1
|
Zou H, Chen W, Hu B, Liu H, Zhao J. Testis–Gut-Reproduction Axis: The Key to Reproductive Health. Andrologia 2024; 2024:1-13. [DOI: 10.1155/2024/5020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Reproductive health is an important issue for humanity. In the context of the increasing incidence rate of male infertility, it is essential to find the factors that affect male reproductive health. Gastrointestinal health is closely related to reproductive health. Gastrointestinal hormones (GIH) and gut microbiota (GM), as important material foundations for gastrointestinal function, can promote or inhibit testicular reproductive function, including spermatogenesis, sperm maturation, androgen synthesis, and even broader male diseases such as sexual function, prostate cancer, etc. On the contrary, the functional health of the testes is also of great significance for the stability of gastrointestinal function. This review mainly discusses the important regulatory effects of GIH and GM on male reproductive function.
Collapse
Affiliation(s)
- Hede Zou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenkang Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baofeng Hu
- Qian’an Hospital of Traditional Chinese Medicine, Tangshan, Hebei, China
| | - Hanfei Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiayou Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
3
|
Zamponi V, La Salvia A, Tarsitano MG, Mikovic N, Rinzivillo M, Panzuto F, Giannetta E, Faggiano A, Mazzilli R. Effect of Neuroendocrine Neoplasm Treatment on Human Reproductive Health and Sexual Function. J Clin Med 2022; 11:jcm11143983. [PMID: 35887747 PMCID: PMC9324753 DOI: 10.3390/jcm11143983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023] Open
Abstract
Neuroendocrine neoplasms (NEN) are characterized by a wide clinical heterogeneity and biological variability, with slow progression and long survival in most cases. Although these tumors can affect young adults, there are few studies that focus on the sexual and reproductive system. The aim of this review was to evaluate the effect of NEN treatment, including somatostatin analogues (SSA), targeted therapy (Everolimus and Sunitinib), radiolabeled-SSA and chemotherapy, on male and female reproductive systems and sexual function. This narrative review was performed for all available prospective and retrospective studies, case reports and review articles published up to March 2022 in PubMed. To date, few data are available on the impact of SSA on human fertility and most of studies come from acromegalic patients. However, SSAs seem to cross the blood–placental barrier; therefore, pregnancy planning is strongly recommended. Furthermore, the effect of targeted therapy on reproductive function is still undefined. Conversely, chemotherapy has a well-known negative impact on male and female fertility. The effect of temozolomide on reproductive function is still undefined, even if changes in semen parameters after the treatment have been described. Finally, very few data are available on the sexual function of NEN treatment.
Collapse
Affiliation(s)
- Virginia Zamponi
- Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (N.M.); (A.F.); (R.M.)
| | - Anna La Salvia
- Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence: ; Tel.: +39-0652665698
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Nevena Mikovic
- Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (N.M.); (A.F.); (R.M.)
| | - Maria Rinzivillo
- Digestive Disease Unit, ENETS Center of Excellence, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.P.)
| | - Francesco Panzuto
- Digestive Disease Unit, ENETS Center of Excellence, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.P.)
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (N.M.); (A.F.); (R.M.)
| | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (N.M.); (A.F.); (R.M.)
| |
Collapse
|
4
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility? ACTA ACUST UNITED AC 2014; 49:1-19. [DOI: 10.1016/j.proghi.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
5
|
Han NR, Park YH, Yun JI, Park HJ, Park MH, Kim MS, Choi JH, Lee E, Gong SP, Lim JM, Lee ST. Determination of Feeder Cell-Based Cellular Niches Supporting the Colonization and Maintenance of Spermatogonial Stem Cells from Prepubertal Domestic Cat Testes. Reprod Domest Anim 2014; 49:705-10. [DOI: 10.1111/rda.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- NR Han
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - YH Park
- Department of Agricultural Biotechnology; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - JI Yun
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - HJ Park
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - MH Park
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - MS Kim
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - JH Choi
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - E Lee
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - SP Gong
- Department of Marine Biomaterials and Aquaculture; Pukyong National University; Busan Korea
| | - JM Lim
- Department of Agricultural Biotechnology; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - ST Lee
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| |
Collapse
|
6
|
Riaz H, Liang A, Khan MK, Dong P, Han L, Shahzad M, Chong Z, Ahmad S, Hua G, Yang L. Somatostatin and its receptors: functional regulation in the development of mice Sertoli cells. J Steroid Biochem Mol Biol 2013; 138:257-66. [PMID: 23831358 DOI: 10.1016/j.jsbmb.2013.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/02/2023]
Abstract
Recently, Sertoli cells have been ascertained as the target for the regulatory peptide somatostatin (SST). Therefore, the present study investigated the expression of somatostatin receptors, their age-related alterations and homologous regulation by in vitro treatment with SRIF14 on mice Sertoli cells; furthermore, it dealt with SRIF14 action on growth progression, apoptotic activity and related gene expressions in these cells. We found that mice Sertoli cells expressed all SST1-5 receptors with differential intensities. Age-related real-time PCR of all somatostatin receptors identified abundance of SSTR2 and SSTR5 mRNA level during Sertoli cell developmental period. Furthermore, higher level of these two receptors was independent of SRIF14, as treatment with SRIF14 failed to induce both receptor expressions when compared with control. Somatostatin treatment elicited a dose-dependent decrease in forskolin stimulated cAMP production. Low (100pM and 10nM) and high dosage (1μM) groups of SRIF14 significantly promoted apoptosis, while all treatment groups led to dose dependent cessation (P<0.05) of G1 phase of cell cycle as further validated by increase in casp3, decrease in bcl2, elevation of P21 (all by western blot) and decrease in Igf1 expressions, similarly, SST treatment caused a dose dependent suppression in the mRNA level of kitl gene, which is important in the regulation of spermatogenesis. These findings suggest that somatostatin and its receptors (SSTR2 and SSTR5) are important markers in the regulation and development of Sertoli cell; furthermore, it portrays physiological inhibitory role in Sertoli cell development by inducing apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Hasan Riaz
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Malik N, Moaeen-ud-Din M, Zhao R. Ontogeny of mRNA expression of somatostatin and its receptors in chicken embryos in association with methylation status of their promoters. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:260-70. [PMID: 23727427 DOI: 10.1016/j.cbpb.2013.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2013] [Accepted: 05/21/2013] [Indexed: 12/01/2022]
Abstract
The present study was designed to investigate the ontogeny and tissue distribution of somatostatin and its five receptor subtypes (SSTR1-5) mRNA expression in embryonic chicken (Gallus gallus). Brain, gonads (male), intestine, kidney, liver, muscle, stomach and yolk sac membrane (YSM) of chicken embryos on the embryonic (E) ages of 10, 16 and 21days (right before hatch) were investigated. Bisulfite sequencing PCR (BSP) was performed to determine the methylation status of the promoter region of all the six genes in the liver. Somatostatin (SST) was predominately expressed in intestine, brain and gonads (male) with different ontogenic patterns. The highest expression in intestine was detected at E10. There was ontogenic shift from intestine to brain as development progressed. Expression pattern of SSTRs in brain, intestine and kidney was similar to human embryonic expression. In liver, the ontogenic expression pattern of SST and its receptors was associated to methylation status of the respective promoters. Methylation of site Sp1 determines expression level of SST, SSTR1, SSTR2 and SSTR3 while site a is important in governing the expression of SSTR4 and SSTR5. The results show that ontogenic expression profile of chicken SST and SSTRs is time and tissue specific.
Collapse
Affiliation(s)
- Nosheen Malik
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | |
Collapse
|
8
|
Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A 2010; 107:20571-5. [PMID: 21059918 DOI: 10.1073/pnas.1015281107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
People with cystic fibrosis (CF) exhibit growth defects. That observation has been attributed, in part, to decreased insulin-like growth factor 1 (IGF1) levels, and the reduction has been blamed on malnutrition and pulmonary inflammation. However, patients with CF already have a reduced weight at birth, a manifestation not likely secondary to poor nutrition or inflammation. We found that, like humans, CF pigs were smaller than non-CF littermates and had lower IGF1 levels. To better understand the basis of IGF1 reduction, we studied newborn pigs and found low IGF1 levels within 12 h of birth. Moreover, humerus length and bone mineral content were decreased, consistent with less IGF1 activity in utero. These findings led us to test newborn humans with CF, and we found that they also had reduced IGF1 levels. Discovering lower IGF1 levels in newborn pigs and humans indicates that the decrease is not solely a consequence of malnutrition or pulmonary inflammation and that loss of cystic fibrosis transmembrane conductance regulator function has a more direct effect. Consistent with this hypothesis, we discovered reduced growth hormone release in organotypic pituitary slice cultures of newborn CF pigs. These findings may explain the long-standing observation that CF newborns are smaller than non-CF babies and why some patients with good clinical status fail to reach their growth potential. The results also suggest that measuring IGF1 levels might be of value as a biomarker to predict disease severity or the response to therapeutics. Finally, they raise the possibility that IGF1 supplementation beginning in infancy might be beneficial in CF.
Collapse
|
9
|
Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. ANNALES D'ENDOCRINOLOGIE 2010; 71:132-43. [PMID: 20362973 DOI: 10.1016/j.ando.2010.02.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 11/25/2022]
Abstract
By integrating morphometrical and endocrinological data, as well as biological effects of various molecules synthesized by the human follicle, we propose a dynamic view of the follicle growth within the human ovary. Folliculogenesis starts with entry of resting follicles into the growth phase, a process where the kit system plays a key role. Several months are required for a new growing follicle to reach the preantral stage (0.15mm), then 70 additional days to reach the size of 2mm. Early growing follicle growth is regulated by subtle interactions between follicle-stimulating hormone (FSH) and local factors produced by theca and granulosa cells (GCs), as well as the oocyte. From the time they enter the selectable stage during the late luteal phase, follicles become sensitive to cyclic changes of FSH in terms of granulosa cell proliferation. During the early follicular phase, the early selected follicle grows very quickly and estradiol is present in the follicular fluid. However, the total steroid production remains moderate. From the mid-follicular phase, the preovulatory follicle synthesizes high quantities of estradiol, then after the mid-cycle gonadotropin surge, very large amounts of progesterone. At this stage of development, the responsiveness of the follicle to gonadotropins is maximum, especially to luteinizing hormone (LH) that triggers granulosa wall dissociation and cumulus expansion as well as oocyte nuclear maturation. Thus, as the follicle develops, its responsiveness to gonadotropins progressively increases under the control of local factors acting in an autocrine/paracrine fashion.
Collapse
Affiliation(s)
- A Gougeon
- Inserm U865, Anipath, faculté de médecine Laënnec, 7, rue Guillaume-Paradin, 69372 Lyon cedex 08, France.
| |
Collapse
|
10
|
Gougeon A, Delangle A, Arouche N, Stridsberg M, Gotteland JP, Loumaye E. Kit ligand and the somatostatin receptor antagonist, BIM-23627, stimulate in vitro resting follicle growth in the neonatal mouse ovary. Endocrinology 2010; 151:1299-309. [PMID: 20056831 DOI: 10.1210/en.2009-0762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the mammalian ovary, kit ligand (KL), coded by a cAMP-stimulatable gene, is a protein that promotes initiation of follicle growth. The neuropeptide somatostatin (SST) is a small peptide that inhibits cAMP generation in many cell types. Consequently, SST receptor agonists might alter KL production and subsequent follicle growth. The present study was undertaken to look for the existence of a functional SST system in the mouse ovary, to test the effects of the SST receptor 2 (SSTR-2) antagonist BIM-23627 on in vitro folliculogenesis, and to compare them with those of KL, which was demonstrated to stimulate follicle growth in the neonatal rat ovary. Pairs of ovaries from 5-d-old mice were incubated in vitro during 15 d in the presence of either KL or BIM-23627. For every mouse, one ovary was cultured in culture medium (control), and the other ovary was cultured in the presence of either KL or BIM-23627. After 5, 10, and 15 d culture, the ovaries were histologically assessed for the content of primordial, primary, and secondary follicles. The SSTR-2 and -5, but not SST, were identified at the transcriptional and translational (mainly in granulosa cells) levels. Both KL and BIM-23627 triggered a reduction of the percentages of primordial follicles and an increase of the percentages of primary and secondary follicles when compared with control ovaries from the same animal. In conclusion, extraovarian SST, acting through its receptors 2 and 5 present on granulosa cells, may be involved in mouse folliculogenesis by reducing recruitment of resting follicles.
Collapse
Affiliation(s)
- Alain Gougeon
- Inserm U865, Faculté de médecine Laennec, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
11
|
Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol 2008; 109:323-30. [PMID: 18400489 DOI: 10.1016/j.jsbmb.2008.03.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Normal testicular function is dependent upon hormones acting through endocrine and paracrine pathways both in vivo and in vitro. Sertoli cells provide factors necessary for the successful progression of spermatogonia into spermatozoa. Sertoli cells have receptors for follicle stimulating hormone (FSH) and testosterone which are the main hormonal regulators of spermatogenesis. Hormones such as testosterone, FSH and luteinizing hormone (LH) are known to influence the germ cell fate. Their removal induces germ cell apoptosis. Proteins of the Bcl-2 family provide one signaling pathway which appears to be essential for male germ cell homeostasis. In addition to paracrine signals, germ cells also depend upon signals derived from Sertoli by direct membrane contact. Somatostatin is a regulatory peptide playing a role in the regulation of the proliferation of the male gametes. Activin A, follistatin and FSH play a role in germ cell maturation during the period when gonocytes resume mitosis to form the spermatogonial stem cells and differentiating germ cell populations. In vitro cultures systems have provided evidence that spermatogonia in advance stage of differentiation have specific regulatory mechanisms that control their fate. This review article provides an overview of the literature concerning the hormonal pathways regulating spermatogenesis.
Collapse
Affiliation(s)
- Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Panepistimioupolis, Metavatiko Building, Ioannina 45110, Greece.
| | | | | | | | | | | |
Collapse
|
12
|
Yoneda A, Kashima M, Yoshida S, Terada K, Nakagawa S, Sakamoto A, Hayakawa K, Suzuki K, Ueda J, Watanabe T. Molecular cloning, testicular postnatal expression, and oocyte-activating potential of porcine phospholipase Czeta. Reproduction 2007; 132:393-401. [PMID: 16940280 DOI: 10.1530/rep.1.01018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular mechanism by which sperm triggers Ca2+ oscillation, oocyte activation, and early embryonic development has not been clarified. Recently, oocyte activation has been shown to be induced by sperm-specific phospholipase Czeta (PLCzeta). The ability of PLCzeta to induce oocyte activation is highly conserved across vertebrates. In the present study, porcine PLCzeta cDNA was identified and the nucleotide sequence was determined. The expression pattern of porcine PLCzeta mRNA during the period of postnatal testicular development was shown to be similar to that of mouse PLCzeta. PLCzeta mRNA expression in the pig and mouse was detected only in the testes when the elongated spermatids had differentiated, and was detected from day 96 after birth in the pig. Histological examination of porcine testis during the period of postnatal development revealed the presence of spermatozoa from day 110 after birth. These findings suggest that the synthesis of PLCzeta mRNA starts when spermiogenesis is initiated. Microinjection of porcine PLCzeta complementary RNA into porcine oocytes demonstrated that porcine PLCzeta has the ability to trigger repetitive Ca2+ transients in porcine oocytes similar to that observed during fertilization. It was also found that porcine PLCzeta cRNA has the potential to induce oocyte activation and initiate embryonic development up to the blastocyst stage.
Collapse
Affiliation(s)
- Akihiro Yoneda
- Laboratory of Animal Breeding and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fombonne J, Charrier C, Goddard I, Moyse E, Krantic S. Leptin-mediated decrease of cyclin A2 and increase of cyclin D1 expression: relevance for the control of prepubertal rat Leydig cell division and differentiation. Endocrinology 2007; 148:2126-37. [PMID: 17303663 DOI: 10.1210/en.2006-1218] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of adult Leydig cells is one of the factors controlling testosterone secretion by sexually mature testis, and it depends on the proliferative capacity of prepubertal Leydig cells. We investigated here whether this capacity is controlled by leptin because this hormone regulates proliferation in other cell types and has a crucial role in male fertility. Our data show that prebupertal Leydig cells express the Ob/Rb form of leptin receptor and are thus direct targets of this hormone. The analysis of G1/S-phase cyclins by quantitative (real-time) RT-PCR and Western blot points to the leptin-induced decrease in cyclin A2 and subsequent increase in cyclin D1 expression that precedes a leptin-triggered decrease in the number of prepubertal Leydig cells. Quantitative assessments of DNA synthesis by bromodeoxyuridine incorporation and of cycling cell population by Ki67 immunocytochemistry indicate that leptin decreases the cell number by inhibiting cell division and increases mRNA levels of Leydig cell differentiation markers such as relaxin-like factor. Immunohistochemistry of cyclin D1 and relaxin-like factor pointed to the parallel increase of their expression coinciding with the onset of Leydig cell differentiation. Moreover, leptin-treated Leydig cells display increased expression of another differentiation marker (3beta-hydroxysteroid dehydrogenase) that is abolished by knocking down cyclin D1 with small interference RNA. Altogether, our data show that leptin inhibits division of prepubertal Leydig cells via a cyclin D-independent mechanism and suggest that cyclin D1 might be involved in leptin-induced differentiation of Leydig cells.
Collapse
Affiliation(s)
- Joanna Fombonne
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, Parc Scientifique de Luminy-BP13, F-13273 Marseille, Cedex 09, France
| | | | | | | | | |
Collapse
|
14
|
Mery L, Lefevre A, Benchaib M, Demirci B, Salle B, Guerin JF, Lornage J. Follicular growth in vitro: detection of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) during in vitro culture of ovine cortical slices. Mol Reprod Dev 2007; 74:767-74. [PMID: 17154295 DOI: 10.1002/mrd.20661] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primordial follicles from different mammal species can survive and enter the growth phase in vitro but do not develop beyond the primary stage. The hypothesis was that, in sheep, in vitro follicular growth is arrested because of a lack of secretion of GDF9 and/or BMP15. Cortical slices of 0.3-0.5 mm thickness issued from 5- to 6-month-old lambs were cultured for 15 days. The pieces were fixed on days 0, 2, 4, 7, 10, and 15 of culture. Follicle morphology, RT-PCR exploration of GDF9 and BMP15 mRNA, immunohistochemical location of their proteins and their receptor BMPRIB and BMPRII were assessed at different time of culture. The mean percentage of primordial follicles decreased from 58.6% (day 0) to 13.4% (day 15) (P<0.01), whereas that of primary follicles increased from 3.2% (day 0) to 31.5% on day 4 (P<0.01), then remained stable until day 15 (35.6%). The percentage of atretic follicles increased from 14.7% (day 0) to 27.1% (day 15) (P<0.05). A few secondary follicles were observed on days 4 and 10, representing 1.0%, and 2.1% of the total number of follicles. GDF9 and BMP15 mRNAs were detected from harvesting (day 0) up to day 15 following culture. At the same time, positive immunoreactions for GDF9, BMP15 and for BMPRIB and BMPRII were also found in oocyte cytoplasm. In conclusion, expression of GDF9, BMP15 and their receptors BMPRIB and BMPRII are detected during in vitro culture of ovine cortical slices.
Collapse
Affiliation(s)
- Lionel Mery
- Département de Médecine et Biologie de la Reproduction, Hôpital Edouard Herriot/CECOS, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Durán-Prado M, Bucharles C, Gonzalez BJ, Vázquez-Martínez R, Martínez-Fuentes AJ, García-Navarro S, Rhodes SJ, Vaudry H, Malagón MM, Castaño JP. Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 2007; 148:411-21. [PMID: 17053026 DOI: 10.1210/en.2006-0920] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Somatostatin (SRIF) exerts its multiple actions, including inhibition of GH secretion and of tumoral growth, through a family of five receptor subtypes (sst1-sst5). We recently reported that an sst2-selective agonist markedly decreases GH release from pig somatotropes, suggesting important roles for this scarcely explored receptor, psst2. Here, functional expression of psst2 in Chinese hamster ovary-K1 and human embryonic kidney-293-AD cell lines was employed to determine its pharmacological features and functional ability to reduce cAMP, and to examine its homodimerization and internalization dynamics in real time in single living cells. Results show that psst2 is a high-affinity receptor (dissociation constant = 0.27 nM) displaying a typical sst2 profile (nM affinity for SRIF-14> or =SRIF-28>cortistatin>MK678>octreotide) and high selectivity (EC(50) = 1.1 nM) for the sst2 agonist l-779,976, but millimolar or undetectable affinity to other sst-specific agonists (sst3>sst1>sst5>>>sst4). Accordingly, SRIF dose-dependently inhibited forskolin-stimulated cAMP with high potency (EC(50) = 6.55 pm) and modest efficacy (maximum 29.1%) via psst2. Cotransfection of human embryonic kidney-293 and Chinese hamster ovary-K1 cells with two receptor constructs modified with distinct fluorescent tags (psst2-YFP/psst2-CFP) enabled fluorescence resonance energy transfer measurement of physical interaction between psst2 receptors and also receptor internalization in single living cells. This revealed that under basal conditions, psst2 forms constitutive homodimers/homomultimers, which dissociate immediately (11 sec) upon SRIF binding. Interestingly, contrary to human sst2, psst2 rapidly reassociates (110.5 sec) during a subsequent process that temporally overlaps with receptor internalization (half-maximal = 95.1 sec). Therefore, psst2 is a potent inhibitory receptor displaying a unique set of interrelated dynamic features of agonist-dependent dimerization, dissociation, internalization, and reassociation, a cascade of events that might be critical for receptor function.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, University of Córdoba, E-14014 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sofikitis N, Pappas E, Kawatani A, Baltogiannis D, Loutradis D, Kanakas N, Giannakis D, Dimitriadis F, Tsoukanelis K, Georgiou I, Makrydimas G, Mio Y, Tarlatzis V, Melekos M, Miyagawa I. Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment. Hum Reprod Update 2005; 11:229-59. [PMID: 15817525 DOI: 10.1093/humupd/dmi007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induction of meiotic and post-meiotic alterations of male germ cells in vitro has been the target of several research efforts since 1960. However, to date, the establishment of an ideal culture system in which spermatogonial stem cells can be maintained and directed to proliferate and undergo meiosis and complete spermiogenesis does not exist. This is attributed to the difficulties concerning the isolation and purification of defined subpopulations of germ cells and the establishment of male germ cell lines. In addition, there is no adequate knowledge regarding the optimal biochemical conditions that promote the survival and differentiation of germ cells in long-term cultures. This review focuses on the methodologies that have been proved sufficient to achieve differentiation of cultured male germ cells. Furthermore, the factors regulating spermatogenesis and the technical prerequisites to achieve differentiation of cultured male germ cells are described. Finally, the role of in vitro cultures of immature diploid germ cells in the therapeutic management of men negative for haploid cells in their testes and the subsequent potential genetic and epigenetic risks are discussed.
Collapse
Affiliation(s)
- N Sofikitis
- Laboratory for Molecular Urology and Genetics of Human Reproduction, Department of Urology, Ioannina University School of Medicine, Ioannina, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fombonne J, Csaba Z, von Boxberg Y, Valayer A, Rey C, Benahmed M, Dournaud P, Krantic S. Expression of somatostatin receptor type-2 (sst2A) in immature porcine Leydig cells and a possible role in the local control of testosterone secretion. Reprod Biol Endocrinol 2003; 1:19. [PMID: 12646058 PMCID: PMC151791 DOI: 10.1186/1477-7827-1-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 02/11/2003] [Indexed: 11/16/2022] Open
Abstract
We recently reported that immature porcine Leydig cells express both somatostatin (SRIF) and SRIF receptor type-2 (sst-2) transcripts. The present study was therefore undertaken to assess whether SRIF might exert autocrine actions on these cells through sst2A receptor, one of the two sst2 isoforms known to exert important neuroendocrine and endocrine functions. Using a polyclonal antibody directed towards the C-terminal tail of the sst2A receptor subtype, receptor immunoreactivity was detected in a subpopulation of Leydig cells and spermatogonia. To address the physiological correlates of this expression we then studied the possible involvement of sst2 receptor in the regulation of testosterone secretion. Functional assays showed that the sst2 agonist octreotide inhibited both basal and hCG-stimulated testosterone secretion by testosterone pretreated Leydig cells. To assess whether sst2 receptor expression might be regulated by testosterone, we performed a semi-quantitative RT-PCR analysis of sst2 mRNA expression in Leydig cells cultured in the presence or in the absence of the androgen. A significant increase in sst2 receptor transcripts was observed in testosterone-treated cells. Taken together, these data suggest that SRIF can inhibit testosterone secretion through the sst2A receptor. The mechanism of the local inhibitory actions of SRIF is probably autocrine since immature porcine Leydig cells express SRIF itself and it might involve testosterone-induced increase of sst2 receptor expression in immature Leydig cells.
Collapse
Affiliation(s)
- Joanna Fombonne
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-407, France
| | - Zsolt Csaba
- INSERM U-159, Centre Paul Broca, 2ter rue d'Alesia, 75014 Paris, France
| | | | - Amandine Valayer
- ICNE, UMR 6544 CNRS – Université de la Méditerranée, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13916 Marseille, France
| | - Catherine Rey
- INSERM U-189, Faculté de Médecine Lyon Sud, B.P. 12, F-69921 Oullins, Cedex, France
| | - Mohamed Benahmed
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-407, France
| | - Pascal Dournaud
- INSERM U-159, Centre Paul Broca, 2ter rue d'Alesia, 75014 Paris, France
| | - Slavica Krantic
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-407, France
- ICNE, UMR 6544 CNRS – Université de la Méditerranée, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13916 Marseille, France
| |
Collapse
|
18
|
Devouassoux-Shisheboran M, Mauduit C, Tabone E, Droz JP, Benahmed M. Growth regulatory factors and signalling proteins in testicular germ cell tumours. APMIS 2003; 111:212-24; discussion 224. [PMID: 12752264 DOI: 10.1034/j.1600-0463.2003.11101251.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular basis of testicular germ cell tumourigenesis are not well elucidated. Growth factors regulate cell growth, differentiation and apoptosis. Major families of growth factors are present in the male gonad from early fetal development to adult life. They are involved in germ cell proliferation and differentiation. Growth signalling pathways suffer deregulation in many human malignancies. Given the importance of growth signals in normal testicular development and their acquired deregulation in most human cancers, growth factors and signalling molecules that have been implicated in the genesis of testicular germ cell tumours, are reviewed. We detected a somatic mutation of SMAD4 gene, responsible for loss of protein function in seminomas. This mutational inactivation may affect the activity of several members of TGFbeta superfamily (TGFbeta, activin, inhibin, BMP). VEGF expression has been shown to predict metastasis in seminomas. A significant association of HST-1 expression, a member of fibroblast growth factors, with the nonseminomatous phenotype and with tumour stage has been described. In contrast, C-KIT is expressed by seminomas only, from the preinvasive stage. Despite intense expression in almost all seminomas, activating mutation of C-KIT gene is seldom reported. Recently, the first animal model of classical testicular seminoma has been identified in transgenic mouse overexpressing GDNF. RET (GDNF receptor) expression is demonstrated in human seminomas, and not in nonseminomatous tumours. However, the exact molecular alterations of GDNF/RET/GFRalpha1 complex in germ cell tumours are not known. Finally, beside growth factors, other signalling molecules such as peptide hormones may be involved in testicular carcinogenesis. We have demonstrated a specific pattern of somatostatin receptors expression in each type of testicular germ cell tumours, with a loss of sst3 and sst4 in seminomas and loss of sst4 and expression of sst1 in nonseminomas only. These data suggest an antiproliferative action of somatostatin in testicular cancers. In summary, many growth factors and signalling molecules seem to represent specific markers for different histological types of germ cell tumours (seminomas versus nonseminomas) and may play a role in the differentiation of germ cell tumours. Despite a complex signalling pathway involved in the physiological functions of male gonad, little is known about the implication of this signalling network in testicular malignancies. From a practical stand-point, further studies on the role of growth factors in human germ cell tumours may offer a new therapeutical perspective with the development of specific pharmacological signalling modulators that could be used as therapeutic agents.
Collapse
|
19
|
Coronas V, Arnault P, Roger M. Cortical diffusible factors increase MAP-2 immunoreactive neuronal population in thalamic cultures. Neurosci Res 2002; 43:57-67. [PMID: 12074841 DOI: 10.1016/s0168-0102(02)00020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous experiments have established that grafts of embryonic day (E) 16 frontal cortex placed into the occipital cortex of postnatal day (P) 0-P1 rats selectively attract axons from the ventrolateral and ventromedial (VL/VM) thalamic nuclei (Frappé et al., Exp. Neurol. 169 (2001) 264). The present study was therefore undertaken to identify any possible maturation-promoting activity of the cortex on VL/VM thalamic cells. In a first step, a primary culture of VL/VM thalamic cells taken from P0-P1 rats was developed. Neurons, glial cells and a few immature, nestin immunoreactive cells were identified in the culture. In a second step, VL/VM thalamic cells that had been maintained in vitro for 4-5 days were cultured for 7 additional days in isolation (control condition) or with an E16 or P5 explant of frontal or occipital cortex placed on a microporous membrane. In control conditions, the total cell population and the percentage of MAP-2 immunoreactive neurons were not modified with time. In contrast, the percentage of MAP-2 immunoreactive neurons was increased in E16 cortex co-cultures whereas the total cell population was unchanged and the proliferative activity remained very low. Also, the mean number of neurites per neuron was increased but no effect was found on neuritic length. Similar effects on neuronal maturation were found with E16 frontal or occipital cortex explants, indicating a lack of areal specificity. P5 cortex also produced, but to a lesser extent, an increase in percentage of MAP-2 immunoreactive neurons. Further, P5 cortex had no effect on mean number of neurites per neuron but substantially promoted elongation of neuronal processes. We propose that in addition to their well-established survival promoting effect, diffusible molecules released by embryonic and early postnatal cortex can promote in vitro the maturation of thalamic neurons.
Collapse
Affiliation(s)
- Valérie Coronas
- CNRS-UMR 6558, Laboratoire des Biomembranes et Signalisation Cellulaire, Université de Poitiers, Faculté des Sciences, Poitiers, France.
| | | | | |
Collapse
|