021.676998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion's relevance as an "signaling center" for regionalization before the onset of gastrulation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
- Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Néstor E. Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Néstor F. Díaz
- Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
7
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
8
|
Carreiro LE, Santos GSD, Luedke FE, Goissis MD. Cell differentiation events in pre-implantation mouse and bovine embryos. Anim Reprod 2021; 18:e20210054. [PMID: 35035540 PMCID: PMC8747937 DOI: 10.1590/1984-3143-ar2021-0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Early mammal embryogenesis starts with oocyte fertilization, giving rise to the zygote. The events that the newly formed zygote surpasses are crucial to the embryo developmental success. Shortly after activation of its genome, cells of the embryo segregate into the inner cell mass (ICM) or the trophectoderm (TE). The first will give rise to the embryo while the latter will become the placenta. This first segregation involves cellular and molecular processes that include cell polarity linked to intracellular pathway activation, which will regulate the transcription of trophectoderm-related genes. Then, cells of the ICM undergo the second event of mammalian cell differentiation, which consists of the separation between epiblast (EPI) and hypoblast or primitive endoderm (PrE). This second segregation involves paracrine signaling, leading to differential expression of key genes that will dictate the fate of the cell. Although these processes are described in detail in the mouse, recent studies suggest that the bovine embryo could also be an interesting model for early development, since there are differences to the mouse and similarities with early human embryogenesis. In this review, we gathered the main data available in the literature upon bovine and mouse early development events, suggesting that both models should be analyzed and studied in a complementary way, to better model early events occurring in human development.
Collapse
|
9
|
Abstract
Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
10
|
Canizo JR, Ynsaurralde Rivolta AE, Vazquez Echegaray C, Suvá M, Alberio V, Aller JF, Guberman AS, Salamone DF, Alberio RH, Alberio R. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC DEVELOPMENTAL BIOLOGY 2019; 19:13. [PMID: 31272387 PMCID: PMC6610975 DOI: 10.1186/s12861-019-0193-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The segregation of the hypoblast and the emergence of the pluripotent epiblast mark the final stages of blastocyst formation in mammalian embryos. In bovine embryos the formation of the hypoblast has been partially studied, and evidence shows that MEK signalling plays a limited role in the segregation of this lineage. Here we explored the role of different signalling pathways during lineage segregation in the bovine embryo using immunofluorescence analysis of NANOG and SOX17 as readouts of epiblast and hypoblast, respectively. RESULTS We show that SOX17 starts to be expressed in 16-32-cell stage embryos, whereas NANOG is first detected from 8-cell stage. SOX17 is first co-expressed with NANOG, but these markers become mutually exclusive by the late blastocyst stage. By assessing the expression kinetics of NANOG/SOX17 we show that inhibition of MEK signalling can eliminate SOX17 expression in bovine blastocysts, without altering NANOG expression. Modulation of WNT, PKC and LIF did not affect NANOG expression in the epiblast when used in combination with the ERK inhibitor. CONCLUSIONS This study shows that SOX17 can be used as a reliable early marker of hypoblast in the bovine, and based on its expression profile we show that the hypoblast segregates in day 7 blastocysts. Furthermore, SOX17 expression is abolished using 1 μM of PD0325901, without affecting the NANOG population in the epiblast. Modulation of WNT, PKC and LIF are not sufficient to support enhanced NANOG expression in the epiblast when combined with ERK inhibitor, indicating that additional signalling pathways should be examined to determine their potential roles in epiblast expansion.
Collapse
Affiliation(s)
- Jesica R Canizo
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina.,Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amada E Ynsaurralde Rivolta
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Estación Experimental Agropecuaria Mercedes, Instituto Nacional de Tecnología Agropecuaria (INTA), Corrientes, Argentina
| | - Camila Vazquez Echegaray
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Suvá
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Virgilia Alberio
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan F Aller
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina
| | - Alejandra S Guberman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo H Alberio
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina.,Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
11
|
Madeja ZE, Warzych E, Pawlak P, Lechniak D. Inhibitor mediated WNT and MEK/ERK signalling affects apoptosis and the expression of quality related genes in bovine in vitro obtained blastocysts. Biochem Biophys Res Commun 2019; 510:403-408. [PMID: 30711254 DOI: 10.1016/j.bbrc.2019.01.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
Culture conditions determine embryo quality, which may be affected on many levels (timing of development, blastomere count, transcripts, metabolite content, apoptosis). Molecular interactions of signalling pathways like MEK/ERK and WNT/β-catenin are critical for cell-to-cell communication and cellular differentiation. Both pathways are important regulators of apoptosis. We have aimed to verify the prolonged effect of MEK/ERK silencing and WNT activation by chemical inhibitors (2i or 3i systems) on bovine IVP embryos. Apoptotic index, total cell count and transcription of embryo quality markers were evaluated. A higher rate of apoptosis was observed in 2i blastocysts, but was not accompanied by changes in transcript content of genes controlling apoptosis (BAX, BCL2, BAK, BAX/BCL2 ratio). Therefore, alternative pathways of apoptotic activation cannot be ruled out. The expression of genes related to embryo quality (HSPA1A, SLC2A1) was not affected. GJA1 transcripts were significantly higher in 3i blastocysts, what indicates a stimulatory effect of the applied inhibitors on cell-to-cell interactions. The lowest mRNA level of the IFNT2 gene was found in 2i embryos. A variation in the SDHA gene transcript was observed (with the highest content in the 3i blastocysts), what may suggest their reduced quality. It may be concluded that the modifications of culture conditions (activation of the WNT and silencing of the MEK/ERK signalling) might alter pathways crucial for embryo development without causing embryonic death.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| |
Collapse
|
12
|
Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S, Klisch D, Wood L, Loose M, Surani MA, Alberio R. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 2019; 10:500. [PMID: 30700715 PMCID: PMC6353908 DOI: 10.1038/s41467-019-08387-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
High-resolution molecular programmes delineating the cellular foundations of mammalian embryogenesis have emerged recently. Similar analysis of human embryos is limited to pre-implantation stages, since early post-implantation embryos are largely inaccessible. Notwithstanding, we previously suggested conserved principles of pig and human early development. For further insight on pluripotent states and lineage delineation, we analysed pig embryos at single cell resolution. Here we show progressive segregation of inner cell mass and trophectoderm in early blastocysts, and of epiblast and hypoblast in late blastocysts. We show that following an emergent short naive pluripotent signature in early embryos, there is a protracted appearance of a primed signature in advanced embryonic stages. Dosage compensation with respect to the X-chromosome in females is attained via X-inactivation in late epiblasts. Detailed human-pig comparison is a basis towards comprehending early human development and a foundation for further studies of human pluripotent stem cell differentiation in pig interspecies chimeras. Lineage segregation from conception to gastrulation has been mapped at the single cell level in mouse, human and monkey. Here, the authors provide a comprehensive analysis of porcine preimplantation development using single cell RNA-seq; mapping metabolic changes, X chromosome inactivation and signalling pathways.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology, 28040, Madrid, Spain
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, St Lucia, QLD, 4072, Australia
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Liam Wood
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK. .,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
13
|
Ramos-Ibeas P, Nichols J, Alberio R. States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Curr Top Dev Biol 2017; 128:151-179. [PMID: 29477162 DOI: 10.1016/bs.ctdb.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse embryonic stem cells (ESC), derived from preimplantation embryos in 1981, defined mammalian pluripotency for many decades. However, after the derivation of human ESC in 1998, comparative studies showed that different types of pluripotency exist in early embryos and that these can be captured in vitro under various culture conditions. Over the past decade much has been learned about the key signaling pathways, growth factor requirements, and transcription factor profiles of pluripotent cells in embryos, allowing improvement of derivation and culture conditions for novel pluripotent stem cell types. More recently, studies using single-cell transcriptomics of embryos from different species provided an unprecedented level of resolution of cellular interactions and cell fate decisions that are informing new ways to understand the emergence of pluripotency in different organisms. These new approaches enhance knowledge of species differences during early embryogenesis and will be instrumental for improving methodologies for generating intra- and interspecies chimeric animals using pluripotent stem cells. Here, we discuss the recent developments in our understanding of early embryogenesis in different mammalian species.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
14
|
Brinkhof B, van Tol HTA, Groot Koerkamp MJA, Wubbolts RW, Haagsman HP, Roelen BAJ. Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency. PLoS One 2017; 12:e0172920. [PMID: 28241084 PMCID: PMC5328396 DOI: 10.1371/journal.pone.0172920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 12/27/2022] Open
Abstract
In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency. Therefore, in vitro derived embryos were cultured in various culture media that recently have been reported capable of maintaining the naïve pluripotent state of human embryonic cells. Gene expression profiles of embryos cultured in these media were compared using microarray analysis and quantitative RT-PCR. Compared to standard culture conditions, embryo culture in ‘naïve’ media reduced mRNA expression levels of the key pluripotency markers NANOG and POU5F1. A relatively high percentage of genes with differential expression levels were located on the X-chromosome. In addition, reduced XIST expression was detected in embryos cultured in naïve media and female embryos contained fewer cells with H3K27me3 foci, indicating a delay in X-chromosome inactivation. Whole embryos cultured in one of the media, 5iLA, could be maintained until 23 days post fertilization. Together these data indicate that ‘naïve’ conditions do not lead to altered expression of known genes involved in pluripotency. Interestingly, X-chromosome inactivation and development of bovine embryos were dependent on the culture conditions.
Collapse
Affiliation(s)
- Bas Brinkhof
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T. A. van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Richard W. Wubbolts
- Center for Cellular Imaging (CCI), Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A. J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Wei Q, Xi Q, Liu X, Meng K, Zhao X, Ma B. Characterization of goat inner cell mass derived cells in double kinase inhibition condition. Biochem Biophys Res Commun 2017; 483:325-331. [DOI: 10.1016/j.bbrc.2016.12.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023]
|
16
|
Zhao XM, Cui LS, Hao HS, Wang HY, Zhao SJ, Du WH, Wang D, Liu Y, Zhu HB. Transcriptome analyses of inner cell mass and trophectoderm cells isolated by magnetic-activated cell sorting from bovine blastocysts using single cell RNA-seq. Reprod Domest Anim 2016; 51:726-35. [PMID: 27440443 DOI: 10.1111/rda.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Research on bovine embryonic stem cells (bESCs) has been hampered because bESCs are cultured in conditions that are based on information obtained from culturing mouse and human inner cell mass (ICM) cells. The aim of this study was to compare gene expression in ICM and trophectoderm (TE) cell lineages of bovine embryos and to discuss the findings relative to information available for mice and humans. We separated a high-purity (>90%) ICM and TE from bovine blastocysts by magnetic-activated cell sorting and analysed their transcriptomes by single cell RNA-seq. Differentially expressed genes (DEGs) were assessed using Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases. Finally, qRT-PCR was performed to validate the RNA-seq results. From 207 DEGs identified (adjusted p ≤ .05; fold change ≥2), 159 and 48 had greater expression in the ICM and TE cells respectively. We validated 27 genes using qRT-PCR and found their expression patterns were mostly similar to those of RNA-seq, including 12 novel ICM-dominant (HNF4A, CCL24, FGFR4, IFITM3, PTCHD2, GJB5, FN1, KLK7, PRDM14, GRP, FGF19 and GCM1) and two novel TE-dominant (SLC10A1 and WNT4) genes. Bioinformatics analysis showed that these DEGs are involved in many important pathways, such as MAPK and cancer cell pathways, and these pathways have been shown to play essential roles in mouse and human ESCs in the self-renewal and pluripotent maintenance. As a conclusion, there were sufficient differences to allow us to conclude that the control of pluripotency in bovine ICM cells is species-specific.
Collapse
Affiliation(s)
- X-M Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - L-S Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-S Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-Y Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - S-J Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - W-H Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - D Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Y Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-B Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
17
|
Li LY, Li MM, Yang SF, Zhang J, Li Z, Zhang H, Zhu L, Zhu X, Verma V, Liu Q, Shi D, Huang B. Inhibition of FGF Signalling Pathway Augments the Expression of Pluripotency and Trophoblast Lineage Marker Genes in Porcine Parthenogenetic Blastocyst. Reprod Domest Anim 2016; 51:649-56. [DOI: 10.1111/rda.12725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- LY Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - MM Li
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - SF Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - J Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - Z Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - H Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - L Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - X Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - V Verma
- Centre of Biotechnology; Nehru Science Centre; University of Allahabad; Allahabad India
| | - Q Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - D Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi University; Nanning China
- School of Animal Science and Technology; Guangxi University; Nanning China
| |
Collapse
|
18
|
Akizawa H, Nagatomo H, Odagiri H, Kohri N, Yamauchi N, Yanagawa Y, Nagano M, Takahashi M, Kawahara M. Conserved roles of fibroblast growth factor receptor 2 signaling in the regulation of inner cell mass development in bovine blastocysts. Mol Reprod Dev 2016; 83:516-25. [DOI: 10.1002/mrd.22646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Hiroki Akizawa
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Hiroaki Nagatomo
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Haruka Odagiri
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Nanami Kohri
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|
19
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
20
|
Hosseini SM, Dufort I, Caballero J, Moulavi F, Ghanaei HR, Sirard MA. Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts. BMC DEVELOPMENTAL BIOLOGY 2015; 15:49. [PMID: 26681441 PMCID: PMC4683974 DOI: 10.1186/s12861-015-0096-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/22/2015] [Indexed: 12/24/2022]
Abstract
Background This study describes the generation and analysis of the transcriptional profile of bovine inner cell mass (ICM) and trophectoderm (TE), obtained from in vivo developed embryos by using a bovine-embryo specific array (EmbryoGENE) containing 37,238 probes. Results A total of 4,689 probes were differentially expressed between ICM and TE, among these, 2,380 and 2,309 probes were upregulated in ICM and TE tissues, respectively (P ≤ 0.01, FC ≥ 2.0, FDR: 2.0). Ontological classification of the genes predominantly expressed in ICM emerged a range of functional categories with a preponderance of genes involved in basal and developmental signaling pathways including P53, TGFβ, IL8, mTOR, integrin, ILK, and ELF2 signalings. Cross-referencing of microarray data with two available in vitro studies indicated a marked reduction in ICM vs. TE transcriptional difference following in vitro culture of bovine embryos. Moreover, a great majority of genes that were found to be misregulated following in vitro culture of bovine embryos were known genes involved in epigenetic regulation of pluripotency and cell differentiation including DNMT1, GADD45, CARM1, ELF5 HDAC8, CCNB1, KDM6A, PRDM9, CDX2, ARID3A, IL6, GADD45A, FGFR2, PPP2R2B, and SMARCA2. Cross-species referencing of microarray data revealed substantial divergence between bovine and mouse and human in signaling pathways involved in early lineage specification. Conclusions The transcriptional changes occur during ICM and TE lineages specification in bovine is greater than previously understood. Therefore, this array data establishes a standard to evaluate the in vitro imprint on the transcriptome and to hypothesize the cross-species differences that allow in vitro acquisition of pluripotent ICM in human and mice but hinder that process in bovine. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0096-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S M Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - I Dufort
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - J Caballero
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - F Moulavi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - H R Ghanaei
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - M A Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
21
|
Kim D, Park S, Jung YG, Roh S. In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reprod Fertil Dev 2015; 28:RD14071. [PMID: 25966803 DOI: 10.1071/rd14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/12/2015] [Indexed: 12/27/2022] Open
Abstract
We established and maintained somatic cell nuclear transfer embryo-derived stem-like cells (SCNT-eSLCs) from the traditional Korean beef cattle species, HanWoo (Bos taurus coreanae). Each SCNT blastocyst was placed individually on a feeder layer with culture medium containing three inhibitors of differentiation (3i). Primary colonies formed after 2-3 days of culture and the intact colonies were passaged every 5-6 days. The cells in each colony showed embryonic stem cell-like morphologies with a distinct boundary and were positive to alkaline phosphatase staining. Immunofluorescence and reverse transcription-polymerase chain reaction analyses also confirmed that these colonies expressed pluripotent markers. The colonies were maintained over 50 passages for more than 270 days. The cells showed normal karyotypes consisting of 60 chromosomes at Passage 50. Embryoid bodies were formed by suspension culture to analyse in vitro differentiation capability. Marker genes representing the differentiation into three germ layers were expressed. Typical embryonal carcinoma was generated after injecting cells under the testis capsule of nude mice, suggesting that the cultured cells may also have the potential of in vivo differentiation. In conclusion, we generated eSLCs from SCNT bovine embryos, using a 3i system that sustained stemness, normal karyotype and pluripotency, which was confirmed by in vitro and in vivo differentiation.
Collapse
|