1
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
2
|
Sui X, Sui Y, Long P, Wang Y, Chen Y, Zhai W, Gao L. Arginase 1 does not affect RNA m6A methylation in mouse fetal lung. Birth Defects Res 2024; 116:e2318. [PMID: 38362594 DOI: 10.1002/bdr2.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N6 -methyladenosine (m6 A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown. METHODS In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR. RESULTS No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice. CONCLUSIONS These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.
Collapse
Affiliation(s)
- Xuesong Sui
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yanyu Sui
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Peihua Long
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yifei Wang
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Wenjia Zhai
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Lu Gao
- Department of Physiology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
3
|
Park W, Park H, Park S, Lim W, Song G. Bifenox compromises porcine trophectoderm and luminal epithelial cells in early pregnancy by arresting cell cycle progression and impairing mitochondrial and calcium homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105628. [PMID: 37945262 DOI: 10.1016/j.pestbp.2023.105628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Bifenox is a widely used herbicide that contains a diphenyl ether group. However its global usage, the cell physiological effects that induce toxicity have not been elucidated. In this study, the effect of bifenox was examined in porcine trophectoderm and uterine epithelial cells to investigate the potential toxicity of the implantation process. To uncover the toxic effects of bifenox, cell viability and apoptosis following treatment with bifenox were evaluated. To investigate the underlying cellular mechanisms, mitochondrial and calcium homeostasis were investigated in both cell lines. In addition, the dysregulation of cell signal transduction and transcriptional alterations were also demonstrated. Bifenox reduced cell viability and significantly increased the number of cells arrested at the sub-G1 stage. Moreover, bifenox depolarized the mitochondrial membrane and upregulated the calcium flux into the mitochondria in both cell lines. Cytosolic calcium flux increased in porcine trophectoderm (pTr) cells and decreased in porcine luminal epithelium (pLE) cells. In addition, bifenox activated the mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways. Furthermore, bifenox inhibited the expression of retinoid receptor genes, such as RXRA, RXRB, and RXRG. Chemokine CCL8 was also downregulated at the mRNA level, whereas CCL5 expression remained unchanged. Overall, the results of this study suggest that bifenox deteriorates cell viability by arresting cell cycle progression, damaging mitochondria, and controlling calcium levels in pTr and pLE cells. The present study indicates the toxic potential of bifenox in the trophectoderm and luminal epithelial cells, which can lead to implantation disorders in early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Yu Y, Liu Y, Sui X, Sui Y, Wang Z, Mendelson CR, Gao L. Arginase 1 and L-arginine coordinate fetal lung development and the initiation of labor in mice. EMBO Rep 2023; 24:e56352. [PMID: 37291976 PMCID: PMC10398669 DOI: 10.15252/embr.202256352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Fetal development and parturition are precisely regulated processes that involve continuous crosstalk between the mother and the fetus. Our previous discovery that wild-type mice carrying steroid receptor coactivator (Src)-1 and Src-2 double-deficient fetuses exhibit impaired lung development and delayed labor, which indicates that the signals for parturition emanate from the fetus. In this study, we perform RNA sequencing and targeted metabolomics analyses of the lungs from fetal Src-1/-2 double-knockout mice and find that expression of arginase 1 (Arg1) is significantly decreased, accompanied by increased levels of the Arg1 substrate L-arginine. Knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. Moreover, treatment of human myometrial smooth muscle cells with L-arginine significantly inhibits spontaneous contractions by attenuating activation of NF-κB and downregulating expression of contraction-associated protein genes. Transcription factors GR and C/EBPβ increase transcription of Arg1 in an Src-1/Src-2-dependent manner. These findings provide new evidence that fetus-derived factors may play dual roles in coordinating fetal lung development and the initiation of labor.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yuanyuan Liu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Xuesong Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yanyu Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Zhe Wang
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Carole R Mendelson
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Lu Gao
- Department of PhysiologyNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| |
Collapse
|
5
|
Liu B, Paudel S, Flowers WL, Piedrahita JA, Wang X. Uterine histotroph and conceptus development: III. Adrenomedullin stimulates proliferation, migration and adhesion of porcine trophectoderm cells via AKT-TSC2-MTOR cell signaling pathway. Amino Acids 2023:10.1007/s00726-023-03265-6. [PMID: 37036518 DOI: 10.1007/s00726-023-03265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Adrenomedullin (ADM) as a highly conserved peptide hormone has been reported to increase significantly in the uterine lumen during the peri-implantation period of pregnancy in pigs, but its functional roles in growth and development of porcine conceptus (embryonic/fetus and its extra-embryonic membranes) as well as underlying mechanisms remain largely unknown. Therefore, we conducted in vitro experiments using our established porcine trophectoderm cell line (pTr2) isolated from Day-12 porcine conceptuses to test the hypothesis that porcine ADM stimulates cell proliferation, migration and adhesion via activation of mechanistic target of rapamycin (MTOR) cell signaling pathway in pTr2 cells. Porcine ADM at 10-7 M stimulated (P < 0.05) pTr2 cell proliferation, migration and adhesion by 1.4-, 1.5- and 1.2-folds, respectively. These ADM-induced effects were abrogated (P < 0.05) by siRNA-mediated knockdown of ADM (siADM) and its shared receptor component calcitonin-receptor-like receptor (CALCRL; siCALCRL), as well as by rapamycin, the inhibitor of MTOR. Using siRNA-mediated knockdown of CALCRL coupled with Western blot analyses, ADM signaling transduction was determined in which ADM binds to CALCRL to increase phosphorylation of MTOR, its downstream effectors (4EBP1, P70S6K, and S6), and upstream regulators (AKT and TSC2). Collectively, these results suggest that porcine ADM in histotroph acts on its receptor component CALCRL to activate AKT-TSC2-MTOR, particularly MTORC1 signaling cascade, leading to elongation, migration and attachment of conceptuses.
Collapse
Affiliation(s)
- Bangmin Liu
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - Sudikshya Paudel
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - William L Flowers
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Toledo MZ, Stangaferro ML, Caputo Oliveira R, Monteiro PLJ, Gennari RS, Luchini D, Shaver RD, Giordano JO, Wiltbank MC. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Health disorders and interactions with production and reproduction. J Dairy Sci 2023; 106:2137-2152. [PMID: 36710184 DOI: 10.3168/jds.2022-21950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023]
Abstract
Study objectives were to evaluate the effects of feeding rumen-protected Met (RPM) in pre- and postpartum total mixed rations (TMR) on health disorders and the interactions of health disorders with lactation and reproductive performance. Multiparous Holstein cows [470; 235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled at approximately 4 wk before parturition and housed in close-up dry cow (n = 6) and replicated lactation pens (n = 16). Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): (1) control (CON): basal diet = 2.30% and 2.09% Met as % of metabolizable protein (MP) (UW) or 2.22% and 2.19% Met as % of MP (CU); (2) RPM: basal diet fed with RPM with 2.83% and 2.58% Met (Smartamine M, Adisseo Inc.; 12 g prepartum and 27 g postpartum), as % of MP (UW) or 2.85% and 2.65% Met (Smartamine M; 13 g prepartum and 28 g postpartum), as % of MP (CU). Total serum Ca was evaluated at the time of parturition and on d 3 ± 1 postpartum. Daily rumination was monitored from 7 d before parturition until 28 d postpartum. Health disorders were recorded during the experimental period until the time of first pregnancy diagnosis (32 d after timed artificial insemination; 112 ± 3 d in milk). Uterine health was evaluated on d 35 ± 3 postpartum. Time to pregnancy and herd exit were evaluated up to 350 d in milk. Treatment had no effect on the incidence of most health disorders and did not alter daily rumination. Cows fed RPM had reduced subclinical hypocalcemia (13.6 vs. 22%; UW only) on day of parturition relative to CON. Percentage of cows culled (13.1 vs. 19.3%) and hazard of herd exit due to culling [hazard ratio = 0.65, 95% confidence interval (CI): 0.42-1.02] tended to be reduced for cows fed RPM compared with CON. Moreover, cows fed RPM had greater milk protein concentration and protein yield overall, although retrospective analysis indicated that RPM only significantly increased protein yield in the group of cows with one or more health disorders (1.47 vs. 1.40 kg/d), not in cows without health disorders (1.49 vs. 1.46 kg/d) compared with CON. Overall, treatment had no effect on pregnancy per timed artificial insemination; however, among cows with health disorders, those fed RPM had reduced time to pregnancy compared with CON (hazard ratio = 0.71, 95% CI: 0.53-0.96). Thus, except for subclinical hypocalcemia on the day of parturition, feeding RPM in pre- and postpartum TMR did not reduce the incidence of health disorders, but our retrospective analysis indicated that it lessened the negative effects of health disorders on milk protein production and time to pregnancy.
Collapse
Affiliation(s)
- Mateus Z Toledo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | | | | | - Pedro L J Monteiro
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Rodrigo S Gennari
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | | | - Randy D Shaver
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Julio O Giordano
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
7
|
Chai N, Zheng H, Zhang H, Li L, Yu X, Wang L, Bi X, Yang L, Niu T, Liu X, Zhao Y, Dong L. Spermidine Alleviates Intrauterine Hypoxia-Induced Offspring Newborn Myocardial Mitochondrial Damage in Rats by Inhibiting Oxidative Stress and Regulating Mitochondrial Quality Control. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133776. [PMID: 36945337 PMCID: PMC10024813 DOI: 10.5812/ijpr-133776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 03/05/2023]
Abstract
Background Intrauterine hypoxia (IUH) increases the risk of cardiovascular diseases in offspring. As a reactive oxygen species (ROS) scavenger, polyamine spermidine (SPD) is essential for embryonic and fetal survival and growth. However, further studies on the SPD protection and mechanisms for IUH-induced heart damage in offspring are required. Objectives This study aimed to investigate the preventive effects of prenatal SPD treatment on IUH-induced heart damage in newborn offspring rats and its underlying mitochondrial-related mechanism. Methods The rat model of IUH was established by exposure to 10% O2 seven days before term. Meanwhile, for seven days, the pregnant rats were given SPD (5 mg.kg-1.d-1; ip). The one-day offspring rats were sacrificed to assess several parameters, including growth development, heart damage, cardiomyocytes proliferation, myocardial oxidative stress, cell apoptosis, and mitochondrial function, and have mitochondrial quality control (MQC), including mitophagy, mitochondrial biogenesis, and mitochondrial fusion/fission. In in vitro experiments, primary cardiomyocytes were subjected to hypoxia with or without SPD for 24 hours. Results IUH decreased body weight, heart weight, cardiac Ki67 expression, the activity of SOD, and the CAT and adenosine 5'-triphosphate (ATP) levels and increased the BAX/BCL2 expression, and TUNEL-positive nuclei numbers. Furthermore, IUH also caused mitochondrial structure abnormality, dysfunction, and decreased mitophagy (decreased number of mitophagosomes), declined mitochondrial biogenesis (decreased expression of SIRT-1, PGC-1α, NRF-2, and TFAM), and led to fission/fusion imbalance (increased percentage of mitochondrial fragments, increased DRP1 expression, and decreased MFN2 expression) in the myocardium. Surprisingly, SPD treatment normalized the variations in the IUH-induced parameters. Furthermore, SPD also prevented hypoxia-induced ROS accumulation, mitochondrial membrane potential decay, and the mitophagy decrease in cardiomyocytes. Conclusion Maternal SPD treatment caused IUH-induced heart damage in newborn offspring rats by improving the myocardial mitochondrial function via anti-oxidation and anti-apoptosis, and regulating MQC.
Collapse
Affiliation(s)
- Nannan Chai
- College of Nursing, Chifeng University, Chifeng, China
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Haihong Zheng
- The Second Affiliated Hospital Department of the Laboratory Animal, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingxu Li
- Department of Nephrology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xue Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Liyi Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Bi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yang
- College of Nursing, Chifeng University, Chifeng, China
| | - Tongxu Niu
- College of Nursing, Chifeng University, Chifeng, China
| | - Xiujuan Liu
- College of Nursing, Chifeng University, Chifeng, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Corresponding Author: Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Lijie Dong
- Neonatal Intensive Care Unit, Harbin Children’s Hospital, Harbin, China
- Corresponding Author: Neonatal Intensive Care Unit, Harbin Children’s Hospital, Harbin, China.
| |
Collapse
|
8
|
Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J Anim Sci Biotechnol 2022; 13:28. [PMID: 35232472 PMCID: PMC8889744 DOI: 10.1186/s40104-022-00676-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
The fertility of sows mainly depends on the embryo losses during gestation and the survival rate of the post-farrowing piglets. The selection of highly-prolific sows has been mainly focused on the selection of genotypes with high ovulatory quota. However, in the early- and post-implantation stages, the rate of embryo losses was increased with the increase of zygotes. Among the various factors, placental growth and development is the vital determinant for fetal survival, growth, and development. Despite the potential survival of fetuses with deficient placental development, their life-conditions and growth can be damaged by a process termed intrauterine growth retardation (IUGR). The newborn piglets affected by IUGR are prone to increased morbidity and mortality rates; meanwhile, the growth, health and welfare of the surviving piglets will remain hampered by these conditions, with a tendency to exacerbate with age. Functional amino acids such as glycine, proline, and arginine continue to increase with the development of placenta, which are not only essential to placental growth (including vascular growth) and development, but can also be used as substrates for the production of glutathione, polyamines and nitric oxide to benefit placental function in many ways. However, the exact regulation mechanism of these amino acids in placental function has not yet been clarified. In this review, we provide evidence from literature and our own work for the role and mechanism of dietary functional amino acids during pregnancy in regulating the placental functional response to fetal loss and birth weight of piglets. This review will provide novel insights into the response of nutritionally nonessential amino acids (glycine and proline) to placental development as well as feasible strategies to enhance the fertility of sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
9
|
Zhang Y, Zhang T, Wu L, Li TC, Wang CC, Chung JPW. Metabolomic markers of biological fluid in women with reproductive failure: a systematic review of current literatures. Biol Reprod 2022; 106:1049-1058. [PMID: 35226730 DOI: 10.1093/biolre/ioac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding metabolic changes in reproductive failure, including early miscarriage (EM), recurrent miscarriage (RM) and repeated implantation failure (RIF), may be beneficial to understand the pathophysiology, thus improving pregnancy outcomes. Nine metabolomic profiling studies in women with reproductive failures (4 for EM, 3 for RM and 2 for RIF) were included for systematic review. In total 78, 75 and 25 significant metabolites were identified and 40, 40 and 34 metabolic pathways were enriched in EM, RM and RIF, respectively. Among them, 7 and 11 metabolites, and 28 and 28 pathways were shared between EM and RM and between RM and RIF, respectively. Notably, histidine metabolism has the highest impact in EM; phenylalanine, tyrosine and tryptophan biosynthesis. Ubiquinone and other terpenoid-quinone biosynthesis metabolism have the highest impact factor in RM; alanine, aspartate and glutamate metabolism have the highest impact factor in RIF. This study not only summarized the common and distinct metabolites and metabolic pathways in different reproductive failures but also summarized limitations of the study designs and methodologies. Hence, further investigations and validations of these metabolites are still urgently needed to understand the underlying metabolic mechanism for the development and treatment of reproductive failures.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Wu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Park W, Lim W, Song G. Exposure to fipronil induces cell cycle arrest, DNA damage, and apoptosis in porcine trophectoderm and endometrial epithelium, leading to implantation defects during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118234. [PMID: 34582916 DOI: 10.1016/j.envpol.2021.118234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Fipronil, a phenyl-pyrazole insecticide, has a wide range of uses, from agriculture to veterinary medicine. Due to its large-scale applications, the risk of environmental and occupational exposure and bioaccumulation raises concerns. Moreover, relatively little is known about the intracellular mechanisms of fipronil in trophoblasts and the endometrium involved in implantation. Here, we demonstrated that fipronil reduced the viability of porcine trophectoderm and luminal epithelial cells. Fipronil induced cell cycle arrest at the sub-G1 phase and apoptotic cell death through DNA fragmentation and inhibition of DNA replication. These reactions were accompanied by homeostatic changes, including mitochondrial depolarization and cytosolic calcium depletion. In addition, we found that exposure to fipronil compromised the migration and implantation ability of pTr and pLE cells. Moreover, alterations in PI3K-AKT and MAPK-ERK1/2 signal transduction were observed in fipronil-treated pTr and pLE cells. Finally, the antiproliferative and apoptotic effects of fipronil were also demonstrated in 3D cell culture conditions. In summary, our results suggest that fipronil impairs implantation potentials in fetal trophectoderm and maternal endometrial cells during early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
12
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Stangaferro ML, Toledo MZ, Gennari RS, Perez MM, Gamarra CA, Sitko EM, Monteiro PLJ, Masello M, Prata AB, Granados GE, Van Amburgh ME, Luchini D, Shaver RD, Wiltbank MC, Giordano JO. Effects of feeding rumen-protected methionine pre- and postpartum on reproductive outcomes of multiparous Holstein cows. J Dairy Sci 2021; 104:11210-11225. [PMID: 34304872 DOI: 10.3168/jds.2021-20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Abstract
Our primary objective was to evaluate the effect of feeding rumen-protected Met (RPM) in the pre- and postpartum total mixed ration (TMR) on pregnancy per artificial insemination (AI) and pregnancy loss in multiparous Holstein cows. We also evaluated multiple secondary reproductive physiological outcomes before and after AI, including uterine health, ovarian cyclicity, response to synchronization of ovulation, and markers of embryo development and size. A total of 470 multiparous Holstein cows [235 at the University of Wisconsin (UW) and 235 at Cornell University (CU)] were used for this experiment. Experimental treatment diets were applied at the pen level (2 and 4 close-up pens at CU and UW, respectively, and 12 and 6 postfresh pens at CU and UW, respectively); thus, pen was the experimental unit, and cow was the observational unit. Cows were enrolled and randomly assigned to be fed the experimental treatment diets at approximately 4 wk before parturition until 67 d of gestation [147 d in milk (DIM)] after their first service. Close-up dry cow and replicated lactation pens were randomly assigned to treatment diets: RPM, prepartum = 2.83% (UW) and 2.85% (CU), postpartum = 2.58% (UW) and 2.65% (CU); and control (CON), prepartum = 2.30% (UW) and 2.22% (CU), postpartum = 2.09% (UW) and 2.19% (CU; Met as percentage of metabolizable protein). Vaginal discharge and uterine cytology (percentage of polymorphonuclear leucocytes) were evaluated at 35 ± 3 DIM. Cows received timed AI (TAI) at 80 ± 3 DIM after synchronization of ovulation with the Double-Ovsynch protocol. Ovarian cyclicity status, response to synchronization of ovulation, and luteal function were determined by measuring circulating concentrations of progesterone at 35 and 49 ± 3 DIM, 48 and 24 h before TAI, and 8, 18, 22, 25, and 29 d after TAI. Interferon-stimulated gene expression in white blood cells were compared on 18 d after TAI (CU only) and pregnancy-specific protein B concentrations at 22, 25, 29, 32, and 67 d after TAI. Pregnancy status was determined using pregnancy-specific protein B at 25 and 29 d after TAI, and by transrectal ultrasonography at 32, 39, and 67 d after TAI. Embryo and amniotic vesicle size were determined at 32 and 39 d after TAI. Pregnancy per AI (25 d: 64.7 vs. 64.0%, 32 d: 54.3 vs. 55.1% for CON and RPM, respectively) and pregnancy loss (25 to 67 d: 22.6 vs. 19.2% for CON and RPM, respectively) for synchronized cows did not differ. The proportion of cows with purulent vaginal discharge (CON = 7.7 vs. RPM = 4.6%) and cytological endometritis (CON = 20.8 vs. RPM = 23.6%) did not differ. Cyclicity status, ovarian responses to the synchronization protocol, and synchronization rate also did not differ. In addition, fold change for interferon-stimulated genes, concentrations of pregnancy-specific protein B, and embryo size were not affected by treatments. In conclusion, feeding RPM in the pre- and postpartum TMR at the amounts used in this experiment did not affect uterine health, cyclicity, embryo development, or reproductive efficiency in dairy cows.
Collapse
Affiliation(s)
| | - Mateus Z Toledo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Rodrigo S Gennari
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Martin M Perez
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Caio A Gamarra
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Emily M Sitko
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Pedro L J Monteiro
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | | | - Alexandre B Prata
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | | | | | | | - Randy D Shaver
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Julio O Giordano
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
14
|
Paudel S, Liu B, Cummings MJ, Quinn KE, Bazer FW, Caron KM, Wang X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol Reprod 2021; 105:876-891. [PMID: 34104954 DOI: 10.1093/biolre/ioab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Adrenomedullin (ADM) is an evolutionarily conserved multi-functional peptide hormone that regulates implantation, embryo spacing and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus, and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, expression of CALCRL, RAMP2 and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation and placentation in pigs.
Collapse
Affiliation(s)
- Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Bangmin Liu
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Kelsey E Quinn
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station TX, 77843, USA
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
15
|
Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol 2021; 12:46. [PMID: 33827696 PMCID: PMC8028684 DOI: 10.1186/s40104-021-00567-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of progesterone (P4) to ewes during the first 9 to 12 days of pregnancy accelerates blastocyst development by day 12 of pregnancy, likely due to P4-induced up-regulation of key genes in uterine epithelia responsible for secretion and transport of components of histotroph into the uterine lumen. This study determined if acceleration of blastocyst development induced by exogenous P4 during the pre-implantation period affects fetal-placental development on day 125 of pregnancy. Suffolk ewes (n = 35) were mated to fertile rams and assigned randomly to receive daily intramuscular injections of either corn oil vehicle (CO, n = 18) or 25 mg progesterone in CO (P4, n = 17) for the first 8 days of pregnancy. All ewes were hysterectomized on day 125 of pregnancy and: 1) fetal and placental weights and measurements were recorded; 2) endometrial and placental tissues were analyzed for the expression of candidate mRNAs involved in nutrient transport and arginine metabolism; and 3) maternal plasma, fetal plasma, allantoic fluid, and amniotic fluid were analyzed for amino acids, agmatine, polyamines, glucose, and fructose. RESULTS Treatment of ewes with exogenous P4 did not alter fetal or placental growth, but increased amounts of aspartate and arginine in allantoic fluid and amniotic fluid, respectively. Ewes that received exogenous P4 had greater expression of mRNAs for SLC7A1, SLC7A2, SLC2A1, AGMAT, and ODC1 in endometria, as well as SLC1A4, SLC2A5, SLC2A8 and ODC1 in placentomes. In addition, AZIN2 protein was immunolocalized to uterine luminal and glandular epithelia in P4-treated ewes, whereas AZIN2 localized only to uterine luminal epithelia in CO-treated ewes. CONCLUSIONS This study revealed that exogenous P4 administered in early pregnancy influenced expression of selected genes for nutrient transporters and the expression of a protein involved in polyamine synthesis on day 125 of pregnancy, suggesting a 'programming' effect of P4 on gene expression that affected the composition of nutrients in fetal-placental fluids.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
16
|
Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins. J Anim Sci Biotechnol 2021; 12:39. [PMID: 33663606 PMCID: PMC7934464 DOI: 10.1186/s40104-021-00554-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Administration of exogenous progesterone (P4) to ewes during the pre-implantation period advances conceptus development and implantation. This study determined effects of exogenous P4 on transport of select nutrients and pathways that enhance conceptus development. Pregnant ewes (n = 38) were treated with either 25 mg P4 in 1 mL corn oil (P4, n = 18) or 1 mL corn oil alone (CO, n = 20) from day 1.5 through day 8 of pregnancy and hysterectomized on either day 9 or day 12 of pregnancy. Endometrial expression of genes encoding enzymes for synthesis of polyamines, transporters of glucose, arginine, and glycine, as well as progestamedins was determined by RT-qPCR. Results On day 12 of pregnancy, conceptuses from P4-treated ewes had elongated while those from CO-treated ewes were spherical. The mRNA expression of AZIN2, an arginine decarboxylase, was lower in endometria of P4-treated than CO-treated ewes on day 9 of pregnancy. Expression of FGF10, a progestamedin, was greater in endometria of CO and P4-treated ewes on day 12 of gestation in addition to P4-treated ewes necropsied on day 9 of gestation. Treatment with P4 down-regulated endometrial expression of amino acid transporter SLC1A4 on day 12 of pregnancy. Conclusions Results indicated that administration of exogenous P4 during the pre-implantation period advanced the expression of FGF10, which may accelerate proliferation of trophectoderm cells, but also was correlated with decreased expression of glycine and serine transporters and polyamine synthesis enzyme AZIN2. Further research with increased sample sizes may determine how differential expression affects endometrial functions and potentially embryonic loss. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00554-6.
Collapse
Affiliation(s)
- Emily C Hoskins
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Michael C Satterfield
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
17
|
Crouse MS, McLean KJ, Dwamena J, Neville TL, Menezes ACB, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. The effects of maternal nutrition during the first 50 d of gestation on the location and abundance of hexose and cationic amino acid transporters in beef heifer uteroplacental tissues. J Anim Sci 2021; 99:skaa386. [PMID: 33247721 PMCID: PMC7799587 DOI: 10.1093/jas/skaa386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that maternal nutrition during the first 50 d of gestation would influence the abundance of hexose transporters, SLC2A1, SLC2A3, and SLC2A5, and cationic amino acid transporters, SLC7A1 and SLC7A2, in heifer uteroplacental tissues. Angus-cross heifers (n = 43) were estrus synchronized, bred via artificial insemination, and assigned at breeding to 1 of 2 dietary intake groups (CON = 100% of requirements to achieve 0.45 kg/d of BW gain or RES = 60% of CON intake) and ovariohysterectomized on day 16, 34, or 50 of gestation (n = 6 to 9/d) in a completely randomized design with a 2 × 3 factorial arrangement of treatments. Uterine cross-sections were collected from the horn ipsilateral to the corpus luteum, fixed in 10% neutral buffered formalin, sectioned at 5 µm, and stained via immunofluorescence for transporters. For each image, areas of fetal membrane (FM; chorioallantois), luminal epithelium (ENDO), superficial glands (SG), deep glands (DG), and myometrium (MYO) were analyzed separately for relative intensity of fluorescence as an indicator of transporter abundance. Analysis of FM was only conducted for days 34 and 50. No transporters in target areas were influenced by a day × treatment interaction (P ≥ 0.06). In ENDO, all transporters were differentially abundant from days 16 to 50 of gestation (P ≤ 0.04), and SLC7A2 was greater (P = 0.05) for RES vs. CON. In SG, SLC7A1 and SLC7A2 were greater (P ≤ 0.04) at day 34 vs. day 16. In DG, SLC2A3 and SLC7A1 were greater (P ≤ 0.05) for CON vs. RES heifers; furthermore, SLC7A1 was greater (P < 0.01) at day 50 vs. days 16 and 34 of gestation. In MYO, SLC7A1 was greater (P < 0.01) for CON vs. RES and was greater (P = 0.02) at days 34 and 50 vs. day 16. There were no differences in FM (P ≥ 0.06). Analysis of all uterine tissues at day 16 determined that SLC2A1, SLC2A3, and SLC7A2 were all differentially abundant across uterine tissue type (P < 0.01), and SLC7A1 was greater (P = 0.02) for CON vs. RES. Analysis of all uteroplacental tissues at days 34 and 50 demonstrated that all transporters differed (P < 0.01) across uteroplacental tissues, and SLC7A1 was greater (P < 0.01) for CON vs. RES. These data are interpreted to imply that transporters are differentially affected by day of gestation, and that hexose and cationic amino acid transporters are differentially abundant across utero-placental tissue types, and that SLC7A1 is responsive to maternal nutritional treatment.
Collapse
Affiliation(s)
- Matthew S Crouse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Josephine Dwamena
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Tammi L Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| |
Collapse
|
18
|
Halloran KM, Stenhouse C, Wu G, Bazer FW. Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:85-105. [PMID: 34251640 DOI: 10.1007/978-3-030-74180-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arginine is a key amino acid in pregnant females as it is the precursor for nitric oxide (NO) via nitric oxide synthase and for polyamines (putrescine, spermidine, and spermine) by either arginase II and ornithine decarboxylase to putrescine or via arginine decarboxylase to agmatine and agmatine to putrescine via agmatinase. Polyamines are critical for placental growth and vascularization. Polyamines stabilize DNA and mRNA for gene transcription and mRNA translation, stimulate proliferation of trophectoderm, and formation of multinucleated trophectoderm cells that give rise to giant cells in the placentae of species such as mice. Polyamines activate MTOR cell signaling to stimulate protein synthesis and they are important for motility through modification of beta-catenin phosphorylation, integrin signaling via focal adhesion kinases, cytoskeletal organization, and invasiveness or superficial implantation of blastocysts. Physiological levels of arginine, agmatine, and polyamines are critical to the secretion of interferon tau for pregnancy recognition in ruminants. Arginine, polyamines, and agmatine are very abundant in fetal fluids, fetal blood, and tissues of the conceptus during gestation. The polyamines are thus available to influence a multitude of events including activation of development of blastocysts, implantation, placentation, fetal growth, and development required for the successful establishment and maintenance of pregnancy in mammals.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
20
|
Effects of dietary n-3-PUFA supplementation, post-insemination plane of nutrition and pregnancy status on the endometrial transcriptome of beef heifers. Sci Rep 2020; 10:20798. [PMID: 33247230 PMCID: PMC7695717 DOI: 10.1038/s41598-020-77604-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Supplementation of cattle diets with n-3-polyunsaturated fatty acids (PUFA) can improve reproductive efficiency. Conversely, short-term fluctuations in feed supply can impact pregnancy establishment. The objectives of this study were to examine the effects of (1) dietary supplementation with n-3-PUFA and (2) post-insemination plane of nutrition on the endometrial transcriptome. Beef crossbred heifers were offered concentrate based diets fortified with n-3-PUFA (PUFA; n = 32) or not (CONT; n = 28) for 30 days prior to breeding at a synchronised oestrous. Following artificial insemination, heifers were allocated within treatment to either a high or low plane of nutrition. Heifers were maintained on these diets for 16 days following which endometrial tissue was harvested at slaughter for subsequent RNAseq analysis. The influence of pregnancy status on the endomentrial transcriptome, within each dietary treatment group, was also examined. Post-insemination diet affected (P < 0.05) the endometrial transcriptome. Specifically, within n-3-PUFA-supplemented heifers, genes involved in embryonic development and mTOR signalling pathways, important in pregnancy establishment, were identified as differentially expressed. Results indicate that dietary supplementation of cattle diets with n-3-PUFA may have a positive effect on the expression of key fertility-related genes and pathways, during the critical window of maternal recognition of pregnancy, particularly where animals are underfed.
Collapse
|
21
|
Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G. Ruminal microbes of adult sheep do not degrade extracellular l-citrulline. J Anim Sci 2020; 98:skaa164. [PMID: 32415842 PMCID: PMC7344112 DOI: 10.1093/jas/skaa164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
This study determined whether extracellular citrulline is degraded by ruminal bacteria of sheep. In the first experiment, whole rumen fluid (3 mL) from six adult Suffolk sheep was incubated at 37 °C with 5 mM l-glutamine (Gln), l-glutamate (Glu), l-arginine (Arg), or l-citrulline (Cit) for 0, 0.5, 1, and 2 h or with 0, 0.5, 2, or 5 mM Gln, Glu, Arg, or Cit for 2 h. An aliquot (50 µL) of the incubation solution was collected at the predetermined time points for amino acids (AA) analyses. Results showed extensive hydrolysis of Gln into Glu and ammonia, of Arg into l-ornithine and l-proline, but little or no degradation of extracellular Cit or Glu by ruminal microbes. In the second experiment, six adult Suffolk sheep were individually fed each of three separate supplements (8 g Gln , Cit, or urea) on three separate days along with regular feed (800 g/animal). Blood (2 mL) was sampled from the jugular vein prior to feeding (time 0) and at 0.5, 1, 2, and 4 h after consuming the supplement. Plasma was analyzed for AA, glucose, ammonia, and urea. The concentrations of Cit in the plasma of sheep consuming this AA increased (P < 0.001) by 117% at 4 h and those of Arg increased by 23% at 4 h, compared with the baseline values. Urea or Gln feeding did not affect (P > 0.05) the concentrations of Cit or Arg in plasma. These results indicate that Cit is not metabolized by ruminal microbes of sheep and is, therefore, absorbed as such by the small intestine and used for the synthesis of Arg by extrahepatic tissues.
Collapse
Affiliation(s)
- Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Jason J Cleere
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
22
|
Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M, Lonergan P. Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window†. Biol Reprod 2020; 100:672-685. [PMID: 30388203 DOI: 10.1093/biolre/ioy234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Pregnancy establishment in cattle is contingent on conceptus elongation-a fundamental developmental event coinciding with the time during which most pregnancies fail. Elongation in vivo is directly driven by uterine secretions, indirectly influenced by systemic progesterone concentrations, and has yet to be recapitulated in vitro. To better understand the microenvironment evolved to facilitate this phenomenon, the amino acid and carbohydrate composition of uterine fluid was interrogated using high-throughput metabolomics on days 12, 13, and 14 of the estrous cycle from heifers with normal and high circulating progesterone. A total of 99 biochemicals (79 amino acids and 20 carbohydrates) were consistently identified, of which 31 showed a day by progesterone interaction. Fructose and mannitol/sorbitol did not exhibit a day by progesterone interaction, but displayed the greatest individual fluctuations (P ≤ 0.05) with respective fold increases of 18.39 and 28.53 in high vs normal progesterone heifers on day 12, and increases by 10.70-fold and 14.85-fold in the uterine fluid of normal progesterone animals on day 14 vs day 12. Moreover, enrichment analyses revealed that the phenylalanine, glutathione, polyamine, and arginine metabolic pathways were among the most affected by day and progesterone. In conclusion, progesterone had a largely stabilizing effect on amino acid flux, and identified biochemicals of likely importance to conceptus elongation initiation include arginine, fructose, glutamate, and mannitol/sorbitol.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thiago Martins
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA.,Department of Animal Reproduction, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Rodríguez-Alonso B, Maillo V, Acuña OS, López-Úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and Pregnancy-Related Changes in the Protein, Amino Acid, and Carbohydrate Composition of Bovine Oviduct Fluid. Int J Mol Sci 2020; 21:E1681. [PMID: 32121434 PMCID: PMC7084926 DOI: 10.3390/ijms21051681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Alonso
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Veronica Maillo
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| | - Omar Salvador Acuña
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
- Faculty of Veterinary and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Mexico
- Department of Research, Animal Reproduction Biotechnology (ARBiotech), Culiacan 80015, Mexico
| | - Rebeca López-Úbeda
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | | | - Constantine A. Simintiras
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Roger Sturmey
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| |
Collapse
|
24
|
Aurich J, Köhne M, Wulf M, Nagel C, Beythien E, Gautier C, Zentek J, Aurich C. Effects of dietary L-arginine supplementation to early pregnant mares on conceptus diameter-Preliminary findings. Reprod Domest Anim 2019; 54:772-778. [PMID: 30809848 PMCID: PMC6850369 DOI: 10.1111/rda.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/11/2019] [Indexed: 12/04/2022]
Abstract
The importance of the amino acid L-arginine (ARG) for conceptus growth and litter size has been demonstrated in various species. L-arginine is part of embryo-derived polyamines, a substrate for nitric oxide synthase and stimulates protein synthesis by the embryo. In the present study, we have investigated whether dietary L-arginine supplementation stimulates early conceptus growth in mares. Warmblood mares with singleton pregnancies received either an arginine-supplemented diet (approximately 0.0125% of body weight, n = 12) or a control diet (n = 11) from days 15 to 45 after ovulation. Diameter of the embryonic vesicle (days 14, 17, 20 of pregnancy) and size of the embryo respective foetus (length and maximal diameter, days 25-45 of pregnancy at 5-day intervals) were determined by transrectal ultrasound. At foaling, weight and size of the foal and the placenta were determined. Blood for determination of equine chorionic gonadotrophin (eCG) and progestin concentrations was collected repeatedly. Neither eCG nor progestin concentration in plasma of mares differed between groups at any time. No effects of arginine treatment on diameter of the embryonic vesicle between days 14 and 20 of pregnancy were detected. Diameter of the embryo/foetus on days 40 to 45 of pregnancy strongly tended to be enhanced by arginine supplementation (p = 0.06). Weight and size of neither the foal nor placenta at birth differed between groups. In conclusion, L-arginine supplementation was without negative effects on early equine embryos and may support embryonic growth at the beginning of placentation.
Collapse
Affiliation(s)
- Jörg Aurich
- Department of Small Animals and Horses, Obstetrics, Gynaecology and AndrologyVetmeduni ViennaViennaAustria
| | - Martin Köhne
- Department of Small Animals and Horses, Obstetrics, Gynaecology and AndrologyVetmeduni ViennaViennaAustria
| | - Manuela Wulf
- Graf Lehndorff Institute for Equine ScienceVetmeduni ViennaNeustadt (Dosse)Germany
| | - Christina Nagel
- Graf Lehndorff Institute for Equine ScienceVetmeduni ViennaNeustadt (Dosse)Germany
| | - Elisabeth Beythien
- Graf Lehndorff Institute for Equine ScienceVetmeduni ViennaNeustadt (Dosse)Germany
| | - Camille Gautier
- Department of Small Animals and Horses, Obstetrics, Gynaecology and AndrologyVetmeduni ViennaViennaAustria
| | - Jürgen Zentek
- Institute for Animal NutritionFree University BerlinBerlinGermany
| | - Christine Aurich
- Department of Small Animals and Horses, Artificial Insemination and Embryo TransferVetmeduni ViennaViennaAustria
| |
Collapse
|
25
|
Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 2018; 99:225-241. [PMID: 29462279 PMCID: PMC6044348 DOI: 10.1093/biolre/ioy047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Research on the functions of interferon tau (IFNT) led to the theory of pregnancy recognition signaling in ruminant species. But IFNT does much more as it induces expression of interferon regulatory factor 2 (IRF2) in uterine luminal (LE), superficial glandular (sGE), but not glandular (GE) epithelia. First, IRF2 silences transcription of the estrogen receptor alpha gene and, indirectly, transcription of the oxytocin receptor gene to abrogate development of the luteolytic mechanism to prevent regression of the corpus luteum and its production of progesterone for establishing and maintaining pregnancy. Second, IRF2 silences expression of classical interferon-stimulated genes in uterine LE and sGE; however, uterine LE and sGE respond to progesterone (P4) and IFNT to increase expression of genes for transport of nutrients into the uterine lumen such as amino acids and glucose. Other genes expressed by uterine LE and sGE encode for adhesion molecules such as galectin 15, cathepsins, and cystatins for tissue remodeling, and hypoxia-inducible factor relevant to angiogenesis and survival of blastocysts in a hypoxic environment. IFNT is also key to a servomechanism that allows uterine epithelia, particularly GE, to proliferate and to express genes in response to placental lactogen and placental growth hormone in sheep. The roles of secreted phosphoprotein 1 are also discussed regarding its role in implantation in sheep and pigs, as well as its stimulation of expression of mechanistic target of rapamycin mRNA and protein which is central to proliferation, migration, and gene expression in the trophectoderm cells.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Elmetwally MA, Lenis Y, Tang W, Wu G, Bazer FW. Effects of catecholamines on secretion of interferon tau and expression of genes for synthesis of polyamines and apoptosis by ovine trophectoderm†. Biol Reprod 2018; 99:611-628. [DOI: 10.1093/biolre/ioy085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohammed A Elmetwally
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Yasser Lenis
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
- Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Medellín, Colombia
- Faculty of Agricultural Sciences, U.D.C.A, Bogota, Colombia
| | - Wanjin Tang
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW. Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 2018; 9:10. [PMID: 29410783 PMCID: PMC5781304 DOI: 10.1186/s40104-017-0225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-017-0225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Y Lenis
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,3Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No, 52-21 Medellín, Colombia.,Faculty of Agricultural Sciences, Calle 222 No. 55-37, UDCA, Bogota, Colombia
| | - Gregory A Johnson
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Xiaoqiu Wang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,5Present address: National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Wendy W Tang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Thomas R Hansen
- 6Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
28
|
Grazul-Bilska AT, Thammasiri J, Kraisoon A, Reyaz A, Bass CS, Kaminski SL, Navanukraw C, Redmer DA. Expression of progesterone receptor protein in the ovine uterus during the estrous cycle: Effects of nutrition, arginine and FSH. Theriogenology 2017; 108:7-15. [PMID: 29175682 DOI: 10.1016/j.theriogenology.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
To evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection. In exp. 2, ewes were injected twice daily with FSH on days 13-15 of the first estrous cycle. Uterine tissues were immunostained to detect PGR followed by image analysis. PGR were detected in luminal epithelium (LE), endometrial glands (EG), endometrial stroma (ES), myometrium (Myo), and endometrial and myometrial blood vessels. The percentage of PR-positive cells and/or intensity of staining were affected by phase of the estrous cycle, plane of nutrition, and/or FSH but not by Arg. In exp. 1, percentage of PGR-positive cells in LE and EG but not in ES and Myo was greater at the early and mid than late luteal phase, was not affected by plane of nutrition, and was similar in LE and EG. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in LE, EG and Myo, and was the greatest in LE, less in EG, and least in ES and Myo. In exp. 2, percentage of PGR-positive cells in LE, EG, ES and Myo was affected by phase of the estrous cycle, but not by plane of nutrition; was greater at the early than mid luteal phase; and was greatest in LE and EG, less in luminal (superficial) ES and Myo and least in deep ES. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in all compartments but ES, and was the greatest in LE and luminal EG, less in deep EG, and least in ES and Myo. Comparison of data for FSH (superovulated) and Sal-treated (non-superovulated) ewes demonstrated that FSH affected PR expression in all evaluated uterine compartments depending on plane of nutrition and phase of the estrous cycle. Thus, PGR are differentially distributed in uterine compartments, and PGR expression is affected by nutritional plane and FSH, but not Arg depending on phase of the estrous cycle. Such changes in dynamics of PGR expression indicate that diet plays a regulatory role and that FSH-treatment may alter uterine functions.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiratti Thammasiri
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aree Kraisoon
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Chainarong Navanukraw
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
29
|
Interplay between Oxidative Stress and Nutrient Sensing Signaling in the Developmental Origins of Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18040841. [PMID: 28420139 PMCID: PMC5412425 DOI: 10.3390/ijms18040841] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) presents a global health burden, despite recent advances in management. CVD can originate from early life by so-called “developmental origins of health and disease” (DOHaD). Epidemiological and experimental evidence supports that early-life insults can induce programming of later CVD. Underlying the DOHaD concept, early intervention may offset programming process to prevent the development of CVD, namely reprogramming. Oxidative stress and nutrient sensing signals have been considered to be major mechanisms of cardiovascular programming, while the interplay between these two mechanisms have not been examined in detail. This review summarizes current evidence that supports the link between oxidative stress and nutrient sensing signaling to cardiovascular programming, with an emphasis on the l-arginine–asymmetric dimethylarginine (ADMA)–nitric oxide (NO) pathway. This review provides an overview of evidence from human studies supporting fetal programming of CVD, insight from animal models of cardiovascular programming and oxidative stress, impact of the l-arginine–ADMA–NO pathway in cardiovascular programming, the crosstalk between l-arginine metabolism and nutrient sensing signals, and application of reprogramming interventions to prevent the programming of CVD. A greater understanding of the mechanisms underlying cardiovascular programming is essential to developing early reprogramming interventions to combat the globally growing epidemic of CVD.
Collapse
|
30
|
Grazul-Bilska AT, Khanthusaeng V, Bass CS, Kaminski SL, Navanukraw C, Redmer DA. Lipid droplets in the ovine uterus during the estrous cycle: Effects of nutrition, arginine, and FSH. Theriogenology 2017; 87:212-220. [DOI: 10.1016/j.theriogenology.2016.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
|
31
|
Lenis YY, Wang X, Tang W, Wu G, Bazer FW. Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells. Amino Acids 2016; 48:2389-99. [DOI: 10.1007/s00726-016-2216-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 02/03/2023]
|
32
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|