1
|
Massa MG, Scott RL, Cara AL, Cortes LR, Vander PB, Sandoval NP, Park JW, Ali SL, Velez LM, Wang HB, Ati SS, Tesfaye B, Reue K, van Veen JE, Seldin MM, Correa SM. Feeding neurons integrate metabolic and reproductive states in mice. iScience 2023; 26:107918. [PMID: 37817932 PMCID: PMC10561062 DOI: 10.1016/j.isci.2023.107918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G. Massa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Doctoral Program, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel L. Scott
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandra L. Cara
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Paul B. Vander
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Jae W. Park
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Sahara L. Ali
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Leandro M. Velez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huei-Bin Wang
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Shomik S. Ati
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California – Irvine, Irvine, CA 92697, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Hellier V, Dardente H, Lomet D, Cognié J, Dufourny L. Interactions between β-endorphin and kisspeptin neurons of the ewe arcuate nucleus are modulated by photoperiod. J Neuroendocrinol 2023; 35:e13242. [PMID: 36880357 DOI: 10.1111/jne.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Opioid peptides are well-known modulators of the central control of reproduction. Among them, dynorphin coexpressed in kisspeptin (KP) neurons of the arcuate nucleus (ARC) has been thoroughly studied for its autocrine effect on KP release through κ opioid receptors. Other studies have suggested a role for β-endorphin (BEND), a peptide cleaved from the pro-opiomelanocortin precursor, on food intake and central control of reproduction. Similar to KP, BEND content in the ARC of sheep is modulated by day length and BEND modulates food intake in a dose-dependent manner. Because KP levels in the ARC vary with photoperiodic and metabolic status, a photoperiod-driven influence of BEND neurons on neighboring KP neurons is plausible. The present study aimed to investigate a possible modulatory action of BEND on KP neurons located in the ovine ARC. Using confocal microscopy, numerous KP appositions on BEND neurons were found but there was no photoperiodic variation of the number of these interactions in ovariectomized, estradiol-replaced ewes. By contrast, BEND terminals on KP neurons were twice as numerous under short days, in ewes having an activated gonadotropic axis, compared to anestrus ewes under long days. Injection of 5 μg BEND into the third ventricle of short-day ewes induced a significant and specific increase of activated KP neurons (16% vs. 9% in controls), whereas the percentage of overall activated (c-Fos positive) neurons, was similar between both groups. These data suggest a photoperiod-dependent influence of BEND on KP neurons of the ARC, which may influence gonadotropin-releasing hormone pulsatile secretion and inform KP neurons about metabolic status.
Collapse
Affiliation(s)
- Vincent Hellier
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Juliette Cognié
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
3
|
Dobson H, Routly JE, Smith RF. Understanding the trade-off between the environment and fertility in cows and ewes. Anim Reprod 2020; 17:e20200017. [PMID: 33029210 PMCID: PMC7534569 DOI: 10.1590/1984-3143-ar2020-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The environment contributes to production diseases that in turn badly affect cow performance, fertility and culling. Oestrus intensity is lower in lame cows, and in all cows 26% potential oestrus events are not expressed (to avoid getting pregnant). To understand these trade-offs, we need to know how animals react to their environment and how the environment influences hypothalamus-pituitary-adrenal axis (HPA) interactions with the hypothalamus-pituitary-ovarian axis (HPO). Neurotransmitters control secretion of GnRH into hypophyseal portal blood. GnRH/LH pulse amplitude and frequency drive oestradiol production, culminating in oestrus behaviour and a precisely-timed GnRH/LH surge, all of which are disrupted by poor environments. Responses to peripheral neuronal agents give clues about mechanisms, but do these drugs alter perception of stimuli, or suppress consequent responses? In vitro studies confirm some neuronal interactions between the HPA and HPO; and immuno-histochemistry clarifies the location and sequence of inter-neurone activity within the brain. In both species, exogenous corticoids, ACTH and/or CRH act at the pituitary (reduce LH release by GnRH), and hypothalamus (lower GnRH pulse frequency and delay surge release). This requires inter-neurones as GnRH cells do not have receptors for HPA compounds. There are two (simultaneous, therefore fail-safe?) pathways for CRH suppression of GnRH release via CRH-Receptors: one being the regulation of kisspeptin/dynorphin and other cell types in the hypothalamus, and the other being the direct contact between CRH and GnRH cell terminals in the median eminence. When we domesticate animals, we must provide the best possible environment otherwise animals trade-off with lower production, less intense oestrus behaviour, and impaired fertility. Avoiding life-time peri-parturient problems by managing persistent lactations in cows may be a worthy trade-off on both welfare and economic terms – better than the camouflage use of drugs/hormones/feed additives/intricate technologies? In the long term, getting animals and environment in a more harmonious balance is the ultimate strategy.
Collapse
Affiliation(s)
- Hilary Dobson
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, England
| | - Jean Elsie Routly
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, England
| | - Robert Frank Smith
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, England
| |
Collapse
|
4
|
McCosh RB, Lopez JA, Szeligo BM, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Evidence that Nitric Oxide Is Critical for LH Surge Generation in Female Sheep. Endocrinology 2020; 161:bqaa010. [PMID: 32067028 PMCID: PMC7060766 DOI: 10.1210/endocr/bqaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Brett M Szeligo
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| |
Collapse
|
5
|
Dobson H, Tilston V, Ressel L. Immunolocalization of c-Fos, ELOVL5 and oestradiol in the ewe vulva in relation to oestrus behaviour after treatment with lipopolysaccharide. Reprod Domest Anim 2019; 55:137-145. [PMID: 31765035 DOI: 10.1111/rda.13594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
Sudden activation of the stress axis by a lipopolysaccharide endotoxin (LPS) significantly reduces ewes' sexual attractivity to rams by delaying all signs of oestrous behaviour. To understand mechanisms involved in attracting male interest, we examined c-Fos (nuclear activation), ELOVL5 (enzyme involved in pheromone synthesis) and oestradiol receptors (ER) using immunohistochemistry on ewe vulval tissue at 0, 31 and 40 hr in the ovarian follicular phase with or without exposure to LPS at 28 hr (5 groups of 4 ewes per group). While there was intense staining for immunoreactive (IR)-c-Fos and IR-ELOVL5 in the vulval epithelium and sebaceous glands, there were no differences in intensity between groups of ewes. The absence of IR-ER staining in vulval epithelium and sebaceous/sweat glands was unexpected. Differences in ram behaviour towards ewes in the ovarian follicular phase and after LPS treatment do not appear to involve quantitative changes in vulval c-Fos, ELOVL5 or ER, but subtle qualitative differences in individual-specific compounds (attraction pheromones) remain an option.
Collapse
Affiliation(s)
- Hilary Dobson
- Leahurst Campus, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Valerie Tilston
- Leahurst Campus, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Lorenzo Ressel
- Leahurst Campus, Institute of Veterinary Science, University of Liverpool, Neston, UK
| |
Collapse
|
6
|
Goodman RL, He W, Lopez JA, Bedenbaugh MN, McCosh RB, Bowdridge EC, Coolen LM, Lehman MN, Hileman SM. Evidence That the LH Surge in Ewes Involves Both Neurokinin B-Dependent and -Independent Actions of Kisspeptin. Endocrinology 2019; 160:2990-3000. [PMID: 31599937 PMCID: PMC6857763 DOI: 10.1210/en.2019-00597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Recent evidence has implicated neurokinin B (NKB) signaling in the retrochiasmatic area (RCh) of the ewe in the LH surge. To test this hypothesis, we first lesioned NK3R neurons in this area by using a saporin conjugate (NK3-SAP). Three weeks after bilateral injection of NK3-SAP or a blank control (BLK-SAP) into the RCh, an LH surge was induced by using an artificial follicular-phase model in ovariectomized ewes. NK3-SAP lesioned approximately 88% of RCh NK3R-containing neurons and reduced the amplitude of the estrogen-induced LH surge by 58%, an inhibition similar to that seen previously with intracerebroventricular (icv) infusion of a KISS1R antagonist (p271). We next tested the hypothesis that NKB signaling in the RCh acts via kisspeptin by determining whether the combined effects of NK3R-SAP lesions and icv infusion of p271 were additive. Experiment 1 was replicated except that ewes received two sequential artificial follicular phases with infusions of p271 or vehicle using a crossover design. The combination of the two treatments decreased the peak of the LH surge by 59%, which was similar to that seen with NK3-SAP (52%) or p271 (54%) alone. In contrast, p271 infusion delayed the onset and peak of the LH surge in both NK3-SAP- and BLK-SAP-injected ewes. Based on these data, we propose that NKB signaling in the RCh increases kisspeptin levels critical for the full amplitude of the LH surge in the ewe but that kisspeptin release occurs independently of RCh input at the onset of the surge to initiate GnRH secretion.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
- Correspondence: Robert L. Goodman, PhD, Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506. E-mail:
| | - Wen He
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
7
|
Wallner B, Windhager S, Schaschl H, Nemeth M, Pflüger LS, Fieder M, Domjanić J, Millesi E, Seidler H. Sexual Attractiveness: a Comparative Approach to Morphological, Behavioral and Neurophysiological Aspects of Sexual Signaling in Women and Nonhuman Primate Females. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2019. [DOI: 10.1007/s40750-019-00111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Dobson H, Williams J, Routly J, Jones D, Cameron J, Holman-Coates A, Smith R. Short communication: Chronology of different sexual behaviors and motion activity during estrus in dairy cows. J Dairy Sci 2018; 101:8291-8295. [DOI: 10.3168/jds.2017-14341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/01/2018] [Indexed: 11/19/2022]
|
9
|
Dufourny L, Lomet D. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus. Gen Comp Endocrinol 2017; 254:68-74. [PMID: 28935581 DOI: 10.1016/j.ygcen.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined.
Collapse
Affiliation(s)
- Laurence Dufourny
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| | - Didier Lomet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| |
Collapse
|
10
|
Fergani C, Routly JE, Jones DN, Pickavance LC, Smith RF, Dobson H. KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS. Reproduction 2017. [PMID: 28630099 DOI: 10.1530/rep-17-0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the ewe, steroid hormones act on the hypothalamic arcuate nucleus (ARC) to initiate the GnRH/LH surge. Within the ARC, steroid signal transduction may be mediated by estrogen receptive dopamine-, β-endorphin- or neuropeptide Y (NPY)-expressing cells, as well as those co-localising kisspeptin, neurokinin B (NKB) and dynorphin (termed KNDy). We investigated the time during the follicular phase when these cells become activated (i.e., co-localise c-Fos) relative to the timing of the LH surge onset and may therefore be involved in the surge generating mechanism. Furthermore, we aimed to elucidate whether these activation patterns are altered after lipopolysaccharide (LPS) administration, which is known to inhibit the LH surge. Follicular phases of ewes were synchronised by progesterone withdrawal and blood samples were collected every 2 h. Hypothalamic tissue was retrieved at various times during the follicular phase with or without the administration of LPS (100 ng/kg). The percentage of activated dopamine cells decreased before the onset of sexual behaviour, whereas activation of β-endorphin decreased and NPY activation tended to increase during the LH surge. These patterns were not disturbed by LPS administration. Maximal co-expression of c-Fos in dynorphin immunoreactive neurons was observed earlier during the follicular phase, compared to kisspeptin and NKB, which were maximally activated during the surge. This indicates a distinct role for ARC dynorphin in the LH surge generation mechanism. Acute LPS decreased the percentage of activated dynorphin and kisspeptin immunoreactive cells. Thus, in the ovary-intact ewe, KNDy neurones are activated prior to the LH surge onset and this pattern is inhibited by the administration of LPS.
Collapse
Affiliation(s)
- C Fergani
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J E Routly
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - D N Jones
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - L C Pickavance
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - R F Smith
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - H Dobson
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
McCosh RB, Szeligo BM, Bedenbaugh MN, Lopez JA, Hardy SL, Hileman SM, Lehman MN, Goodman RL. Evidence That Endogenous Somatostatin Inhibits Episodic, but Not Surge, Secretion of LH in Female Sheep. Endocrinology 2017; 158:1827-1837. [PMID: 28379327 PMCID: PMC5460938 DOI: 10.1210/en.2017-00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/28/2017] [Indexed: 11/19/2022]
Abstract
Two modes of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion are necessary for female fertility: surge and episodic secretion. However, the neural systems that regulate these GnRH secretion patterns are still under investigation. The neuropeptide somatostatin (SST) inhibits episodic LH secretion in humans and sheep, and several lines of evidence suggest SST may regulate secretion during the LH surge. In this study, we examined whether SST alters the LH surge in ewes by administering a SST receptor (SSTR) 2 agonist (octreotide) or antagonist [CYN154806 (CYN)] into the third ventricle during an estrogen-induced LH surge and whether endogenous SST alters episodic LH secretion. Neither octreotide nor CYN altered the amplitude or timing of the LH surge. Administration of CYN to intact ewes during the breeding season or anestrus increased LH secretion and increased c-Fos in a subset GnRH and kisspeptin cells during anestrus. To determine if these stimulatory effects are steroid dependent or independent, we administered CYN to ovariectomized ewes. This SSTR2 antagonist increased LH pulse frequency in ovariectomized ewes during anestrus but not during the breeding season. This study provides evidence that endogenous SST contributes to the control of LH secretion. The results demonstrate that SST, acting through SSTR2, inhibits episodic LH secretion, likely acting in the mediobasal hypothalamus, but action at this receptor does not alter surge secretion. Additionally, these data provide evidence that SST contributes to the steroid-independent suppression of LH pulse frequency during anestrus.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Brett M Szeligo
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Steven L Hardy
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| |
Collapse
|
12
|
Fergani C, Routly J, Jones D, Pickavance L, Smith R, Dobson H. Co-expression of c-Fos with oestradiol receptor α or somatostatin in the arcuate nucleus, ventromedial nucleus and medial preoptic area in the follicular phase of intact ewes: alteration after insulin-induced hypoglycaemia. Reprod Domest Anim 2014; 50:68-75. [PMID: 25399917 DOI: 10.1111/rda.12450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate how acute insulin-induced hypoglycaemia (IIH) alters the activity of cells containing oestradiol receptor α (ERα) or somatostatin (SST) in the arcuate nucleus (ARC) and ventromedial nucleus (VMN), and ERα cells in the medial preoptic area (mPOA) of intact ewes. Follicular phases were synchronized with progesterone vaginal pessaries. Control animals were killed at 0 h or 31 h (n = 5 and 6, respectively) after progesterone withdrawal (PW; time zero). At 28 h, five other animals received insulin (INS; 4 iu/kg) and were subsequently killed at 31 h. Hypothalamic sections were immunostained for ERα or SST each with c-Fos, a marker of neuronal transcriptional activation. Insulin did not alter the percentage of activated ERα cells in the ARC; however, it appeared visually that two insulin-treated animals (INS responders, with no LH surge) had an increase in the VMN (from 32 to 78%) and a decrease in the mPOA (from 40 to 12%) compared to no increase in the two INS non-responders (with an LH surge). The percentage of activated SST cells in the ARC was greater in all four insulin-treated animals (from 10 to 60%), whereas it was visually estimated that activated SST cells in the VMN increased only in the two insulin responders (from 10 to 70%). From these results, we suggest that IIH stimulates SST activation in the ARC as part of the glucose-sensing mechanism but ERα activation is unaffected in this region. We present evidence to support a hypothesis that disruption of the GnRH/LH surge may occur in insulin responders via a mechanism that involves, at least in part, SST cell activation in the VMN along with decreased ERα cell activation in the mPOA.
Collapse
Affiliation(s)
- C Fergani
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, UK
| | | | | | | | | | | |
Collapse
|